
Skype Video Responsiveness to Bandwidth Variations

Luca De Cicco
Politecnico di Bari

Bari, Italy

ldecicco@poliba.it

Saverio Mascolo
Politecnico di Bari

Bari, Italy

mascolo@poliba.it

Vittorio Palmisano
Politecnico di Bari

Bari, Italy

vpalmisano@poliba.it

ABSTRACT
The TCP/IP stack has been extremely successful for reliable
delivery of best-e�ort, time insensitive elastic type data traf-
�c. Nowadays, the Internet is rapidly evolving to become an
equally e�cient platform for multimedia content delivery.
Key examples of this evolution are, to name few, YouTube,
Skype Audio/Video, IPTV, P2P video distribution such as
Coolstreaming or Joost. While YouTube streams videos us-
ing the Transmission Control Protocol (TCP), applications
that are time-sensitive such as Skype VoIP or Video Confer-
encing employ the UDP because they can tolerate small loss
percentages but not delays due to TCP recovery of losses via
retransmissions. Since the UDP does not implement conges-
tion control, these applications must implement those func-
tionalities at the application layer in order to avoid conges-
tion and preserve network stability. In this paper we inves-
tigate Skype Video in order to discover to what extent this
application is able to throttle its sending rate to match the
unpredictable Internet bandwidth while preserving resource
for co-existing best-e�ort TCP tra�c.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet; C.4
[Performance of Systems]: Measurements
; H.4.3 [Information Systems Applications]: Commu-
nications Applications

General Terms
Measurements, Performance, Experimentation

Keywords
Skype, Video over IP, Congestion Control

1. INTRODUCTION
The TCP/IP stack has been extremely successful for reli-

able delivery of best-e�ort, time insensitive elastic type data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’08 Braunschweig, Germany
Copyright 2008 ACM 978-1-60588-157-6/05/2008 ...$5.00.

tra�c. Nowadays, the Internet is rapidly evolving to become
an e�cient platform for multimedia content delivery. In fact,
the part of Internet tra�c due to multimedia applications
such as Voice over IP, Video over IP, YouTube, IPTV, peer-
to-peer video distribution softwares such as, to name few,
Coolstreaming and Joost is ever increasing. A key di�erence
between time-insensitive data tra�c and time-sensitive traf-
�c generated by applications such as VoIP or real-time video
is that, while a data sending rate can be modulated to match
the network available bandwidth, a real-time audio/video
sending rate must follow the source rate. For these rea-
sons data tra�c is elastic and is carried on the TCP, which
implements congestion control, whereas real-time tra�c is
inelastic and is carried on UDP.
Although in principle time-sensitive audio/video applica-

tions generate inelastic tra�c because, due to time-constraints,
�ows cannot reduce their bandwidth requirements in the
presence of congestion as TCP does, in practice well-designed
time-sensitive applications must adapt to network available
bandwidth at least to some extent. The way this goal can
be achieved is by using a congestion control algorithm along
with a scalable video codecs that adapts video quality, frame
rate and picture size to match both the QoS requirements
and network available bandwidth [18].
Di�erently from TCP �ows that continuously probe for

network capacity via the Additive Increase Multiplicative
Decrease (AIMD) paradigm, the throughput of the �ows
originated by means of a scalable video codec is always
bounded by the maximum and minimum bitrate achievable
by the speci�c codec.
YouTube is an example of video distribution system that

employs the TCP to generate elastic tra�c. In particular,
the video stream is bu�ered at the receiver for a while before
the playing is started. In this way, short-term mismatch be-
tween the source video rate and the network available band-
width are averaged out and masked by the playout bu�er.
On the other hand, Skype is one of the most prominent ex-
ample of applications providing unicast Audio/Video calls
over UDP. Skype Audio/Video is a closed source applica-
tion. Skype Audio employs several audio codecs such as
G729, SVOPC, iSAC, iLBC, whereas Skype Video employs
the VP7 codec provided by On21.
In literature there are several papers that propose to de-

sign new transport protocols tailored to transport multi-
media content. A review of these protocols along with a
proposed one can be found in [10]. Among these protocols,
the only congestion control for multimedia �ows that has

