

TCP Westwood and Easy RED to Improve Fairness in
High-Speed Networks

Luigi Alfredo Grieco, Saverio Mascolo
Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy

To appear at Seventh International Workshop on Protocols For High-Speed Networks (PfHSN'2002),

April 22 - 24, 2002 Berlin, Germany.
Sponsored by IFIP TC6 WG6.2, IEEE Comsoc TC on Gigabit Networking

Abstract. TCP Westwood (TCPW) is a sender-side only modification of TCP
Reno congestion control, which exploits end-to-end bandwidth estimation to
properly set the values of slow-start threshold and congestion window after a
congestion episode. This paper aims at showing via both mathematical modeling
and extensive simulations that TCPW significantly improves fair sharing of
high-speed networks capacity and that TCPW is friendly to TCP Reno.
Moreover, we propose EASY RED, which is a simple Active Queue
management (AQM) scheme that improves fair sharing of network capacity
especially over high-speed networks. Simulation results show that TCP
Westwood provides a remarkable Jain’s fairness index increment up to 200%
with respect to TCP Reno and confirm that TCPW is friendly to TCP Reno.
Finally, simulations show that Easy RED improves fairness of Reno connections
more than RED, whereas the improvement in the case of Westwood connections
is much smaller since Westwood already exhibits a fairer behavior by itself.

1. Introduction

Packet switching networks require sophisticated mechanism of flow and congestion
control in order to share resources and avoid congestion phenomena. Congestion
control functions were introduced into the TCP in 1988 and have been of crucial
importance in preventing congestion collapse [1],[2],[9]. However, while end-to-end
TCP congestion control [4],[5] can ensure that network capacity is not exceeded, it
cannot insure fair sharing of that capacity [1]. In this paper we investigate via both
mathematical analysis and computer simulations the issue of fairness in high-speed
networks when Westwood TCP is implemented at the sender side. Moreover we
propose a simpler version of RED, called EASY RED and we investigate how it
interacts with Reno and Westwood TCP.
TCP Westwood (TCPW) performs an end-to-end estimate of the bandwidth available
along a TCP connection to adaptively set the control windows after congestion [3]. The
rationale of TCPW is simple: in contrast with TCP Reno, which implements a
multiplicative decrease algorithm after congestion, TCPW sets a slow start threshold
and a congestion window which are consistent with the effective bandwidth used at the
time congestion is experienced.

In this paper, TCPW employs a bandwidth estimation algorithm that is slightly
different from the one used in [3] in order to avoid bandwidth overestimates due ACK
compression [6],[11].
EASY RED is a simpler variant of RED that does not average the queue length but
relates the drop probability to the instantaneous queue level. In fact, the purpose of
early discard is to signal congestion to the sender as soon as possible. In contrast
averaging the queue introduces delay, which is harmful for congestion control
purposes. EASY RED has only two parameters to be set: (1) the minimum threshold
(min_th) and (2) the constant drop probability pdrop when the instantaneous queue
length is greater or equal to min_th.
A main contribution of this paper is a mathematical model that proves stability,
fairness and friendliness of TCP Westwood with respect to Reno. In particular, the
model shows that the mean throughput of TCP Westwood is function of the available
bandwidth and is less sensitive to round trip time than Reno throughput, that is,
Westwood improves fair sharing of network capacity among flows with different
RTTs. Moreover, the model highlights that the throughput of TCPW depends on the
inverse of the square root of the drop probability just like the throughput of Reno
[18],[25], that is, TCPW is friendly to TCP Reno.
Simulation results using Westwood show a remarkable increment of the Jain fairness
index up to 200% with respect to Reno over a 100Mbps wired network. Also they
confirm the theoretical model by showing that TCPW is completely friendly to Reno.
Performance improvements are also shown when AQM mechanisms are used.
Simulations show that EASY RED improves fairness of Reno connections more than
RED, whereas the improvement in the case of Westwood connections is much smaller
since Westwood already exhibits a fairer behavior by itself.
The paper is organized as follows: in Section 2 a mathematical model of TCP
Westwood is developed; in Section 3, Active Queue Management algorithms are
described and Easy RED is proposed; in Section 4, simulation results with many Reno
or Westwood TCP connections having different RTTs and sharing a FIFO bottleneck
queue implementing RED, Gentle RED, EASY RED or no AQM policy are reported.
Finally, Section 5 draws the conclusions.

2.TCP Westwood

A detailed description of TCP Westwood (TCPW) is reported in [3]. In this section, we
briefly resume TCPW and we introduce a new mechanism to estimate the available
bandwidth. Later we develop a mathematical model of Westwood and analyze fairness
and friendliness of Westwood in comparison with Reno by using their respective
throughput equation models.

