
Experimental Investigation of the Google Congestion
Control for Real-Time Flows

Luca De Cicco
Politecnico di Bari, Italy
l.decicco@poliba.it

Gaetano Carlucci
Politecnico di Bari, Italy
g.carlucci@poliba.it

Saverio Mascolo
Politecnico di Bari, Italy
mascolo@poliba.it

ABSTRACT
Enabling real-time communication over the Internet is of
ever increasing importance due to the use of Internet for
audio/video communication. The RTCWeb IETF working
group has been established with the goal of standardizing a
set of protocols for inter-operable real-time communication
among Web browsers. In this paper we experimentally eval-
uate the Google Congestion Control (GCC) which has been
recently proposed in the RTCWeb IETF WG. By setting up
a controlled testbed, we have evaluated to what extent GCC
flows are able to track the available bandwidth, while mini-
mizing queuing delays, and fairly share the bottleneck with
other GCC or TCP flows. We have found that the algorithm
works as expected when a GCC flow accesses the bottleneck
in isolation, whereas it is not able to provide a fair band-
width utilization when a GCC flow shares the bottleneck
with either a GCC or a TCP flow.

Categories and Subject Descriptors
H.4.3 [Information systems applications]: Communica-
tions Applications—Computer conferencing, teleconferenc-
ing, and videoconferencing

Keywords
Congestion Control, RTCWEB, RMCAT, Real-time flows

1. INTRODUCTION AND RELATED WORK
Enabling real-time communication over the Internet is a

hot topic, due to the diffusion of broadband connections and
mobile devices with enough processing resources to support
high quality audio/video communication.

Despite the fact that video conferencing applications, such
as Skype, have been widely used since more than one decade,
an inter-operable and efficient set of standard protocols specif-
ically designed for the transport of audio/video flows, is still
missing. Recently, IETF and W3C have established two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

joint working groups: 1) IETF RTCWeb aims at standard-
izing a set of protocols such as a congestion control algo-
rithm to transport real-time flows; 2) W3C WebRTC aims
at standardizing a set of HTML5 APIs to enable real-time
communication within Internet browsers.

In this paper we carry out an experimental investigation of
the congestion control algorithm proposed by Google within
the RTCWeb IETF WG, which has already been imple-
mented in the Google Chrome and Firefox browsers. In
particular, by using a controlled testbed which allows band-
width and propagation times to be set, we investigate to
what extent the congestion control algorithm is able to 1)
fully utilize the available bandwidth, 2) fairly share the bot-
tleneck bandwidth with concurrent flows, and 3) contain
queuing delays. To the best of our knowledge, this is the
first experimental investigation of the GCC.

The design of an efficient congestion control algorithm for
multimedia traffic is a long standing and open issue. The
rate-based approach is the favorite one since it produces a
smoother traffic wrt window-based algorithms. In this cat-
egory, several congestion control algorithms have been pro-
posed, among which we cite the TCP Friendly Rate Control
(TFRC) [4] and the Rate Adaptive Protocol (RAP) [11].

The use of a delay-based approach, instead of the clas-
sic loss-based technique employed by the TCP, to transport
delay-sensitive traffic is a long debated issue [1]. In fact, it is
well-known that the probing phase employed by loss-based
algorithms tends to fill the bottleneck queue and, as a conse-
quence, flows can be affected by delays that are unacceptable
for real-time communication [5].

Main issues which have been addressed in delay-based al-
gorithms are measurements [10] and fairness issues when
sharing the bottleneck with loss-based flows [1, 6]. For in-
stance, it has been shown that TCP Vegas, the first most
known delay-based algorithm, is not able to get the fair share
when competing with TCP NewReno or TCP Westwood+
[6]. In [13] Sprout, a stochastic-based algorithm, has been
proposed to contain delays while maximizing the through-
put; Sprout has been experimentally evaluated in a wireless
emulated where exhibits an improvement wrt Skype, Face-
time, and Hangout in a single flow scenario.

Nowadays, several video conferencing applications are avail-
able such as Skype, iChat, Google Hangout, and Cisco Movi.
An evaluation of these applications can be found in [14]. In
[2, 3] it has been shown that both Skype VoIP and Skype
Video employ a congestion control algorithm which adjusts
the sending rate to match the time varying network band-
width.