1On2 Truemotion VP7 codec, http://www.on2.com/

been proposed for IETF standardization is the TCP Friendly
Rate Control (TFRC) [12] [14]. Implementation of TFRC
is complex since it requires ad-hoc tuning of many parame-
ters. For example, to enable a VoIP application, it has been
necessary to propose a variant [9]. For these considerations,
the state of art of today running real-time applications such
as Skype Audio/Video employs the UDP. Since the UDP
does not implement congestion control functionalities, it is
mandatory for a well-designed multimedia application to im-
plement an e�cient congestion control algorithm, otherwise
the Internet would experience a congestion collapse as the
one happened in the eighties before the introduction of TCP
congestion control [17].
This work investigates how Skype Video behaves when

sharing the Internet with other TCP and Skype Video �ows.
The goal is to determine the responsiveness of Skype Video
to the unpredictable time-varying Internet bandwidth in
terms of transient times needed to match the available band-
width and fairness with respect to coexisting TCP and Skype
�ows. At the best of authors' knowledge, this is the �rst in-
vestigation of Skype Video. To the purpose, we have set
up a local area network testbed in which it is possible to
emulate wide area networks delays and set di�erent tra�c
conditions, bottleneck capacities and queue size.
The rest of the paper is organized as follows: in Section 2

we summarize the related work; in Section 3 we summarize
the knowledge made available to the public on the adaptive
video codec used by Skype; in Section 4 we brie�y describe
the experimental testbed and the tools we have developed in
order to carry out the experiments; in Section 5 we present
and discuss the experimental results. Finally, Section 6 con-
cludes the paper.

2. RELATED WORK
It is well-known that the best-e�ort Internet cannot pro-

vide guaranteed resources for real-time multimedia applica-
tions. The �rst attempt to address the problem is described
in [3] where authors show the bene�t of implementing a
very basic congestion control scheme in conjunction with the
adaptive video codec H.261 in a video conferencing system.
In the past years, the idea of applying congestion control to
multimedia systems [8] has consolidated itself and it has led
to several design e�orts [10],[12],[14],[16].
One of the most prominent applications which implements

real-time audio/video transmission over the Internet is Skype.
An experimental investigation has revealed that Skype VoIP
implement some sort of congestion control by varying the
sending rate to match the network available bandwidth to
some extent [7].
Other relevant papers on Skype can be grouped in the

following categories: i) P2P network characterization; ii)
perceived quality of the Skype VoIP �ows; iii) identi�cation
of Skype �ows.
First papers on Skype mainly focused on the characteriza-

tion of the P2P network built by Skype in order to enlight,
at least partially, interesting details on its architecture and
on the NAT traversal techniques [2],[11].
Moreover, several studies have been carried out on the

quality provided by the Skype VoIP calls in di�erent sce-
narios by using metrics such as mean opinion score (MOS)
and Perceptual Evaluation of Speech Quality (PESQ) [1],
[6], [13] or by de�ning metrics based on packet level mea-
surements such as round trip time, input rate and duration

S

Host 2Host 1

S

S

S
RTT

C(t)

TCP

UDP

UDP UDP

UDP

TCP

192.168.0.4 192.168.0.6

IPerfIPerf

Figure 1: Experimental testbed

of the calls [5].
Another relevant aspect addressed in the literature is the

detection of Skype �ows, which is very important from the
Internet Service Providers' point of view. Recently, it has
been proposed a method to identify Skype tra�c which uses
two classi�ers: one, which is based on applying the Chi-
Square test to the payload of passively sni�ed tra�c, and
the other one that is based on packet size and inter packet
gap [4].
This work enriches the state of the art by characterizing

the behaviour of Skype Video �ows when accessing network
paths with time-varying characteristics.

3. VIDEO CODEC EMPLOYED BY SKYPE
In this Section we summarize all the information avail-

able to the public concerning the video codec used by Skype
Video that are reported in [15]. Since 2005 Skype employs
the proprietary Video Codec TrueMotion VP7 provided by
On2 in order to manage one-to-one videoconferencing. The
codec supports real-time video encoding and decoding using
a �datarate control� which adjusts frame quality, video res-
olution and number of frame per seconds to adapt to band-
width variations. Moreover, the white paper [15] states that
a model of the client bu�er level is employed in order to
control those variables, but no further details are provided.
Regarding the bitrates produced by VP7, On2 claims to pro-
vide video transport starting from bitrates as low as 20 kbps;
they do not provide any information on the maximum bi-
trate.