2.1 A Description of TCP Westwood

A TCP connection is characterized by the following variables:

• cwnd: Congestion Window

• ssthresh: Slow Start Threshold
• RTT: Round Trip Time of the connection
• RTTmin: Minimum Round Trip Time measured by the sender
• seg_size: Size of the delivered segments

The main idea of TCP Westwood is to perform an end-to-end estimate of the
bandwidth B available along a TCP connection by measuring and low-pass filtering the
rate of returning ACKs. For available bandwidth we mean the measurement of the
actual rate a connection is achieving during the data transfer. This is a much more easy
task than estimating the bandwidth that is available at the beginning of a TCP
connection [12],[14],[15],[16]. The bandwidth estimate is then used to properly set the
congestion window and the slow-start threshold after a congestion episode as described
below:
a) When 3 DUPACKs are received by the sender:
 ssthresh = (B*RTTmin)/seg_size;
 cwnd = ssthresh;

b) When coarse timeout expires:
 ssthresh = (B*RTTmin)/seg_size;
 cwnd = 1;

c) When ACKs are successfully received:
 cwnd is increased following the Reno algorithm.

As it has been pointed out in [1],[2],[26], the stability of the Internet does not require
that flows reduce their sending rate by half in response to a single congestion
indication. In particular, the prevention of congestion collapse simply requires that
flows use some form of end-to-end congestion control to avoid a high sending rate in
the presence of high packet drop rate. In the case of TCPW the sending rate is reduced
by taking into account a measurement of the available bandwidth at the time
congestion is experienced. Therefore, when in the presence of heavy congestion, this
reduction can be even more drastic than a by half reduction and it can be less drastic
with light congestion. This feature can clearly improves network stability and
utilization in comparison with the blind by a half window reduction performed by
Reno.

2.2 Robustness of bandwidth estimate to ACK Compression

In order to fully exploit the advantages of the AIAD paradigm, it is of crucial
importance to obtain a good estimate of the bandwidth that is available when
congestion is experienced. Due to delays and ACKs compression, the flow of returning
ACKs must be low-pass filtered in a proper way [11],[17]. In [3], a sample of available
bandwidth kkkkkk dttdb ∆=−= − /)/(1 is computed every time tk the sender receives
an ACK, where the amount dk of data acknowledged by an ACK is determined by a
proper counting procedure that takes into account delayed ACKs, duplicate and
cumulative ACKs. Samples bk are low-pass filtered using the time-varying filter

k

kk
kk

k

k
k

ff

f bb
bb

∆+
+

∆+
∆+

∆−
= −

− ττ

τ
2

ˆ
2
2ˆ 1

1 , where fτ is the filter time constant (a typical value

is 5.0=fτ s). In this paper, we propose a slightly modified version of the filter used in
[3] since that filter overestimates the available bandwidth when in the presence of
ACK compression [6]. To overcome this problem, we compute bandwidth samples
every RTT. More precisely, we count all data dk acknowledged during the last RTT and
compute the bandwidth sample kkk db ∆= / , where k∆ is the last RTT. Moreover, in
order to comply with the Nyquist sampling theorem when 4/fk τ>∆ , we interpolate
and re-sample using)/4(fRTTintN τ⋅= 1 virtual samples bk arriving with the
interarrival time 4/fk τ=∆ .
In order to test the robustness of the new filter with respect to ACK compression, we
simulate a single bottleneck scenario shared by one TCP and one UDP connection via
FIFO queuing. The bottleneck link capacity is 1Mbps. In order to provoke ACK
compression, 10 TCP Reno connections sending data along the reverse path are
considered. Segment size is 1500 Bytes long, queue size is 20 segments and the
simulation lasts 1000s. Fig. 1(a) shows the bandwidth estimate obtained using the old
and the new filter when the UDP source is turned off. The tick lines marks the
available bandwidth that is 1Mbps. Fig. 1(a) shows that the old filter overestimates the
bandwidth ten times, whereas the new one nicely tracks the available bandwidth. Fig.
1(b) shows the bandwidth estimate obtained when the UDP sources is active. The tick
line marks the bandwidth that is left available by the UDP traffic. Also in this case the
new filter tracks the available bandwidth whereas the old one overestimates up to 10
times the available bandwidth.

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 200 400 600 800 1000

s

bp
s

New Filter
Old Filter
Available Bandwidth

(a)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 200 400 600 800 1000
s

bp
s

New Filter
Old Filter
Available Bandwidth

(b)

Fig. 1. Bandwidth estimates: (a) without UDP traffic; (b) with coexisting UDP traffic

2.3 A Mathematical Model of TCP Westwood

In this section a mathematical model of the Additive Increase Adaptive Decrease
mechanism introduced by Westwood is developed. To derive the model, we follow
arguments similar to the ones developed in the excellent paper by Kelly [18]. For the
sake of simplicity, we do not model the behavior after a timeout.