In 2011 the IETF RTCWeb working group1 has been es-
tablished with the aim of standardizing a set of protocols
to enable real-time audio and video communication within
any browser, without the need of installing any plug-in or
additional third-party software. An overview of WebRTC
features can be found in [8].

The Network Assisted Dynamic Adaptation (NADA) con-
gestion control algorithm [15] has been proposed within the
RMCAT IETF working group2 by Cisco. The algorithm reg-
ulates the sending rate based on both implicit and explicit
congestion notifications (ECN). At the date of this writing,
no implementation has been provided.

The paper is organized as follows: Section 2 describes the
Google congestion control; Section 3 describes the exper-
imental testbed and the metrics employed for the Google
congestion control evaluation; Section 4 shows the experi-
mental results and Section 5 concludes the paper.

2. GOOGLE CONGESTION CONTROL
The Google Congestion Control (GCC) algorithm in [9]

runs over the UDP and it encapsulates the audio/video frames
in RTP packets. It has been implemented in the open-source
WebRTC that is available in the latest versions of the web
browser Google Chrome. The congestion control is applied
only to the video streams since the audio streams bitrate are
considered negligible.

Figure 1 shows the main components involved in the con-
gestion control scheme. GCC employs two controllers: a
sender-side controller, which computes the target sending
bitrate As, and a receiver-side controller, which computes
the rate Ar that is sent to the sender under the conditions
given in Section 2.2. In the following we describe how the
two controllers compute the rates As and Ar.

2.1 The sender-side congestion control
The sender-side controller is a loss-based congestion con-

trol algorithm that acts every time tk the k-th RTCP re-
port message arrives at the sender or every time tr the r-th
REMB message, which carries Ar, arrives at the sender. The
frequency at which RTCP reports are sent is time varying
and it also depends on the backward-path available band-
width; the higher the backward-path available bandwidth,
the higher is the RTCP reports frequency. The REMB mes-
sages will be discussed in Section 2.2. The RTCP reports
include the fraction of lost packets fl(tk) computed as de-
scribed in [12]. The sender uses fl(tk) to compute the send-
ing rate As(tk), measured in kbps, according to the following
equation:

As(tk) =

max{X(tk), As(tk−1)(1− 0.5fl(tk))} fl(tk) > 0.1

1.05(As(tk−1) + 1kbps) fl(tk) < 0.02

As(tk−1) otherwise

(1)

where X(tk) is the TCP throughput equation used by the
TFRC [4]. The rationale of (1) is the following: 1) when
the fraction lost is considered small (0.02 ≤ fl(tk) ≤ 0.1),
As is kept constant, 2) if a large fraction lost is estimated
(fl(tk) > 0.1) the rate is multiplicatively decreased, but not
below X(t), whereas, 3) when the fraction lost is considered
negligible (fl(tk) < 0.02), the rate is linearly increased.

Finally, when a REMB is received at time tr, As is set as:

As(tr)← min(As(tr), Ar(tr)). (2)

1http://tools.ietf.org/wg/rtcweb/
2http://tools.ietf.org/wg/rmcat/

2.2 The receiver-side controller
The receiver-side controller is a delay-based congestion

control algorithm which computes Ar according to the fol-
lowing equation:

Ar(ti) =

ηAr(ti−1) Increase

αR(ti) Decrease

A(ti−1) Hold

(3)

where, ti denotes the time the i-th group of RTP packets
carrying a video frame is received, η ∈ [1.005, 1.3], α ∈
[0.8, 0.95], and R(ti) is the receiving rate measured in the
last 500ms. Figure 1 shows the “arrival-time filter”, the
“over-use detector” and the “remote rate controller” blocks
involved in the receiver-base controller; the“remote rate con-
troller” is a finite state machine (see Figure 2) in which the
state of (3) is changed by the signal produced by the “over-
use detector” based on the output of the arrival-time filter.
Finally, Ar(ti) cannot exceed 1.5R(ti).