4. EXPERIMENTING WITH SKYPE VIDEO:
THE SKYPE MEASUREMENT LAB

In order to investigate how Skype Audio/Video connec-
tions behave when network bandwidth changes over time, we
have developed a measurement tool that allows real network
experiments be deployed over one or more hosts. Figure 1
shows the testbed set up which is made of two real hosts:
on each host one or more Skype applications are started
with or without concurrent Iperf generated TCP tra�c 2.
All packets generated by Skype and Iperf are routed to the
user space ingress queues (using IPtables QUEUE target3),
which allows several tra�c measurements, such as incom-
ing/dropping rates and packets size, to be performed. More-
over, the ingress queues have been used to set delays in order
to emulate LAN or WAN scenarios and bottleneck band-
width variations over time.
The throughput is de�ned as ∆sent/∆T , the loss rate as

∆loss/∆T and the goodput as (∆sent−∆loss)/∆T , where

2http://dast.nlanr.net/Projects/Iperf/
3NetFilter: http://www.net�lter.org/

∆sent is the number of bits sent in the period ∆T , ∆loss
is the number of bits lost in the same period. We have
considered ∆T = 0.4 s in our measurements.
It is of fundamental importance to perform experiments

in a controlled environment in order to allow tests be re-
producible. We provide reproducibility by employing a con-
trolled LAN as a testbed and using the same video as input.
Using the input obtained by a webcam would always gen-
erate di�erent bitrates, thus not allowing experiments to be
reproduced.
Towards this end we have developed a software called

Skype Measurement Lab (SML), which allows a desired video
source to be injected as input to Skype. In particular,
we have modi�ed the GStreamer plug-in gst-fakevideo4,
which generates a fake /dev/video device that simulates a
video source (like a webcam) using a technique similar to
the one employed by Skype Audio Dsp Hijacker5. Another
important feature of the SML is the automatic logging of all
the informations contained in the Skype technical call infor-
mation tooltip, which is displayed when the �Technical Call
Infos� option is enabled in the preferences. To the purpose
we have modi�ed the QT 4.3 user interface library6 that is
used by this client (freely available as source code) in or-
der to periodically log all information contained in the call
tool-tip, which includes among others: RTT, jitter, video
resolution, video frame rate, estimated sent and received
loss percentages.
The experiments have been run using the Linux Skype

client version 2.0.0.27 and the standard Foreman YUV test
sequence7. The audio input has been muted in order to
analyze only the network tra�c generated by video �ows.
From now on, the RTT of the connection is set at 50ms and
the queue size at the two hosts is set equal to the bandwidth
delay product unless otherwise speci�ed.

5. EXPERIMENTAL RESULTS
The main goal of this investigation is to show how Skype

Video �ows throttle their sending rates when step-like changes
of available bandwidth occur and how Skype �ows behave
when concurrent TCP �ows share the bottleneck. It is worth
noticing that we consider step-like bandwidths because this
is a simple and e�cient practice in control theory when test-
ing the dynamic behaviour of a system. Indeed, the step re-
sponse of a system reveals interesting features of the system
dynamics such as transient time and degree of stability.
In particular we are interested in revealing the transient

dynamics of the Skype �ows in response to bandwidth in-
crease/decrease or to joining/leaving of TCP �ows. It is
reasonable to assume that the Skype video encoder [15]
throttles the sending rate rs(t) by changing frame quality
q(t), video resolution s(t) and number of frame per seconds
(frame rate) f(t) based on feedback reports sent by the re-
ceiver as it is depicted in Figure 2. Also, it is reasonable to
conjecture that the feedback variables used to throttle q(t),
s(t) and f(t) are available bandwidth, loss rate l(t) and jitter
j(t). Throughout the discussion of the experimental results
we will illustrate the e�ect of variable network conditions on
the three control variables throttled by Skype.

4http://code.google.com/p/gstfakevideo/
5Skype DSP hijacker: http://195.38.3.142:6502/skype/
6QT 4.3: http://trolltech.com/products/qt
7http://www.cipr.rpi.edu/resource/sequences/sif.html

encoder decoder

foreman.yuv

f(t)

q(t)

s(t)

Video Hijacking

network

feedback

rs(t) rr(t)

g
(f

,q
,s

)

Figure 2: Model of the Skype Video rate adaptation
scheme

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

time (s)

T
hr

ou
gh

pu
t (

kb
ps

)

S1 S2 S3 S4

0 50 100 150 200 250 300 350 400 450 500
0

10

20

time (s)
F

P
S

Figure 3: Skype Video response to a step change of
available bandwidth at t = 50 s

