
Motivations Experimental testbed Experimental results Conclusions

An Experimental Investigation of the Congestion
Control Used by Skype VoIP

L. De Cicco, S. Mascolo, V. Palmisano

Politecnico di Bari, Dipartimento di Elettrotecnica ed Elettronica

5th International Conference on Wired/Wireless Internet
Communications

Coimbra, Portugal, 23-25 May 2007



Motivations Experimental testbed Experimental results Conclusions

Outline

1 Motivations

2 Experimental testbed
The testbed

3 Experimental results
One Skype flow
One Skype flow with concurrent TCP connections
Two Skype flows sharing the bottleneck

4 Conclusions



Motivations Experimental testbed Experimental results Conclusions

Transport of Multimedia flows

The convergence of multimedia services (VoIP, video on demand,
video conference) has opened the door to new challenges

The efficient transport of multimedia flows is still an open issue

It is not yet clear what will be the impact of VoIP traffic on the
stability of the Internet (“congestion collapse?”)

Some protocols designed for the transport of multimedia flows are:

TCP Friendly Rate Control (TFRC): it is currently discussed within
the IETF
RAP, TEAR



Motivations Experimental testbed Experimental results Conclusions

Goals of the work

Does Skype harm network stability?

Skype is by far the most used VoIP application generating a large
amount of traffic

Skype uses UDP flows for VoIP transport: investigate their
characteristics (Skype is a closed source application)

There is no evidence that Skype flows would impact the stability of
the best-effort Internet

The goals of the work

1 Are Skype flows inelastic?

2 How does Skype react to network congestion?

3 How does Skype adapt the sending rate to match the available
network bandwidth?

4 Is Skype fair with other concurrent Skype and TCP flows?



Motivations Experimental testbed Experimental results Conclusions

The testbed

Outline

1 Motivations

2 Experimental testbed
The testbed

3 Experimental results
One Skype flow
One Skype flow with concurrent TCP connections
Two Skype flows sharing the bottleneck

4 Conclusions



Motivations Experimental testbed Experimental results Conclusions

The testbed

Setup

A local testbed has been set up using a measurement tool we have
developed (ipq-shaper)

All packets generated from Skype application have been routed to
the ingress queues q1and q2

Delays, available bandwidth and buffer size of each queue can be set
by the user

S1

T1

T4

S2

S1

T1

T4

S2

Host 1 Host 2

q1

q2



Motivations Experimental testbed Experimental results Conclusions

The testbed

Traffic generation and measurement

We have installed on each host Skype (S1 and S2) and iperf
(T1,..., T4) in order to generate TCP flows

We collected logfiles measuring goodput, throughput and loss rate,
by tracing the per-flow arriving and departing traffic from each queue

The RTT of the connection is set to 100 ms and the queue size is
set equal to the bandwidth delay product.

Skype flows are generated using always the same audio sequence by
hijacking audio I/O in order to perform reproducible experiments



Motivations Experimental testbed Experimental results Conclusions

Investigating the Skype congestion control
Methodology

We have considered step-like time-varying available bandwidths

Using square-wave available bandwidths (duty cycle is 50%)
characterized by different periods we tested:

the Skype capability to match the available bandwidth
the transient time required for the matching (responsiveness)

t

b(t)

AMax

Amin

T



Motivations Experimental testbed Experimental results Conclusions

One Skype flow

Outline

1 Motivations

2 Experimental testbed
The testbed

3 Experimental results
One Skype flow
One Skype flow with concurrent TCP connections
Two Skype flows sharing the bottleneck

4 Conclusions



Motivations Experimental testbed Experimental results Conclusions

One Skype flow

Square wave available bandwidth (period 200 s)
How Skype sending rate reacts to changes in the available bandwidth

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

time (s)

T
hr

ou
gh

pu
t (

kb
/s

)

Sending rate

Loss rate

Available BW

Set-up: square-wave
available bandwidth
(AMax=160 kb/s, Amin=16
kb/s, T = 200 s)

The loss rate
decreases to < 10kb/s
after a transient

The Skype flow is
elastic and it is able
to match the available
bandwidth



Motivations Experimental testbed Experimental results Conclusions

One Skype flow

Square wave available bandwidth (period 200 s)
Zoom around the bandwidth drop at t = 300s

290 300 310 320 330 340 350
0

10

20

30

40

50

60

70

80

time (s)

kb
/s

Sending rate
Loss rate
Available BW

Skype adapts its input rate
to match the available
bandwidth in around 40s.