1 int(·) stands for the integer part of (·)

Theorem 1. Consider a TCP flow that is controlled by the Westwood algorithm.
Suppose that the drop probability of a segment is p, the bandwidth available for the
flow is B, the mean round trip time is RTT and the minimum round trip time is RTTmin.
By letting rW be the steady state mean throughput of the flow, it holds:

()2

2
minmin 1

22 RTTp

p

RTT

RTTB

RTT

RTTB
rW

⋅

−
+

⋅

⋅
+

⋅
⋅

= . (1)

Proof. The congestion window is updated upon ACK reception. Each time an ACK is
received back by the sender the cwnd is increased by 1/cwnd, whereas after a segment
loss the congestion window is set equal to B⋅RTTmin so that the change in cwnd is

cwndRTTB −⋅ min . Since the segment drop probability is p, it follows that the expected
increment of the congestion window cwnd per update step is:

pcwndRTTB
cwnd

p
cwndE ⋅−⋅+

−
=∆)(

1
][min . (2)

Since the time between update steps is about
cwnd
RTT , by recalling Eq. (2), the expected

change in the rate r per unit time is approximately:

ptr
RTT
RTTB

trp
RTT

p
t
tr

⋅−
⋅

⋅⋅+
−

=
∂

∂
)()(

1)(2min
2 . (3)

Eq. (3) is a separable variable differential equation. By separating variables, Eq. (3)
can be written as:

tp

RTTp

p
RTT
RTTB

trtr

tr
∂⋅−=

⋅

−
−

⋅
⋅−

∂

2
min2 1)()(

)(.
(4)

and by integrating each member the following solution can be obtained

)(

)(
21

211

21
)(rr

rr

tp

tp

eC

eCrr
tr −

−

⋅⋅−

⋅⋅−

⋅−

⋅⋅−
= .

Where
()2

2
minmin

2,1
1

22 RTTp

p

RTT
RTTB

RTT
RTTB

r
⋅

−
+

⋅
⋅

±
⋅

⋅
= are the roots of the equation

01
2

min2 =
⋅

−−
⋅

⋅−
RTTp

p
RTT

RTTB
rr and C depends on the initial conditions.

The steady state throughput of the Westwood algorithm is then

()2

2
minmin 1

22
)(lim

RTTp

p

RTT

RTTB

RTT

RTTB
trr

t

W

⋅

−
+

⋅
⋅

+
⋅

⋅
==

∞→
 �

It is easy to show the following corollary.

Corollary 1. The Westwood control algorithm is stable, that is

BrW ≤ . (5)

Proof. From Eq. (1) we can argue that Wr can never be greater than B. In fact, by
contradiction, let us assume that BWr > . This assumption would lead to congestion
collapse so that the drop probability p would increase up to 1. Thus, from Eq. (1) it

would result
RTT

RTT
BWr min= . Since under congestion RTTRTT <min , it would result

BrW < , which would contradict the assumption. Therefore, we can conclude that
BrW ≤ . �

Now, by noting that the end-to-end bandwidth estimation algorithm described above
provides a value that is well approximated by cwnd/RTT, it is possible to
mathematically derive the throughput of Westwood when the bandwidth estimation
algorithm described in this paper is employed.

Theorem 2. The steady state throughput of Westwood using the bandwidth estimate
B=cwnd/RTT is

()
p

p

TRTT
r

q

West −
⋅

⋅
=

11
. (6)

Where Tq =RTT—RTTmin is the mean queuing time experienced by the segments of the
connection.

Proof. By assuming the following estimate of the available bandwidth

)(/ trRTTcwndB == (7)

and by substituting Eq. (7) into Eq. (3), the following differential equation is obtained:

ptr
RTT

RTT
trp

RTT

p
t
tr

⋅−⋅⋅+
−

=
∂

∂
)()(

1)(2min2
2 . (8)

By separating variables, Eq. (8) can be written as:

t
RTT

T
p

RTTTp

p
tr

tr q

q

∂⋅−=

⋅⋅
−

−

∂
1

)(

)(
2

. (9)

and integrated as:

qTRTTp
p

RTT
qT

tp

q

q

eC

TRTTp
p

RTT

T
tp

eC

qTRTTp
p

tr

⋅⋅
−⋅⋅⋅⋅−

⋅−

⋅⋅
−⋅⋅⋅⋅−

⋅+⋅
⋅⋅

−=
12

1

12
11)(. (10)

Where C depends on the initial conditions. The steady state throughput (6) is then
obtained for ∞→t . �

2.3 Fairness and Friendliness Evaluation

Kelly derives the following steady state mean throughput of Reno TCP [18]:

()
p

p
RTTRr

−⋅
⋅=

121
. (11)

With reference to friendliness, by comparing (6) and (11) it can be noted that both
throughputs of Westwood and Reno depend on p/1 , that is Westwood and Reno are
friendly to each other. Moreover, Eq. (6) shows that flows with different RTTs and
going through the same bottleneck, experience the same mean queuing time Tq.
Therefore, the throughput of Westwood depends on round trip time as RTT/1
whereas throughput of Reno as RTT/1 , that is, Westwood increases fair sharing of
network capacity between flows with different RTTs.