5.1 Skype Video response to a step variation
of available bandwidth

We start by investigating the behaviour of one Skype
�ow accessing a bottleneck link whose bandwidth capac-
ity changes following a step function with minimum value
Am = 160 kbps and maximum value AM = 2000 kbps. No
concurrent tra�c is injected. Figure 3 shows throughput,
frame rate and jitter dynamics obtained by repeating four
experiment runs. The video �ow starts sending at a very
low rate and achieves a steady state sending rate of roughly
80 kbps, well below the available bandwidth of 160 kbps.
When the available bandwidth increases at t = 50 s , the
sending rate reaches an average bitrate, which is slightly be-
low 450 kbps, after a quite long transient time of roughly
100 s.
Now, let us focus our attention on the three variables f(t),

q(t) and s(t) that are throttled by the video codec [15] to
match the network available bandwidth. First of all, in the
four experiments the resolution s(t) of the videos produced
by Skype was set at 320 × 240 pixels and kept unchanged
throughout all the experiments. For what concerns the time
behaviour of the frame rate, the initial value of f(t) is always
found to be 15.2 fps, then f(t) decreases to around 10 fps in
less than 10 s. After the step increment of the available
bandwidth, f(t) starts to increase at around t = 85 s and
then it oscillates around the value of 15 fps. Moreover, the
sending rate rs(t) starts to increase at t = 50 s whereas the
value of f(t) remains roughly constant in the time inter-
val [50, 85] s. This can be explained by looking at Figure
4 that shows packet sizes and cumulative losses of the four
experiment runs: the packet size increases in the time in-
terval [50, 85] s whereas f(t) is left almost unchanged, which

0 100 200 300 400 500
0

500

1000

1500

time (s)

P
ac

ke
t s

iz
e

(b
yt

es
)

S1

0 100 200 300 400 500
0

1

2

3
x 10

5

Lo
ss

 (
by

te
s)

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

1600

time (s)

P
ac

ke
t s

iz
e

(b
yt

es
)

S2

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8
x 10

4

Lo
ss

 (
by

te
s)

0 100 200 300 400 500
0

1000

2000

time (s)

P
ac

ke
t s

iz
e

(b
yt

es
)

S3

0 100 200 300 400 500
0

1

2
x 10

4

Lo
ss

 (
by

te
s)

0 100 200 300 400 500
0

1000

2000

time (s)

P
ac

ke
t s

iz
e

(b
yt

es
)

S4

0 100 200 300 400 500
0

1

2
x 10

4

Lo
ss

 (
by

te
s)

Figure 4: Packet size (black points) and cumulative
losses (grey lines) of 4 Skype �ows in response to a
step change of available bandwidth at t = 50s

means that the increment of the sending rate is due to an
improved quality q(t).
Moreover, Figure 4 reveals an interesting correlation be-

tween packet size and packet losses: every time a large loss
event occurs (marked by a large step in the cumulative line
shown in the Figure 4) the packet size doubles, thus mean-
ing that Skype employs a FEC scheme to counteract packet
losses. On the other hand, Skype does not trigger a packet
size increment when the entity of the loss is considered neg-
ligible as it can be inferred by looking at the S3 plot at time
t = 177 s, which shows that a small step increase in the
cumulative loss curve does not doubles the packet size.
To summarize, the main result of this �rst investigation

is that a Skype Video �ow produces a sending rate that
achieves the maximum value of around 450 kbps and em-
ploys FEC mechanism to counteract large packet losses.

5.2 Skype response to a staircase variation of
available bandwidth

In this scenario we aim at investigating how a Skype
Video �ow adapts to small step-like increment/decrement
decreases of available bandwidth. To the purpose we start
by allowing the available bandwidth to vary in the range
[160, 1000] kbps. By using the knowledge on transient times
that we have gathered in the previous scenario, we set band-
width variations to occur every 100 s in order to let send-
ing rates to extinguish their transients. In particular, in
the �rst half of the experiment, the available bandwidth in-
creases every 100 s of 168 kbps, whereas, in the second half,
it decreases of the same amount every 100 s.
Figure 5 shows that Skype Video �ow is somewhat slow in

reaching the steady state since the maximum sending rate
is achieved only at time t = 700 s when the second half of
the experiment is already started. Moreover, in the �rst
half of the experiment, losses are negligible and the average
throughput is around 300 kbps, a value that is well below
the available bandwidth that goes up to 1000 kbps.
Regarding the frame rate, after an initial value of f(t)=