In the following we provide more details on the blocks.
The goal of the arrival-time filter is to estimate the queuing
time variation m(ti). To the purpose, it measures the one
way delay variation dm(ti) = ti−ti−1−(Ti−Ti−1), where Ti

is the timestamp at which the i-th video frame has been sent
and ti is the timestamp the at which it has been received.
In [9] the one way delay variation is considered as the sum
of three components: 1) the transmission time variation, 2)
the queuing time variation m(ti), and 3) the network jitter
n(ti). In [9] the following mathematical model is proposed:

d(ti) =
L(ti)− L(ti−1)

C(ti)
+m(ti) + n(ti) (4)

where L(ti) is the i-th video frame length, C(ti) is an esti-
mation of the path capacity, and n(ti) is the network jitter
modeled as a Gaussian noise. With this model, it is pos-
sible to extract from the one way delay variation d(ti) the
queuing time variation m(ti). In particular, in [9] a Kalman
filter computes [1/C(ti), m(ti)]

T to steer to zero the residual
measurement error d(ti)− dm(ti).

The goal of the over-use detector is to produce a signal to
drive the state of (3) based on m(ti). The rationale is the
following: if m(ti) increases above a threshold, and keeps
increasing for a certain amount of time, or for a certain
amount of consecutive frames, it is assumed that the network
is congested and thus the “overuse” signal is triggered. On
the other hand, if m(ti) decreases below a threshold, the
network is considered underused and the “underuse” signal
is generated. Whenm(ti) is close to zero, the network should
be considered stable and the “normal” signal is generated.

The goal of the remote rate controller is to compute Ar

according to (3) by using the signal produced by the over-
use detector, which drives the finite state machine shown in
Figure 2.

The signaling from the receiver to the sender is done
through REMB messages carrying Ar or through RTCP re-
ports [12]. In [9] the frequency at which the REMB messages
should be sent is still considered an open issue. However,
in the Google Chrome implementation REMB messages are
sent either every 1s, if Ar is decreasing, or immediately, if
Ar decreases more than 3%.

RTP packets
Loss

Protection RTP packets

Arrival
filter

Overuse
Detector

 Controller
Remote Rate

Sender Receiver

Sender Side

RTCP rep.

Cong. Contr.

RTCP report

signalforeman.yuv

v(t)
Network

m(i)

Decoder
As(t)

Virtual video dev

Encoder
v(t)

rFEC(t) + rRTX(t)

Ar

GCC
rate

feedback

Figure 1: Congestion control architecture

Hold Incr.Decr.

normal/underuse

underuse

overuse

normaloveruse normal

underuse

overuse

Figure 2: Remote rate controller finite state ma-
chine

TCP
Receiver

TCP
Sender

UDP

RTT

UDP

UDP UDP

Host 1 Host 2

TCPTCP

Web Server

SignalingSignaling

ethernet link

100Mbps

db(t), d

Traffic
shapershaper

Traffic

Figure 3: Experimental testbed

2.3 Loss protection
The Google Chrome implementation of the GCC algo-

rithm [9] employs Forward Error Correction (FEC) and re-
transmissions to counteract packet losses. In particular, the
sender side congestion controller produces a target sending
bitrate As(t) which feeds the loss protection block shown
in Figure 1. The loss protection block computes v(t), the
target encoding rate, which feeds the video encoder. If
the loss protection is not active, v(t) = As(t), otherwise
v(t) = As(t) − rRTX(t) − rFEC(t), where rFEC(t) is the
sending rate of redundant video frames and rRTX(t) is the
retransmission rate. Moreover, the FEC rate rFEC(t) can-
not be more than half of the total sending rate As(t), i.e.
rFEC(t) ≤ 0.5As(t). Finally, Google Chrome retransmits at
most As(t)·RTT bytes of video data when it receives NACK
messages.

3. EXPERIMENTAL TESTBED
Figure 3 shows the testbed employed to evaluate the per-

formance of the congestion control algorithm. Two hosts,
Host 1 and Host 2, are connected through a bottleneck em-
ulating a WAN scenario. The NetEm linux module along
with the traffic shaper tc3 to set delays and available band-
width on the bottleneck. In particular, the traffic shaper on
the Host 1 sets a one-way delay d and a limitation on the
available bandwidth b(t) for the traffic that is received form
the Host 2. The traffic shaper on the Host 2 only sets the
one-way delay d for the traffic that comes from the Host 1

3http://lartc.org/

and does not set any bandwidth limitation. Thus, the min-
imum round trip time of the connection is RTTm = 2d.
The buffers have been set to 60KB to emulate a typical
home gateway [7]. The considered bandwidths are in the
range [500, 3000]kbps which are the typical of ADSL uplink
speeds and cable connections [7]. On Host 1 tcpdump4 has
been used to measure the received bitrate of both video and
TCP flows.