3. AQM Policies and Easy RED

The idea behind Active Queue Management (AQM) is to discard a packet before
queue overflow in according to a drop probability function. The rationale is that, by
discarding a packet before queue overflow, a TCP sender can detect congestion earlier
and react earlier.
The most know example of AQM mechanism is RED, which uses a drop probability
function that increases linearly with the average queue length [19]. RED needs the
tuning of four parameters that are: (1) the minimum queue threshold (min_th); (2) the
maximum queue threshold (max_th); (3) the drop probability maxp when the average
queue reaches the max_th and (4) the constant value used by the exponential filter to
average the queue length. A delicate issue with RED is that it requires fine-tuning of
many parameters in order to work properly. Consequently, there is considerable
nervousness in the community regarding the deployment of RED [10],[20],[21],[22].
Several complex variants of RED have been proposed in order to obtain algorithms
less sensitive to parameter tuning. In [29], stabilized RED (SRED) is proposed, which
aims at stabilizing buffer occupation by estimating the number of active connections in

order to set the drop probability as a function of the number of the active flows and of
the instantaneous queue length. In [28], Flow RED (FRED) is proposed which uses
per-active-flow accounting to impose on each flow a loss rate that depends on the
flow’s buffer use. FRED employs the same drop probability function of RED;
furthermore, it maintains minimum and maximum limits on the packets that a flow
may have in the queue and uses a more aggressive drop against the flows that violates
the maximum bound. In [27] and [32] schemes to auto tune RED parameters are
proposed. These schemes essentially increase the maxp parameter when the average
queue length exceeds a fixed target and decrease maxp when the average queue length
falls below the target level. The Balanced RED algorithm, which tries to regulate the
bandwidth assigned to each flow by doing per flow accounting, is proposed in [30].
BRED stores the per flow buffer level and for each incoming packet it computes the
drop probability as a function of the buffer level of the flow to which the packet
belongs. Finally Dynamic RED [31] proposes to discard packets with a load dependent
probability. In particular DRED continuously update the drop probability by
employing an integral controller with a gain in cascade. The input of the controller is
the difference between the average queue length and the target buffer level whereas the
output is the drop probability.
In this section, we introduce a simpler variant of RED that we call EASY RED. We
show that EASY RED improves fairness and that it is not sensitive to parameters
tuning. EASY RED does not average the queue length but it relates the drop
probability to the instantaneous queue level. In fact, the purpose of early discard is to
signal congestion to the sender as soon as possible. In contrast to this, the queue
average of RED introduces delay, which is harmful for congestion control purposes. In
control terms, averaging means the introduction of an extra pole in the control loop
[20],[22].
EASY RED has only two parameters to be tuned: (1) the min_th and (2) the constant
drop probability when the instantaneous queue length is greater or equal to min_th.
Fig. 2 shows the dropping profile of EASY RED and RED. EASY RED has a flat
dropping probability that is function of the instantaneous queue length, whereas RED
has a linearly increasing drop probability that jumps to one when the average queue
length reaches the max_th [23]. The gentle variant of RED eliminates the jump to one
using another linear piece of curve [24].

pdrop=0.01

min_th Instantaneous
Queue Length

p

Queue Capacity

(a)

min th. max th.

p

1

0.1

Average
Queue Length

(b)

Fig. 2. Drop Probability. (a) Easy RED; (b) RED

4. Performance Evaluation

In this section, we test TCPW using the ns-2 simulator [7] and we validate results
obtained in Sec. 2, which are: (1) TCP Westwood improves fairness; (2) TCP
Westwood is friendly to Reno. Moreover we test the behavior of EASY RED.
In order to evaluate the performance of TCP Westwood we consider N greedy
connections sharing a FIFO bottleneck, with N=5,10,40,70,100 and RTT ranging
uniformly from (250/N)ms to 250ms. The sources transmit data during a period of 30
seconds. The segment size is 1500 Bytes long. The bottleneck link bandwidth is set
equal to 10Mbps or 100Mbps and the bottleneck queue capacity is set equal to the link
capacity times the maximum round trip propagation time, that is, the bottleneck queue
size is set equal to 200 and 2000 segments, respectively. Note that these settings allow
a number of segments proportional to the number of flows be accommodated in the
bottleneck queue so avoiding the many flows effect [13]. To provide a single numerical
measure reflecting the fair share distribution across the various connections we use the
Jain Fairness Index defined as:

2
1

2
1)(

i
N
i

i
N
i

bN

b
 Index Fairness

=

=

∑

∑
=

where bi is the throughput and N is the number of connections [8].