15.2 fps, it decreases until t = tA when it suddenly increases

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

time (s)

T
hr

ou
gh

pu
t (

kb
ps

)

Tput
Avail. BW
Avg.Tput

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

time (s)

Lo
ss

 r
at

e
(k

bp
s)

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

t
A

t
B
time (s)

F
P

S

Figure 5: Skype Video �ow in response to a time-
varying available bandwidth

0 50 100 150 200 250 300 350 400
0

50

100

150

200

time (s)

(k
bp

s)

Throughput
Avail.BW
Avg.Tput

0 50 100 150 200 250 300 350 400
0

100

200

time (s)

Lo
ss

 r
at

e
(k

bp
s)

0 50 100 150 200 250 300 350 400
0

10

20

time (s)

F
P

S

Figure 6: Skype Video response to an available
bandwidth starting at 160kbps and decreasing to
20kbps

its value again to 15.2 fps. The sudden increase in the frame
rate occurs in correspondence to a change in the video res-
olution s(t) from 320 × 240 to 160 × 120. The frame rate
is kept unchanged to this value until time t = tB when the
resolution switches back to 320× 240 and the frame rate is
set again to 15.2 fps.
We have run a similar experiment in which the available

bandwidth varies from 160 kbps down to 20kbps in order to
investigate how Skype �ows are able to match a thin link
capacity. Figure 6 shows that the sending rates are able
to follow bandwidth reductions until the capacity drops to
40 kbps. In this condition a minimum frame rate around
5 fps is measured. When the available bandwidth shrinks
at 20 kbps, which is the minimum declared bitrate of the
Skype video codec [15], the video call is dropped at t =
375 s probably because Skype detects a very large packet
loss percentage.
The overall conclusion of this test is that Skype Video

0 100 200 300 400 500 600 700 800
0

200

400

time (s)

T
hr

ou
gh

pu
t (

kb
ps

)
S1 S2 Avail.BW Avg. link Tput

0 100 200 300 400 500 600 700 800
0

100

200

time (s)

Lo
ss

 r
at

e
(k

bp
s)

0 100 200 300 400 500 600 700 800
0

10

20

30 t
A

t
B

time (s)

F
P

S

Figure 7: Response of two concurrent Skype Video
�ows to a square wave available bandwidth

response to bandwidth increment is somewhat slow, which
means that Skype is not e�ective to take all the available
bandwidth thus losing the possibility of delivering videos
at the highest possible quality. In this test the available
bandwidth reaches the value of 500 kbps in 200 s and then
outpace this value but the Skype video sending rate main-
tains an average sending rate of only 300 kbps. On the other
hand, the test has shown that Skype Video is able to shrink
the sending rate to match a thin available bandwidth as low
as 40 kbps.

5.3 Two Skype Video flows over a square wave
available bandwidth

In the previous test we have shown how a single Skype
Video �ow reacts to variable network conditions such as a
sudden drop/increase of the available bandwidth. In this
test we aim at investigating the e�ect of multiple video �ows
on the stability of the network. To the purpose, we set up
a scenario in which one Skype Video �ow S1 is started at
t = 0 and a second �ow S2 is started at t = 50 s . The
available bandwidth varies as a square wave of period T =
400 s with a maximum value AM = 384 kbps and a minimum
value Am = 160 kbps . We have selected AM = 384 kbps
since this is the downlink capacity of an UMTS link and is
smaller than the maximum average sending rate of Skype
Video, which we have measured to be around 450 kbps. In
this way we are sure that the two Skype Video �ows can
create congestion on the bottleneck. Again, we have set
Am = 160 kbps, since when using a lower value calls were
dropped. Figure 7 shows that, at the beginning, the �rst
�ow increases its sending rate as we have already shown in
previous experiments. Moreover, the rate is kept increasing
also when the second Skype �ow joins the bottleneck at
t = 50 s. However, for t > 90 s the �rst �ow S1 starts to
leave bandwidth to S2 that in turn increases its sending
rate until the �rst bandwidth drop occurs at t = 200 s. It
can be seen that S2 generates a very high and persistent loss
rate which lasts around 30 s with an average of 80 kbps.
Figure 7 also shows the average throughput of the link