Both the hosts run a Chromium browser which generates
the video flows. The GCC is implemented in the WebRTC
sources5 used by the Chromium browser. We have modified
the WebRTC sources to log the key variables involved in the
congestion control. Host 1 is equipped with a TCP receiver
and Host 2 runs a TCP sender which uses the TCP Cubic
congestion control, since it is the default version used by the
Linux kernel. The TCP sender logs the congestion window,
slow-start threshold, RTT, and sequence number. A web
server6 provides the HTML pages that handle the signaling
between the peers using the PeerConnection javascript API.

The same video sequence is used as input to the WebRTC
video encoders to enforce experiments reproducibility. To-
wards this end, the linux kernel module v4l2loopback7 is
used to create a virtual webcam device which cyclically re-
peats the Foreman8 YUV test sequence. We have measured
that, without bandwidth limitations, the WebRTC encoder
limits As(t) to the maximum value of 2Mbps.

In the following we describe the metrics employed to assess
the performance of GCC in the considered scenarios. For
each experiment, we compute the following metrics:

Channel Utilization U = R/b: where b is the known
available bandwidth and R is the average received rate mea-
sured by using tcpdump.

Good Utilization g = v/b: where v is the average video
bitrate without considering the bandwidth used for FEC and
retransmissions.

Loss ratio l = (lost bytes)/(received bytes): it is mea-
sured by the traffic shaper tool.

4. RESULTS
In this section we present the results of the experimental

evaluation we have carried out by employing the testbed and
the scenarios described in Section 3. We will show the dy-
namics of key variables such as the video flow rate, the FEC
rate rFEC(t), the retransmission rate rRTX(t), the RTT,
and we will show to what extent the GCC satisfies the re-

4http://www.tcpdump.org/
5http://code.google.com/p/chromium/
6http://code.google.com/p/webrtc-samples/
7https://github.com/umlaeute/v4l2loopback
8http://www.cipr.rpi.edu/resource/sequences/sif.html

0 50 100 150 300250200

0 50 100 150 300250200

0 50 100 150 300250200

0 50 100 150 300250200

500

1000

1500

2000

2500

1000

2000

400

200

100

50

k
b

p
s

GCC rate b
k
b

p
s

rtt

0

Time (s)

m
s

%
As Ar

rRTXrFEC

fl

Figure 4: One GCC video flow over a link with
2000kbps capacity and RTTm = 50ms

quirements defined in the IETF RMCAT9 working group.
Among the other features, the WG10 requires that a con-
gestion control algorithm for multimedia flows should pro-
vide low queuing and jitter delays when in the absence of
competing heterogeneous traffic and a reasonable share of
bandwidth when competing with other homogeneous or het-
erogeneous flows.

4.1 One GCC flow over a bottleneck with con-
stant available bandwidth

In this Section we investigate the performance of a single
video flow over a bottleneck with a constant available band-
width. The available bandwidth b(t) has been set to bi ∈
{500, 1000, 1500, 2000}kbps and four values of the propaga-
tion delay RTTm = 2d have been considered, i.e. RTTm,j ∈
{30, 50, 80, 120}ms. For each of the 16 couples (bi, RTTm,j),
we have run 5 tests and we have evaluated the metrics de-
fined in Section 3 by averaging over the 5 experiments.

Figure 4 shows the results of an experiment in which a sin-
gle GCC video flow is sent over a bottleneck with an avail-
able bandwidth b = 2000kbps and an RTTm = 50ms. The
figure shows that the sending rate is set by using the sender-
side congestion control law (1) unless a REMB message is
received carrying a new value of Ar which is the output of
the receiver-side congestion control law (3). Figure 4 shows
the couples (tr, Ar(tr)), i.e. the event of a REMB reception
along with the value of Ar contained in the message. The
figure confirms that, when the RTT significantly increases,
REMB messages are sent to prevent the sender-side algo-
rithm to further increase the sending rate. Moreover, when
the sender detects an increased value of the fraction loss11

fl, retransmissions are triggered and the FEC action is ac-
tivated. It can be seen that, when the FEC action is on,
rFEC(t) is set to 50% of the sending rate, i.e. the maximum
amount of FEC is used.