4.1 Fairness of TCP Westwood

In this section, we compare the fairness of TCPW versus the fairness of TCP Reno
without using AQM policies. Fig. 3 (a) shows the Jain fairness index as a function of
the number of connections when the bottleneck capacity is 10Mbps and Fig. 3 (b)
when the bottleneck capacity is 100Mbps. Fig. 3 shows that TCPW improves fairness
up to 200% when bottleneck capacity is 100Mbps and up to 60% when bottleneck
capacity is 10Mbps.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No of Connections

Fa
irn

es
s I

nd
ex

es

Westwood

Reno

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

No. of Connections

Fa
irn

es
s I

nd
ex

es

Westwood
Reno

(b)

Fig. 3. Jain’s fairness Indexes: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link

Figs. 4(a) and (b) show the corresponding mean throughputs computed as the sum of
all the throughputs of the N TCP sources sharing the bottleneck divided by N. To give
a further insight, Figs 5(a) and (b) show the curves of Bytes_sent vs. time in the case of
40 connection using Reno and in the case of 40 connections using Westwood,

respectively. The bottleneck is 100Mbps. Figures clearly show that Reno curves are
much more spread than Westwood curves, i.e. TCPW increases fairness.

0
0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

0 20 40 60 80 100
No. of Connections

M
bp

s

Westwood
Reno

(a)

0
2
4

6
8

10

12
14
16

18
20

0 20 40 60 80 100
No. of Connections

M
bp

s

Westwood
Reno

(b)

Fig. 4. Mean Throughputs: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

0 5 10 15 20 25 30

s

B
yt

es

(a)

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

0 5 10 15 20 25 30

s

B
yt

es

(b)

Fig. 5. Bytes sent vs. time. (a) 40 Reno connections. (b) 40 Westwood connections

4.2 Interaction with AQM Policies

In this section, we study the effect of AQM policies on the performance of TCP Reno
and Westwood. Moreover, we evaluate the performance improvement when Easy RED
is employed.
Fig. 6(a) shows the Jain fairness index as a function of the number of Westwood
connections when the bottleneck capacity is 10Mbps and Fig. 6(b) when the bottleneck
capacity is 100Mbps. Four curves are shown that refer to RED, Gentle RED, EASY
RED and no AQM, i. e. drop from tail, policy. Fig. 6(a) shows that EASY RED does
not change the fairness whereas RED and gentle RED reduces the fairness with respect
to simple drop of tail. Fig. 6(b) shows that EASY RED improves fairness up to 12%
with respect to no AQM policies whereas RED and gentle RED reduces fairness with
respect no AQM. Figs. 7(a) and (b) show corresponding mean throughputs: RED and
gentle RED reduces the throughput of Westwood with respect to EASY RED and drop
tail.
Figs.8(a) and (b) show the Jain fairness index as a function of the number of Reno
connections when the bottleneck capacity is 10Mbps and 100Mbps, respectively. Fig. 8
(a) shows that for N<40 EASY RED improves fairness up to 40% whereas RED and
gentle RED reduces fairness also respect to no AQM policies for N>10. In the case of
Fig. 8(b), EASY RED improves fairness up to 65% with respect to RED policy and up

to 165% with respect to drop tail. Figs. 9(a) and (b) show the corresponding mean
throughputs. Note that, in the case of 100Mbps bottleneck, RED and gentle RED
reduces the Reno throughput with respect to EASY RED and drop tail.
RED parameters have been set as suggested by [23]: filter constant q_weight=0.002,
min_th=5, max_th=15, maximum drop probability = 0.1. Gentle RED parameters have
been set following recommendations in [24]. EASY RED parameters have been set as
follows: pdrop=0.01 and min_th=queue_capacity/3.