The input rate throttling
seems to be triggered by
the increased drop rate

The algorithm
responsiveness is not
satisfactory

Question

How does the protocol behave
when bandwidth changes
happen more rapidly?



Motivations Experimental testbed Experimental results Conclusions

One Skype flow

Square wave available bandwidth (period 20 s)
How does Skype sending rate react to sudden changes of available bandwidth?

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

time (s)

T
hr

ou
gh

pu
t (

kb
/s

)

Sending rate

Loss rate
Available BW

Set-up: AMax=160 kb/s,
Amin=16 kb/s, T = 20 s

The input rate remains
quite unchanged

Skype is not able to
follow the sudden
bandwidth reductions,
provoking consistent
losses.

Skype flows are not able
to avoid congestion in
such scenario because of
the long transient times



Motivations Experimental testbed Experimental results Conclusions

One Skype flow

Square wave available bandwidth (period 20 s)
Goodput and loss rate during time intervals at constant available bandwidth

[0,10] ]10,20] ]20,30] ]30,40] ]40,50] ]50,60] ]60,70] ]70,80]
0

10

20

30

40

50

60

70

80

90

kb
/s

Goodput
Loss rate

In the time intervals
characterized by low
available bandwidth Skype
flow suffers an high packet
loss rate which may not
guarantee perceived
quality.



Motivations Experimental testbed Experimental results Conclusions

One Skype flow

Skype flow with variable bandwidth
How does Skype sending rate react to small step-like increases/decreases of available bandwidth?

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

time (s)

T
hr

ou
gh

pu
t (

kb
/s

)

Sending rate
Loss rate
Available BW

Set-up: 16 kb/s bandwidth
drops/increases every 100 s.
b(t) ∈ [16, 80] kb/s (min/max
measured rates).

What is the granularity of
the input rate produced by
Skype flows?

Is it able to adapt to small
step-like variations?

The input rate is able to contain
packet losses, however it does not
follow the available bandwidth (in
the interval [700, 900])



Motivations Experimental testbed Experimental results Conclusions

One Skype flow with concurrent TCP connections

Outline

1 Motivations

2 Experimental testbed
The testbed

3 Experimental results
One Skype flow
One Skype flow with concurrent TCP connections
Two Skype flows sharing the bottleneck

4 Conclusions



Motivations Experimental testbed Experimental results Conclusions

One Skype flow with concurrent TCP connections

Skype and TCP flows sharing the bottleneck

TCP Congestion Control

TCP is still the most used transport protocol and it is the main
driver of the stability of the network

It is a loss based congestion control algorithm

Congestion is detected when three duplicate ACK are received

Skype congestion control

The response to congestion is slow (˜40 seconds to adapt to
available bandwidth)

How do the two congestion control algorithms interact when
both Skype and TCP flows are accessing the bottleneck?



Motivations Experimental testbed Experimental results Conclusions

One Skype flow with concurrent TCP connections

One concurrent TCP flow (constant bandwidth)

0 50 100 150 200 250 300
0

20

40

60

80

time (s)

G
oo

dp
ut

 (
kb

/s
)

0 50 100 150 200 250 300
0

10

20

30

40

50

time (s)

T
im

eo
ut

s

Skype
TCP
Available BW

Set-up: Constant link
capacity of 56 kb/s. Skype
call starts 70 s later than
the TCP flow.

When the Skype flow
enters the link it causes
a very large number of
timeouts in the TCP
flow.

Goodput of TCP flow
is near to zero when
Skype flow is on.

Skype does not share
the available bandwidth
fairly



Motivations Experimental testbed Experimental results Conclusions

One Skype flow with concurrent TCP connections

One concurrent TCP flow (square wave bandwidth)

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

time (s)

G
oo

dp
ut

 (
kb

/s
)

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

time (s)

Lo
ss

 r
at

e 
(k

b/
s)

Skype
TCP

Skype
TCP
Available BW

Set-up: AMax=160 kb/s,
Amin=50 kb/s, T = 200 s.

How do the two
protocols interact
when increases and
decreases take
place?

When the available
bandwidth is low the
TCP connection
doesn’t get any share.