during each time interval where the bandwidth is kept con-

stant. In particular, the channel link utilization is 68% for
t ∈ [0, 200] s, 83% for t ∈]200, 400] s, 46% for t ∈]400, 600] s
and 61% for t ∈]600, 800] s.
It is important to note that when the available bandwidth

increases again up to 384 kbps at t = 400 s, the two Skype
�ows do not increase their sending rate thus not taking the
opportunity to send video at the best possible quality. For
what concerns fairness issues, the two �ows share the bottle-
neck in a fair way (the Jain fairness index is 0.97). Regarding
the video resolution, the �rst Skype �ow S1 decreases s(t)
from 320 × 240 to 160 × 120 at t = tA, which is before the
bandwidth drop, whereas S2 decreases s(t) after the band-
width drop at t = tB .
Again, the overall conclusion of this test is that Skype

Video is not e�cient in getting full bandwidth utilization
thus losing the possibility of delivering a video with a higher
quality.

5.4 One Skype Video flow with concurrent TCP
flows

In the previous subsection we have investigated the be-
haviour of Skype Video �ows in the presence of time-varying
available bandwidth. In this subsection we focus on the
Skype Video behaviour when the network is shared with
TCP tra�c. We consider a link with a constant capacity of
384 kbps. A Skype Video call starts at t = 0 , the �rst TCP
�ow starts at t = 200 s and a second one starts at t = 400 s.
Figure 8 shows throughput and cumulative losses of Skype
and TCP �ows along with packet size and frame rate of the
Skype �ow.
When TCP1 enters the bottleneck, the Skype Video �ow

releases bandwidth by decreasing its sending rate. The two
�ows share the bandwidth fairly until t = 250 s when the
Skype �ow starts decreasing its sending rate leaving band-
width to TCP1. However, Figure 8 shows that the steady
state is not reached when TCP2 �ow starts. After the TCP2
�ow joins the bottleneck link, we can observe that in the
time interval [400, 1000] s the bandwidth is shared in a some-
what fair way among the �ows, except during the interval
[550, 700] s in which the Skype �ow increases its bandwidth
obtaining a signi�cantly larger bandwidth share.
In order to understand the reason that triggers the in-

creasing of the sending rate of the Skype �ow, let us look at
the packet size evolution shown in Figure 8. We can observe
three di�erent packet sizes produced by the Skype �ow: the
packets having size smaller than 70 byte, that we conjec-
ture are control packets sent to the other peer to provide
feedback; the packets with size between 350 and 530 bytes,
which correspond to video packets with no redundancy; �-
nally, packets with size between 700 and 1000 bytes, which
are due to video packets with redundant information.
The Figure 8 shows that the Skype Video packet size

increases in the time intervals [120, 180]s, [375, 494] s and
[590, 681] s which indicates that Skype has increased the
FEC. This is con�rmed by the frame rate evolution that
does not follow the sending rate increase in those intervals.
It is worth noticing that the step change in the frame rate
evolution that occurs at t = 436 s corresponds to a decrease
in the video resolution from 320 × 240 to 160 × 120. The
cumulative losses graph shown in Figure 8 clearly suggests
that the increments in the FEC are triggered by the in-
creasing of lost bytes (see also Section 5.1). In particular
the Skype �ow loses 258000 bytes in the interval [590, 681] s

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

time (s)

T
hr

ou
gh

pu
t (

kb
ps

)
S1 TCP1 TCP2 Avail.BW

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15
x 10

5

time (s)

Lo
ss

 (
by

te
s)

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

time (s)P
ac

ke
t s

iz
e

(b
yt

es
)

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

time (s)

F
P

S

Figure 8: One Skype Video �ow over a link with
384 kbps capacity with a two concurrent TCP �ows
started at t = 200 s and t = 400 s

Table 1: Throughput, loss rate, loss ratio and chan-
nel utilization for the Skype and the two TCP �ows

Tput
(kbps)

Loss rate
(kbps)

Loss
ratio

Channel
util.

S1 162.5 6.0 3.7% 42.3%
TCP1 101.6 12.3 12% 26.4%
TCP2 102.3 12.6 12% 26.6%

where the Skype �ow exhibits an unfair behaviour with re-
spect to the TCP �ows. In order to evaluate how the Skype
�ow behaves when sharing the link with other TCP �ows,
Table 1 reports average values of throughput, loss rates,
loss percentages and channel utilizations of all the �ows for
t > 400 s. Results show that Skype takes a larger share of
channel capacity, whereas the two TCP �ows share the left
over bandwidth equally. The overall conclusion here is that
Skype Video seems more aggressive than the TCP, because
of the FEC action that seems to unresponsively increase the
sending rate even when losses are experienced.