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No. of Westwood Connections

Fa
irn

es
s I

nd
ex

es

No AQM
Easy RED
RED
Gentle RED

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

No. of Westwood Connections

Fa
irn

es
s I

nd
ex

es

No AQM
Easy RED

RED

Gentle RED

(b)

Fig. 6. Jain’s fairness Indexes: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link

0
0.2
0.4
0.6
0.8

1

1.2
1.4
1.6
1.8

2

0 20 40 60 80 100
No. of Westwood connections

M
bp

s

No AQM
Easy RED
RED
Gentle RED

Easy RED/No AQM

RED/Gentle RED

(a)

0
2
4
6
8

10
12
14

16
18
20

0 20 40 60 80 100
No. of Westwood Connections

M
bp

s

No AQM

Easy RED

RED

Gentle RED

Easy RED/No AQM

RED/Gentle RED

(b)

Fig. 7. Mean Throughputs: 10Mbps bottleneck link; (b) 100Mbps bottleneck link

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No. of Reno Connections

Fa
ire

ne
ss

 In
de

xe
s

No AQM
Easy RED
RED
Gentle RED

(a)

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No. of Reno Connections

Fa
irn

es
s I

nd
ex

es

No AQM
Easy RED
RED
Gentle RED

(b)

Fig. 8. Jain’s fairness Indexes: 10Mbps bottleneck link; (b) 100Mbps bottleneck link

0
0.2
0.4
0.6

0.8
1

1.2
1.4
1.6
1.8

2

0 20 40 60 80 100
No. of Reno Connections

M
bp

s

No AQM
Easy RED
RED
Gentle RED

(a)

0
2
4
6
8

10
12
14

16
18
20

0 20 40 60 80 100
No. of Reno Connections

M
bp

s

No AQM
Easy RED
RED
Gentle RED

Easy RED/No AQM

RED/Gentle RED

(b)

Fig. 9. Mean Throughputs: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link

4.3 Sensitivity of Easy RED to Parameters setting

To investigate the effects that the pdrop parameter used in Easy RED has on the
fairness and throughput, we vary prodp from 0.01 to 0.1 by keeping
min_th=queue_capacity/3. Figs. 10-13 show that fairness indexes and mean
throughputs of Reno and Westwood are not sensitive to pdrop over links with capacity
of 10Mbps and 100Mbps.
To investigate the effect of the min_th parameter we set min_th=queue_capacity/a and
we vary a from 2 to 4 by keeping pdrop=0.01. Figs. 14-17 show that fairness indexes
and mean throughputs of Reno and Westwood are not sensitive to min_th.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100

No. of Westwood Connections

Fa
irn

es
s I

nd
ex

es

Easy Red Pdrop 0.01

Easy Red Pdrop 0.05

Easy Red Pdrop 0.1

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No. of Westwood Connections

Fa
ur

ne
ss

 In
de

xe
s

Easy RED Pdrop 0.01

Easy RED Pdrop 0.05

Easy RED Pdrop 0.1

(b)

Fig. 10. Sensitivity of the Jain fairness indexes to pdrop: (a) 10Mbps link; (b) 100Mbps link

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 20 40 60 80 100

No. of Westwood Connections

M
bp

s

Easy RED Pdrop 0.01
Easy RED Pdrop 0.05

Easy RED Pdrop 0.1

(a)

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100

No. of Westwood Connections

M
bp

s

Easy RED Pdrop 0.01

Easy RED Pdrop 0.05

Easy RED Pdrop 0.1

(b)

Fig. 11. Sensitivity of mean throughputs to pdrop: (a) 10Mbps link; (b) 100Mbps link

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No. of Reno Connections

Fa
irn

es
s I

nd
ex

es

Easy Red Pdrop 0.01

Easy Red Pdrop 0.05

Easy Red Pdrop 0.1

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

0 20 40 60 80 100
No. of Reno Connections

Fa
irn

es
s I

nd
ex

es

Easy RED Pdrop 0.01

Easy RED Pdrop 0.05

Easy RED Pdrop 0.1

(b)

Fig. 12. Sensitivity of the Jain fairness indexes to pdrop: (a) 10Mbps link; (b) 100Mbps link

0
0.2
0.4

0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 20 40 60 80 100
No. of Reno Connections

M
bp

s

Easy RED Pdrop 0.01

Easy RED Pdrop 0.05

Easy RED Pdrop 0.1

(a)

0
2
4
6
8

10
12
14

16
18
20

0 20 40 60 80 100
No. of Reno Connections

M
bp

s

Easy RED Pdrop 0.01

Easy RED Pdrop 0.05

Easy RED Pdrop 0.1

(b)

Fig. 13. Sensitivity of mean throughputs to pdrop: (a) 10Mbps link; (b) 100Mbps link

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No. of Westwood Connections

Fa
irn

es
s I

nd
ex

es

Easy RED a=2
Easy RED a=3

Easy RED a=4

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

0 20 40 60 80 100
No. of Westwood Connections

Fa
irn

es
s I

nd
ex

es

Easy RED a=2

Easy RED a=3

Easy RED a=4

(b)

Fig. 14. Jain’s fairness Indexes sensitivity to min_th: (a) 10Mbps link; (b) 100Mbps link