Figure 5 (a) shows, for each of the considered bottleneck
bandwidth bi and round trip delays RTTm,j , the measured
channel utilization U which is the sum of 1) the good channel
utilization g, 2) the fraction of FEC defined as rFEC(t)/b,

9http://tools.ietf.org/wg/rmcat/
10http://tools.ietf.org/html/draft-singh-rmcat-cc-eval-02
11The fraction loss is the percentage of lost RTP packets
since the previous RTCP report was received [12].

7006005004003002001000

7006005004003002001000

7006005004003002001000

7006005004003002001000

100

50

1000

2000

400

200

2500

3000

2000

1500

1000

500

GCC rate b

k
b
p
s

k
b
p
s

rtt

%
m

s

Time (s)

As Ar

rRTXrFEC

fl

Figure 6: One GCC video flow over a stair-case
available bandwidth and RTTm = 50ms

and 3) the fraction of retransmissions defined as rRTX(t)/b.
The figure shows that the channel utilization is slightly

above 0.8 and is not significantly affected by the RTTm or
the available bandwidth. Figure 5 (b) shows that the loss
ratio is not affected by the RTT, but it increases when the
bandwidth increases and reaches a maximum value of 0.028.
This confirms that the receiver-side delay-based controller
works as expected, i.e. it decreases the rate when an in-
crease of the queuing time is sensed, thus limiting the send-
ing rate according to (2). Moreover, since the algorithm only
reacts to queuing delay variations on the forward path, the
measured metrics do not depend significantly on the RTTm.
Let us now focus on the loss protection that is used when
packet losses are present. Figure 5 (a) shows that the frac-
tion of bandwidth taken by the FEC is roughly proportional
to the loss ratio l shown in Figure 5 (b), and in the case of
b = 2000kbps, it is more than 20% of the available band-
width.

We have collected all the RTT samples reported in the
RTCP feedbacks during all the experiments with the same
available bandwidth bi and we have computed the queuing
delay, defined as Qbi(t) = RTT (t) − RTTm. Based on the
collected samples Qbi(t), we have computed the four cumu-
lative distribution function (CDF), one for each considered
bottleneck bandwidth bi, which are shown in Figure 5 (c).
The figure shows that the median queuing delay is very close
to zero, whereas the 90-th percentile is below 0.25s, confirm-
ing that the algorithm is able to contain the queuing delay.

4.2 One GCC flow over a variable available
bandwidth bottleneck

In this Section we investigate how the GCC throttles the
sending rate when step-like changes of the available band-
width occur. First, we have measured the transient time
required to match a step-like increase of the available band-
width. With this purpose, we have performed several ex-
periments in which a GCC flow accesses a bottleneck whose
bandwidth b(t) changes from a minimum value of 400kbps
to 3000kbps after 60s. We have found that GCC reaches a
steady-state value of around 2Mbps after a transient time of
roughly 30s.

With the information gathered by this simple experiment,

30ms 50ms 80ms 120ms
0

0.2

0.4

0.6

0.8

1

U

g RTXFEC

5
0
0
 k

b
p
s

1
0
0
0
 k

b
p
s

1
5
0
0
 k

b
p
s

2
0
0
0
 k

b
p
s

(a) Channel utilization, good channel utilization,
fraction of FEC, and fraction of retransmissions

30ms 50ms 80ms120ms
0

0.02

0.04
500 1000 1500 2000

(b) Loss Ratio l
0.1s 0.2s 0.3s 0.4s 0.5s

1

0.8

0.6

0.4

0.2

0

C
D

F

500 1000 1500 2000

(c) Queuing delay

Figure 5: One GCC flow over a bottleneck with constant capacity

b=2000kbps b=3000kbpsb=1000kbps

0.8

0.6

0.4

0.2

0

1

U

GCC TCP
G → T

T → G
G → T T → G

G → T T → G

Figure 7: Channel Utilization when one GCC flow
(G) shares the bottleneck with a TCP flow (T)

we now let the available bandwidth b(t) to vary as a stair-
case to check how a GCC flow adapts the sending rate to
increases and decreases of b(t). In particular, starting from
a bandwidth equal to 500kbps, b is increased every 100s of
500kbps until a bandwidth of 2000kbps is reached. Then,
b(t) is decreased using the same pattern. We have repeated
this experiment for three different propagation delays, i.e.
RTTm,j = {30, 50, 80}ms. Due to the lack of space, we only
show one experimental result obtained for RTTm = 50ms.
Figure 6 shows that the sending rate is able to quickly match
the variable available bandwidth b(t). Moreover, the figure
confirms that the algorithm is able contain queuing delays
thanks to the receiver-side congestion controller. Finally,
the measured channel utilization is slightly above 80%.