6. CONCLUSIONS AND FUTURE WORK
We have carried out an experimental investigation of Skype

Video �ows behaviour in the presence of time varying net-
work conditions and TCP tra�c. We have found that a
Skype Video call uses the frame rate, the packet size and
the video resolution in order to throttle its sending rate to
match the network available bandwidth. The obtained re-
sults have shown that a Skype Video call roughly requires
a minimum of 40 kbps available bandwidth to start and it
is able to �ll in a bandwidth up to 450 kbps. Thus it can
be said that a video �ow is made elastic through congestion
control and adaptive codec within that bandwidth interval.
We have also measured that a Skype Video sending rate

exhibits a large transient time when it keeps increasing to
match an increment of the available bandwidth. Moreover,
we have found that in many scenarios a Skype video call
refrains from fully utilizing all available bandwidth, which

means that a video call is not performed at the best qual-
ity that a network would permit. Regarding coexistence
with TCP �ows, Skype Video seems more aggressive than
the TCP because of the FEC action that unresponsively in-
creases the bandwidth even when losses are experienced.

7. REFERENCES
[1] R. Barbosa, C. Kamienski, D. Mariz, A. Callado,

S. Fernandes, and D. Sadok. Performance evaluation
of P2P VoIP application. ACM NOSSDAV '07, June
2007.

[2] S. Baset and H. Schulzrinne. An Analysis of the Skype
Peer-to-Peer Internet Telephony Protocol. IEEE
INFOCOM '06, Apr. 2006.

[3] J.-C. Bolot and T. Turletti. A rate control mechanism
for packet video in the internet. In IEEE INFOCOM
'94, pages 1216�1223, June 1994.

[4] D. Bon�glio, M. Mellia, M. Meo, D. Rossi, and
P. Tofanelli. Revealing skype tra�c: when randomness
plays with you. ACM SIGCOMM '07, Aug. 2007.

[5] K. Chen, C. Huang, P. Huang, and C. Lei.
Quantifying Skype user satisfaction. ACM SIGCOMM
'06, Sept. 2006.

[6] W. Chiang, W. Xiao, and C. Chou. A Performance
Study of VoIP Applications: MSN vs. Skype.
MULTICOMM '06, June 2006.

[7] L. De Cicco, S. Mascolo, and V. Palmisano. An
Experimental Investigation of the Congestion Control
Used by Skype VoIP. WWIC '07, May 2007.

[8] S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM Trans.
on Networking (TON), 7(4):458�472, 1999.

[9] S. Floyd and E. Kohler. TCP Friendly Rate Control
(TFRC): The small-packet (sp) variant. RFC 4828,
Experimental, Apr. 2007.

[10] L. A. Grieco and S. Mascolo. Adaptive rate control for
streaming �ows over the internet. ACM Multimedia
Systems Journal, 9(6):517�532, June 2004.

[11] S. Guha, N. Daswani, and R. Jain. An Experimental
Study of the Skype Peer-to-Peer VoIP System. Proc.
IPTPS '06, Feb. 2006.

[12] M. Handley, S. Floyd, and J. Pahdye. TCP Friendly
Rate Control (TFRC): Protocol Speci�cation. RFC
3448, Proposed Standard, Jan. 2003.

[13] T. Hoÿfeld and A. Binzenhöfer. Analysis of Skype
VoIP tra�c in UMTS: End-to-end QoS and QoE
measurements. Computer Networks, 2007.

[14] E. Kohler, M. Handley, and S. Floyd. Designing
DCCP: congestion control without reliability. ACM
SIGCOMM '06, Sept. 2006.

[15] On2 Technologies. TrueMotion VP7 Video Codec
White Paper. 10 Jan. 2005.

[16] H. Schulzrinne, S. Casner, S. Frederick, and
V. Jacobson. RTP: A transport protocol for real-time
applications. RFC 3550, Standard, July 2003.

[17] V. Jacobson. Congestion avoidance and control. ACM
SIGCOMM Computer Communication Review, 1988.

[18] S. Wenger. H. 264/AVC over IP. IEEE Trans. Circuits
and Syst. Video Technol., 13(7):645�656, 2003.