0
0.2
0.4

0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 20 40 60 80 100
No. of Westwood Connections

M
bp

s

Easy RED a=2

Easy RED a=3

Easy RED a=4

(a)

0
2
4
6
8

10
12
14

16
18
20

0 20 40 60 80 100
No. of Westwood Connections

M
bp

s

Easy RED a=2

Easy RED a=3

Easy RED a=4

(b)

Fig. 15. Mean Throughputs sensitivity to min_th. (a) 10Mbps link; (b) 100Mbps link

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

0 20 40 60 80 100
No. of Reno Connections

Fa
irn

es
s I

nd
ex

es

Easy RED a=2
Easy RED a=3

Easy RED a=4

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

0 20 40 60 80 100
No. of Reno Connections

Fa
irn

es
s I

nd
ex

es

Easy RED a=2

Easy RED a=3

Easy RED a=4

(b)

Fig. 16. Jain’s fairness Indexes sensitivity to min_th: (a) 10Mbps link; (b) 100Mbps link

0
0.2
0.4

0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 20 40 60 80 100
No. of Reno Connections

M
bp

s

Easy RED a=2

Easy RED a=3

Easy RED a=4

(a)

0
2
4
6
8

10
12
14

16
18
20

0 20 40 60 80 100
No. of Reno Connections

M
bp

s

Easy RED a=2

Easy RED a=3

Easy RED a=4

(b)

Fig. 17. Mean Throughputs sensitivity to min_th: (a) 10Mbps link; (b) 100Mbps link

4.4 Friendliness of TCP Westwood

Friendliness relates to how connections running different TCP flavors affect the
performance of one another. In particular, we demand that a newly proposed TCP be
friendly to the TCP versions already in use in the Internet. That is, the new TCP
connections must be able to coexist with connections using existing TCP protocols
while providing opportunities for all connections to progress satisfactorily. At a
minimum, the new connections should not cause the starvation of the connections
using the existing version of TCP.
We simulate the same scenario described in the previous sections with N=10,40,70,100
connections. The Westwood connections are mixed with the Reno connections. In
particular, N/2 Reno and N/2 Westwood connections are mixed. Round trip times are
spread as in the scenario described in the previous section.
Table I and Table II show fairness indexes and mean throughputs when the bottleneck
link capacity is 10Mbps and 100Mbps, respectively. Results show that indexes
obtained in the mixed environments are better than ones obtained with only Reno
connections, especially over the 100Mbps high speed link, that is, TCPW is more than
friendly to Reno.

Table 1. 10Mbps bottleneck link

Connections Fairness Index Mean Throughput
(Mbps)

100 West 0.94 0.117
50 West 50 Reno 0.9 0.113
100 Reno 0.94 0.107
70 West 0.93 0.16
35 West 35 Reno 0.9 0.155
70 Reno 0.92 0.148
40 West 0.96 0.266
20 West 20 Reno 0.87 0.261
40 Reno 0.86 0.256
10 West 0.89 0.949
5 West 5 Reno 0.8 0.952
10 Reno 0.7 0.949

Table 2. 100Mbps bottleneck link

Connections Fairness Index Mean Throughput
(Mbps)

100 West 0.78 1.04
50 West 50 Reno 0.64 1.02
100 Reno 0.51 0.997
70 West 0.79 1.46
35 West 35 Reno 0.66 1.43
70 Reno 0.31 1.43
40 West 0.84 2.39
20 West 20 Reno 0.58 2.38
40 Reno 0.42 2.42
10 West 0.93 8.67
5 West 5 Reno 0.65 8.74
10 Reno 0.3 9.17

5. Conclusions

We have shown, via both mathematical modeling and extensive simulations, that TCP
Westwood provides a sensible fairness increment with respect to TCP Reno over high-
speed networks. Moreover, we have shown that it is friendly to Reno. We have also
introduced a simpler variant of RED, called EASY RED, which improves fairness of
Reno connections more than RED, whereas the improvement in the case of Westwood
connections is much smaller since Westwood already exhibits a fairer behavior by
itself.