4.3 One GCC with one concurrent TCP flow
This experiment investigates the behaviour of a GCC flow

in the presence of a TCP flow. We consider three different
available bandwidths, i.e bi ∈ {1000, 2000, 3000}kbps with
a propagation delay of RTTm = 50ms. For each value of
bi, we have considered two cases: 1) a GCC flow starts at
t = 0s and a TCP flow enters the bottleneck at t = 100s; 2)
a TCP flow starts at t = 0s and a GCC flow is started at
t = 100s.

Figure 7 shows the overall channel utilization and the TCP
and GCC bandwidth shares obtained in this scenario. Three
groups of bars are shown, each group for a different value of
bi: the first bar in the groups shows the channel utilization
when GCC starts before TCP, the second when GCC starts
after TCP. The figure clearly shows that at lower band-
widths GCC is not able to get a fair share. In the worst
case, obtained when b = 1000kbps, the GCC flow utilizes
only 13% of the channel capacity. Moreover, it appears that
when the TCP flow starts first, the GCC flow is able to
grab a slightly higher bandwidth share wrt the case when
the TCP starts after the GCC flow.

To give a further insight on this issue, Figure 8 (a) shows
the dynamics of the GCC flow and a TCP flow when b =
1000kbps and a TCP flow is started before the GCC flow.

When the GCC flow joins the bottleneck it quickly gets a
fair share until when, at around t = 145s, many consecutive
REMB messages are received by the sender and the sending
rate is decreased according to the value of Ar computed by
the receiver-side congestion controller. The situation gets
worse after t = 220s, when a large number of REMBs are
received and the GCC flow is almost starved by the TCP.

Let us now look at Figure 8 (b) which shows the results
obtained when b = 3000kbps: in this case the GCC send-
ing bitrate is driven only by the sender-side controller (no
REMB messages are received) and is able to get a larger
bandwidth share wrt the TCP flow. This is due to the fact
that the sender-side controller is loss-based and its probing
phase is more aggressive than that of the TCP (see eq. (1)).

4.4 Two concurrent GCC flows
In this scenario we assess the fairness of two GCC flows

when sharing a bottleneck with constant capacity. We con-
sider a link with three different constant bandwidths bi ∈
{1000, 2000, 3000}kbps and a propagation delay of 50ms.
For each bi we have run 5 tests.

Figure 9 shows the results of three experiments carried out
with b = 1000kbps. It shows that the two GCC flows ex-
hibit an unpredictable behavior: in Figure 9 (a) the first flow
does not leave the bandwidth to the second flow, that ob-
tains only a 10% channel utilization; Figure 9 (b) shows the
opposite situation in which the second flow starves the first
one that only gets 21% of the channel bandwidth; finally, in
Figure 9 (c) the two flows fairly share the bandwidth.

b=1000kbps b=2000kbps b=3000kbps

0.2

0.4

0.6

0.8

1

0

U

1st GCC flow 2nd GCC flow

Figure 10: Channel utilization in the case of two
GCC flows sharing a bottleneck (RTTm = 50ms)

Figure 10 shows the channel utilization grouped for each
of the considered available bandwidths bi. Each bar in a
group represents the channel utilization of the two GCC
flows obtained in a single experiment. The figure shows
that in the case of b = 1000kbps and b = 2000kbps a very
poor fairness is obtained, whereas a better one is obtained
when b = 3000kbps, even though the first flow always gets
a higher bandwidth share.

