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Abstract. TCP Westwood (TCPW) is a sender-side only modification of TCP 
Reno congestion control, which exploits end-to-end bandwidth estimation to 
properly set the values of slow-start threshold  and congestion window after a 
congestion episode. This paper aims at showing via both mathematical modeling 
and extensive simulations that TCPW significantly improves fair sharing of 
high-speed networks capacity and that TCPW is friendly to TCP Reno. 
Moreover, we propose EASY RED, which is a simple Active Queue 
management (AQM) scheme that improves fair sharing of network capacity 
especially over high-speed networks. Simulation results show that TCP 
Westwood provides a remarkable Jain’s fairness index increment up to 200% 
with respect to TCP Reno and confirm that TCPW is friendly to TCP Reno. 
Finally, simulations show that Easy RED improves fairness of Reno connections 
more than RED, whereas the improvement in the case of Westwood connections 
is much smaller since Westwood already exhibits a fairer behavior by itself. 

1. Introduction 

Packet switching networks require sophisticated mechanism of flow and congestion 
control in order to share resources and avoid congestion phenomena. Congestion 
control functions were introduced into the TCP in 1988 and have been of crucial 
importance in preventing congestion collapse [1],[2],[9]. However, while end-to-end 
TCP congestion control [4],[5] can ensure that network capacity is not exceeded, it 
cannot insure fair sharing of that capacity [1]. In this paper we investigate via both 
mathematical analysis and computer simulations the issue of fairness in high-speed 
networks when Westwood TCP is implemented at the sender side. Moreover we 
propose a simpler version of RED, called EASY RED and we investigate how it 
interacts with Reno and Westwood TCP. 
TCP Westwood (TCPW) performs an end-to-end estimate of the bandwidth available 
along a TCP connection to adaptively set the control windows after congestion [3]. The 
rationale of TCPW is simple: in contrast with TCP Reno, which implements a 
multiplicative decrease algorithm after congestion, TCPW sets a slow start threshold 
and a congestion window which are consistent with the effective bandwidth used at the 
time congestion is experienced.  



 

 

In this paper, TCPW employs a bandwidth estimation algorithm that is slightly 
different from the one used in [3] in order to avoid bandwidth overestimates due ACK 
compression [6],[11]. 
EASY RED is a simpler variant of RED that does not average the queue length but 
relates the drop probability to the instantaneous queue level. In fact, the purpose of 
early discard is to signal congestion to the sender as soon as possible. In contrast 
averaging the queue introduces delay, which is harmful for congestion control 
purposes. EASY RED has only two parameters to be set: (1) the minimum threshold 
(min_th) and (2) the constant drop probability pdrop when the instantaneous queue 
length is greater or equal to min_th.  
A main contribution of this paper is a mathematical model that proves stability, 
fairness and friendliness of TCP Westwood with respect to Reno. In particular, the 
model shows that the mean throughput of TCP Westwood is function of the available 
bandwidth and is less sensitive to round trip time than Reno throughput, that is, 
Westwood improves fair sharing of network capacity among flows with different 
RTTs. Moreover, the model highlights that the throughput of TCPW depends on the 
inverse of the square root of the drop probability just like the throughput of Reno 
[18],[25], that is, TCPW is friendly to TCP Reno. 
Simulation results using Westwood show a remarkable increment of the Jain fairness 
index up to 200% with respect to Reno over a 100Mbps wired network. Also they 
confirm the theoretical model by showing that TCPW is completely friendly to Reno. 
Performance improvements are also shown when AQM mechanisms are used. 
Simulations show that EASY RED improves fairness of Reno connections more than 
RED, whereas the improvement in the case of Westwood connections is much smaller 
since Westwood already exhibits a fairer behavior by itself. 
The paper is organized as follows: in Section 2 a mathematical model of TCP 
Westwood is developed; in Section 3, Active Queue Management algorithms are 
described and Easy RED is proposed; in Section 4, simulation results with many Reno 
or Westwood TCP connections having different RTTs and sharing a FIFO bottleneck 
queue implementing RED, Gentle RED, EASY RED or no AQM policy are reported. 
Finally, Section 5 draws the conclusions. 

2.TCP Westwood  

A detailed description of TCP Westwood (TCPW) is reported in [3]. In this section, we 
briefly resume TCPW and we introduce a new mechanism to estimate the available 
bandwidth. Later we develop a mathematical model of Westwood and analyze fairness 
and friendliness of Westwood in comparison with Reno by using their respective 
throughput equation models. 