References

1. Jacobson, V.: Congestion Avoidance and Control. ACM Computer Communications Review,
Vol. 18(4) (1988) 314 - 329

2. Allman, M., Paxson, V., Stevens, W. R.: TCP congestion control. RFC 2581, April 1999
3. Mascolo, S.,Casetti, C., Gerla, M., Sanadidi, M., Wang, R.: TCP Westwood: End-to-End

Bandwidth Estimation for Efficient Transport over Wired and Wireless Networks.
Proceedings of ACM Mobicom, Rome Italy (2001). To appear in ACM Journal on Wireless
Networks (WINET), Special Issue on Wireless Networks with selected papers from
MOBICOM2001

4. Clark, D.: The design philosophy of the DARPA Internet protocols. Proceedings of Sigcomm
in ACM Computer Communication Review, Vol. 18(4) (1988) 106-114

5. Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the Internet.
IEEE/ACM Transactions on Networking, Vol. 7(4) (1999) 458-72

6. Mogul, J.C.: Observing TCP dynamics in real networks. Proceedings of Sigcomm in ACM
Computer Communication Review, Vol. 22(4) (1992) 305-317

7. ns-2 network simulator (ver 2). LBL, URL: http://www-mash.cs.berkeley.edu/ns
8. Jain, R.: The art of computer systems performance analysis. John Wiley and Sons, (1991)
9. Stevens, W.: TCP/IP illustrated, Addison Wesley, Reading, MA, (1994)
10. Iannaccone, g., May, M, and Diot, C.: Aggregate Traffic Performance with Active Queue

Management and Drop from Tail, Computer Communication Review, Vol. 31(3) (2001) 4-13
11. Capone, A., Martignon, F.: Bandwidth Estimates in the TCP Congestion Control Scheme.

Tyrrhenian IWDC 2001, Taormina Italy (2001)
12. Hoe, J., C., Improving the Start-up Behavior of a Congestion Control Scheme for TCP.

Proceedings of ACM Sigcomm in ACM Computer Communication Review, Vol 26(4)
(1996) 270-280

13. Morris, R.: TCP behavior with Many Flows. IEEE International Conference on Network
Protocols, Atlanta Georgia (1997) 205-211

14. Keshav, S.: A control-theoretic approach to flow control. Proceedings of Sigcomm in ACM
Computer Communication Review, Vol. 21(4) (1991) 3-15

15. Allman M., and Paxson, V.: On Estimating End-to-End Network Path Properties.
Proceedings of Sigcomm in ACM Computer Communication Review, (1999) 263-274

16. Lai, K. and Baker, M.: Measuring Link Bandwidths Using a Deterministic Model of Packet
Delay. Proceedings of Sigcomm in ACM Computer Communication Review, (2000) 283-294

17. Li, S.Q., and Hwang, C.: Link Capacity Allocation and Network Control by Filtered Input
Rate in High speed Networks. IEEE/ACM Transactions on Networking, Vol. 3(1) (1995) 10-
25

18. Kelly, F.: Mathematical modeling of the Internet. Proceedings of the Fourth International
Congress on Industrial and Applied Mathematics, (1999) 105-116

19. Floyd S., and Jacobson, V.: Random Early Detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, Vol 1(4) (1997)

20. Hollot, C.V., Misra, V., Towsley, D., and Gong, W,: A control Theoretic Analysis of RED.
Proceedings of Infocom (2001)

21. May, M., Bolot, J., Diot, C., Lyles, B.: Reasons not to deploy RED. Seventh International
Workshop on Quality of Service IWQoS (1999)

22. Hollot, C.V., Misra, V., Towsley, D., and Gong, W.: On Designing Improved Controllers for
AQM Routers Supporting TCP Flows. Proceedings of Infocom (2001)

23. Floyd, S.: RED: Discussions of Setting Parameters, (1997). At http://www.aciri.org/floyd/
24. Floyd, S.: Recommendation on using the "gentle" variant of RED, (2000). At

http://www.aciri.org/floyd/

25. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Throughput: A Simple Model
and its Empirical Validation. Proceedings of Sigcomm in ACM Computer Communication
Review, Vol 28(4) (1998) 303-314

26. Floyd, S., Handley, M., Padhye, J., and Widmer, J.: Equation-Based Congestion Control for
Unicast Applications. Proceedings of Sigcomm in ACM Computer Communication Review,
Vol. 18 (2000) 43-56

27. Feng, W., Kandlur, D., Saha, D., Shin, K.G.: A Self-Configuring RED Gateway.
Proceedings of Infocom (1999)

28. Lin, D., and Morris, R.: Dynamics of Random Early Detection. Proceedings of Sigcomm in
ACM Computer Communication Review, Vol. 27(4) (1997) 127-137

29. Ott, T.J., Lakshman, T.V., Wong, L.: SRED: Stabilized RED. Proceedings of Infocom
(1999)

30. Anjum, F.M., and Tassiulas, L.: Balanced RED: an algorithm to achieve fairness in the
Internet. Proceedings of Infocom (1999)

31. Aweya, J., Ouellette, M., Montuno, D.Y.: A control theoretic approach to active queue
management. Computer Networks, Vol. 36 (2001) 203-235

32. Floyd, S., Gummadi, R., Shenker, S.: Adaptive RED, An algorithm for Increasing the
Robustness of RED’s Active Queue Management. Submitted for publication. Available at
http://www.aciri.org/floyd/