0 500400300200100

0 500400300200100

0 500400300200100

0 500400300200100

500

1000

1500

k
b
p
s

TCP rate GCC rate b

1000

500

100

50

400

200

rtt

Time (s)

k
b
p
s

m
s

%

Ar

rFEC rRTX

fl

(a) b = 1000kbps, RTTm = 50ms

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

3000

2000

1000

1000

2000

400

200

100

50

k
b
p
s

k
b
p
s

TCP rate GCC rate b

rtt

m
s

%

Time (s)

Ar

rFEC rRTX

fl

(b) b = 3000kbps, RTTm = 50ms

Figure 8: A GCC flow sharing the bottleneck with a TCP flow

50 1000 150 200 250

50 1000 150 200 250

500

1000

600

400

200

k
b
p
s

GCC 1st flow GCC 2nd flow b

rtt 1st flow rtt 2nd flow

m
s

Time (s)

(a) The 2nd flow does not get a fair share

0 100 200 300 400 500

0 100 200 300 400 500

200

400

600

500

1000
GCC 1st flow bGCC 2nd flow

k
b

p
s

rtt 1st flow rtt 2nd flow

Time (s)

m
s

(b) The 2nd flow starves the 1st flow

50 100 150 200 2500

50 100 150 200 2500

600

400

200

500

1000
GCC 1st flow bGCC 2nd flow

k
b
p
s

rtt 1st flow rtt 2nd flow

m
s

Time (s)

(c) The flows share the bandwidth fairly

Figure 9: Two GCC flows share a bottleneck with b = 1000kbps and RTTm = 50ms

5. CONCLUSIONS AND FUTURE WORK
In this paper we have carried out an experimental in-

vestigation of the WebRTC congestion control proposed by
Google (GCC). The main results we have found are: (1)
when a single GCC flow accesses the bottleneck, the channel
utilization is above 0.8, even when the available bandwidth
changes following a stair-case pattern, and queuing delays
are contained; (2) a video flow controlled by the GCC gets
starved when sharing the bottleneck with a TCP flow if the
bottleneck capacity is less or equal to 1000 kbps; (3) when
two GCC video flows share the bottleneck, the algorithm be-
havior appears unpredictable and exhibit poor fairness. The
cause of the unfairness issues exhibited by GCC when shar-
ing the bottleneck with TCP, or with another GCC flow, is
currently under investigation.

6. REFERENCES
[1] L. Budzisz et al. On the fair coexistence of loss- and

delay-based tcp. IEEE/ACM Trans. Netw.,
19(6):1811–1824, Dec. 2011.

[2] L. De Cicco et al. Skype video congestion control: An
experimental investigation. Computer Networks,
55(3):558–571, 2011.

[3] L. De Cicco and S. Mascolo. A Mathematical Model of the
Skype VoIP Congestion Control Algorithm. IEEE Trans.
on Automatic Control, 55(3):790–795, Mar. 2010.

[4] S. Floyd et al. TCP Friendly Rate Control (TFRC):
Protocol Specification. RFC 5348, 2008.

[5] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in the
Internet. Comm. of the ACM, 55(1):57–65, Jan. 2012.

[6] L. A. Grieco and S. Mascolo. Performance evaluation and
comparison of Westwood+, New Reno, and Vegas TCP
congestion control. ACM SIGCOMM CCR, 34(2):25–38,
2004.

[7] C. Kreibich et al. Netalyzr: illuminating the edge network.
In Proc. ACM IMC ’10, pages 246–259, 2010.

[8] S. Loreto and S. P. Romano. Real-time communications in
the web: Issues, achievements, and ongoing standardization
efforts. IEEE Internet Computing, 16(5):68–73, 2012.

[9] H. Lundin et al. Google congestion control algorithm for
real-time communication on the world wide web. Draft
IETF, 2013.

[10] R. S. Prasad et al. On the effectiveness of delay-based
congestion avoidance. In Proc. PFLDNet ’04, 2004.

[11] R. Rejaie et al. RAP: An End-to-End Rate-Based
Congestion Control Mechanism for Realtime Streams in the
Internet. In Proc. INFOCOM ’99, pages 1337–1345, 1999.

[12] H. Schulzrinne et al. RTP: A Transport Protocol for
Real-Time Applications. RFC 3550, Standard, 2003.

[13] K. Winstein et al. Stochastic Forecasts Achieve High
Throughput and Low Delay over Cellular Networks. In
Proc. USENIX NSDI ’13, April 2013.

[14] Y. Xu et al. Video telephony for end-consumers:
measurement study of Google+, iChat, and Skype. In Proc.
ACM IMC ’12, pages 371–384, 2012.

[15] X. Zhu and R. Pan. NADA: A Unified Congestion Control
Scheme for Real-Time Media. Draft IETF, Mar. 2013.