2.1 A Description of TCP Westwood 

A TCP connection is characterized by the following variables: 

• cwnd: Congestion Window 



 

 

• ssthresh: Slow Start Threshold 
• RTT: Round Trip Time of the connection 
• RTTmin: Minimum Round Trip Time measured by the sender 
• seg_size: Size of the delivered segments 

The main idea of TCP Westwood is to perform an end-to-end estimate of the 
bandwidth B available along a TCP connection by measuring and low-pass filtering the 
rate of returning ACKs. For available bandwidth we mean the measurement of the 
actual rate a connection is achieving during the data transfer. This is a much more easy 
task than estimating the bandwidth that is available at the beginning of a TCP 
connection [12],[14],[15],[16]. The bandwidth estimate is then used to properly set the 
congestion window and the slow-start threshold after a congestion episode as described 
below:  
a) When 3 DUPACKs are received by the sender: 
 ssthresh = (B*RTTmin)/seg_size; 
 cwnd = ssthresh; 

b) When coarse timeout expires: 
 ssthresh = (B*RTTmin)/seg_size; 
 cwnd = 1; 

c) When ACKs are successfully received:  
 cwnd is increased following the Reno algorithm. 

As it has been pointed out in [1],[2],[26], the stability of the Internet does not require 
that flows reduce their sending rate by half in response to a single congestion 
indication. In particular, the prevention of congestion collapse simply requires that 
flows use some form of end-to-end congestion control to avoid a high sending rate in 
the presence of high packet drop rate. In the case of TCPW the sending rate is reduced 
by taking into account a measurement of the available bandwidth at the time 
congestion is experienced. Therefore, when in the presence of heavy congestion, this 
reduction can be even more drastic than a by half reduction and it can be less drastic 
with light congestion. This feature can clearly improves network stability and 
utilization in comparison with the blind by a half window reduction performed by 
Reno. 

2.2 Robustness of bandwidth estimate to ACK Compression 

In order to fully exploit the advantages of the AIAD paradigm, it is of crucial 
importance to obtain a good estimate of the bandwidth that is available when 
congestion is experienced. Due to delays and ACKs compression, the flow of returning 
ACKs must be low-pass filtered in a proper way [11],[17]. In [3], a sample of available 
bandwidth kkkkkk dttdb ∆=−= − /)/( 1  is computed every time tk the sender receives 
an ACK, where the amount dk of data acknowledged by an ACK is determined by a 
proper counting procedure that takes into account delayed ACKs, duplicate and 
cumulative ACKs. Samples bk are low-pass filtered using the time-varying filter 
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1 , where fτ  is the filter time constant (a typical value 

is 5.0=fτ s). In this paper, we propose a slightly modified version of the filter used in 
[3] since that filter overestimates the available bandwidth when in the presence of 
ACK compression [6]. To overcome this problem, we compute bandwidth samples 
every RTT. More precisely, we count all data dk acknowledged during the last RTT and 
compute the bandwidth sample kkk db ∆= / , where k∆  is the last RTT. Moreover, in 
order to comply with the Nyquist sampling theorem when 4/fk τ>∆ , we interpolate 
and re-sample using )/4( fRTTintN τ⋅= 1 virtual samples bk arriving with the 
interarrival time 4/fk τ=∆ .  
In order to test the robustness of the new filter with respect to ACK compression, we 
simulate a single bottleneck scenario shared by one TCP and one UDP connection via 
FIFO queuing. The bottleneck link capacity is 1Mbps. In order to provoke ACK 
compression, 10 TCP Reno connections sending data along the reverse path are 
considered. Segment size is 1500 Bytes long, queue size is 20 segments and the 
simulation lasts 1000s. Fig. 1(a) shows  the bandwidth estimate obtained using the old 
and the new filter when the UDP source is turned off. The tick lines marks the 
available bandwidth that is 1Mbps. Fig. 1(a) shows that the old filter overestimates the 
bandwidth ten times, whereas the new one nicely tracks the available bandwidth. Fig. 
1(b) shows the bandwidth estimate obtained when the UDP sources is active. The tick 
line marks the bandwidth that is left available by the UDP traffic. Also in this case the 
new filter tracks the available bandwidth whereas the old one overestimates up to 10 
times the available bandwidth.  
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Fig. 1. Bandwidth estimates: (a) without UDP traffic; (b) with coexisting UDP traffic  

2.3 A Mathematical Model of TCP Westwood 

In this section a mathematical model of the Additive Increase Adaptive Decrease 
mechanism introduced by Westwood is developed. To derive the model, we follow 
arguments similar to the ones developed in the excellent paper by Kelly [18]. For the 
sake of simplicity, we do not model the behavior after a timeout. 
                                                             
1 int(·) stands for the integer part of (·) 



 

 