TCP suffers of an high
number of timeouts



Motivations Experimental testbed Experimental results Conclusions

One Skype flow with concurrent TCP connections

One concurrent TCP flow (square wave bandwidth)
Goodput of Skype and TCP flows in time intervals where the available bandwidth is kept constant

[0,100] ]100,200] ]200,300] ]300,400] ]400,500] ]500,600] ]600,700]
0

20

40

60

80

100

120

140

G
oo

dp
ut

 (
kb

ps
)

Skype
TCP Observation

When the available
bandwidth is low, the TCP
flow is not able to get any
share, and its goodput is
close to zero.



Motivations Experimental testbed Experimental results Conclusions

One Skype flow with concurrent TCP connections

Four concurrent TCP flows

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

time (s)

G
oo

dp
ut

 (
kb

ps
)

Skype
TCP 1
TCP 2
TCP 3
TCP 4

Set-up: b(t) = 120 kb/s
In the first half it is started
one TCP connection each
50s, in the second half it is
turned off one TCP
connection each 50s.

Skype doesn’t adapt
its sending rate when
a new TCP flow joins
the bottleneck

TCP flows adapt their
rate in order to avoid
congestion on the link



Motivations Experimental testbed Experimental results Conclusions

One Skype flow with concurrent TCP connections

Four concurrent TCP flows
Goodput of the flows during each time interval

[0,50] ]50,100] ]100,150] ]200,250] ]250,300] ]250,300] ]300,350] ]350,400] ]400,450]
0

20

40

60

80

100

120

G
oo

dp
ut

 (
kb

ps
)

Skype
TCP 1
TCP 2
TCP 3
TCP 4

Skype’s goodput is
kept unchanged
during all the time,
while TCP flows share
the left available
bandwidth.

Skype is not
responsive when
TCP flows join the
bottleneck



Motivations Experimental testbed Experimental results Conclusions

Two Skype flows sharing the bottleneck

Outline

1 Motivations

2 Experimental testbed
The testbed

3 Experimental results
One Skype flow
One Skype flow with concurrent TCP connections
Two Skype flows sharing the bottleneck

4 Conclusions



Motivations Experimental testbed Experimental results Conclusions

Two Skype flows sharing the bottleneck

Two Skype flows sharing the bottleneck

We have seen that Skype congestion control is not TCP friendly, so to
conclude the investigation we question about:

How do Skype flows interact between each other?

Are they able to avoid congestion on the bottleneck?



Motivations Experimental testbed Experimental results Conclusions

Two Skype flows sharing the bottleneck

Two Skype flows (square wave available bandwidth)

0 100 200 300 400 500 600
0

20

40

60

80

100

120

time (s)

T
hr

ou
gh

pu
t (

kb
/s

)

0 100 200 300 400 500 600
0

20

40

60

80

time (s)

Lo
ss

 r
at

e 
(k

b/
s)

Skype 1
Skype 2

Skype 1
Skype 2
Av. BW

Set-up: Square-wave
available bandwidth
(AMax=144 kb/s, Amin=64
kb/s, T = 200 s).
The second Skype calls is
placed after 25 s.

The two flows behave
at the manner

They are not able to
avoid congestion
provoking consistent
losses (up to 80 kb/s)

Other test have shown
that Skype is neither
fair



Motivations Experimental testbed Experimental results Conclusions

Conclusions

Upside...

Skype implements some sort of congestion control algorithm

...Downside

The reaction speed of this algorithm revealed to be very slow

Skype has shown two remarkable drawbacks:

1 Large packet drop rates during the transients following a bandwidth
reduction

2 Unresponsive behaviour when coexisting with responsive flows such
as TCP

When more Skype calls are established on the same link, they are
not able to adapt their sending rate to match correctly the available
bandwidth (risk of network congestion collapse)



Motivations Experimental testbed Experimental results Conclusions

Further work agenda

Investigate Skype’s behaviour over lossy links?

Experiment with large number of Skype flows sharing a bottleneck
(testbed challenges)

Skype congestion control algorithm identification using control
theory tools (nonlinear switched system)

Investigate Skype Video congestion control (testbed challenges, how
to hijack video?)



Motivations Experimental testbed Experimental results Conclusions

Questions?

Any questions?


	Motivations
	Experimental testbed
	The testbed

	Experimental results
	One Skype flow
	One Skype flow with concurrent TCP connections
	Two Skype flows sharing the bottleneck

	Conclusions