Theorem 1. Consider a TCP flow that is controlled by the Westwood algorithm. 
Suppose that the drop probability of a segment is p, the bandwidth available for the 
flow is B, the mean round trip time is RTT and the minimum round trip time is RTTmin. 
By letting rW  be the steady state mean throughput of the flow, it holds: 
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Proof. The congestion window is updated upon ACK reception. Each time an ACK is 
received back by the sender the cwnd is increased by 1/cwnd, whereas after a segment 
loss the congestion window is set equal to B⋅RTTmin so that the change in cwnd is 

cwndRTTB −⋅ min . Since the segment drop probability is p, it follows that the expected 
increment of the congestion window cwnd per update step is: 
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Since the time between update steps is about 
cwnd
RTT , by recalling Eq. (2), the expected 

change in the rate r per unit time is approximately: 
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Eq. (3) is a separable variable differential equation. By separating variables, Eq. (3) 
can be written as: 
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and by integrating each member the following solution can be obtained 
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The steady state throughput of the Westwood algorithm is then 
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It is easy to show the following corollary. 



 

 

Corollary 1. The Westwood control algorithm is stable, that is  

BrW ≤ . (5) 

Proof. From Eq. (1) we can argue that Wr  can never be greater than B. In fact, by 
contradiction, let us assume that BWr > . This assumption would lead to congestion 
collapse so that the drop probability p would increase up to 1. Thus, from Eq. (1) it 

would result 
RTT

RTT
BWr min= . Since under congestion RTTRTT <min , it would result 

BrW < , which would contradict the assumption. Therefore, we can conclude that 
BrW ≤ . � 

Now, by noting that the end-to-end bandwidth estimation algorithm described above 
provides a value that is well approximated by cwnd/RTT, it is possible to 
mathematically derive the throughput of Westwood when the bandwidth estimation 
algorithm described in this paper is employed.  

Theorem 2. The steady state throughput of Westwood using the bandwidth estimate 
B=cwnd/RTT is  

( )
p

p

TRTT
r

q

West −
⋅

⋅
=

11
. (6) 

Where Tq =RTT—RTTmin is the mean queuing time experienced by the segments of the 
connection. 

Proof. By assuming the following estimate of the available bandwidth  

)(/ trRTTcwndB ==  (7) 

and by substituting Eq. (7) into Eq. (3), the following differential equation is obtained: 
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By separating variables, Eq. (8) can be written as: 
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and integrated as: 
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Where C depends on the initial conditions. The steady state throughput (6) is then 
obtained for ∞→t . � 

2.3 Fairness and Friendliness Evaluation 

Kelly derives the following steady state mean throughput of Reno TCP [18]: 
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With reference to friendliness, by comparing (6) and (11) it can be noted that both 
throughputs of Westwood and Reno depend on p/1 , that is Westwood and Reno are 
friendly to each other. Moreover, Eq. (6) shows that flows with different RTTs and 
going through the same bottleneck, experience the same mean queuing time Tq.  
Therefore, the throughput of Westwood depends on round trip time as RTT/1  
whereas throughput of Reno as RTT/1 , that is, Westwood increases fair sharing of 
network capacity between flows with different RTTs. 

3. AQM Policies and Easy RED 

The idea behind Active Queue Management (AQM) is to discard a packet before 
queue overflow in according to a drop probability function. The rationale is that, by 
discarding a packet before queue overflow, a TCP sender can detect congestion earlier 
and react earlier.  
The most know example of AQM mechanism is RED, which uses a drop probability 
function that increases linearly with the average queue length [19]. RED needs the 
tuning of four parameters that are: (1) the minimum queue threshold (min_th); (2) the 
maximum queue threshold (max_th); (3) the drop probability maxp when the average 
queue reaches the max_th and (4) the constant value used by the exponential filter to 
average the queue length. A delicate issue with RED is that it requires fine-tuning of 
many parameters in order to work properly. Consequently, there is considerable 
nervousness in the community regarding the deployment of RED [10],[20],[21],[22].  
Several complex variants of RED have been proposed in order to obtain algorithms 
less sensitive to parameter tuning. In [29], stabilized RED (SRED) is proposed, which 
aims at stabilizing buffer occupation by estimating the number of active connections in 



 

 

order to set the drop probability as a function of the number of the active flows and of 
the instantaneous queue length. In [28], Flow RED (FRED) is proposed which uses 
per-active-flow accounting to impose on each flow a loss rate that depends on the 
flow’s buffer use. FRED employs the same drop probability function of RED; 
furthermore, it maintains minimum and maximum limits on the packets that a flow 
may have in the queue and uses a more aggressive drop against the flows that violates 
the maximum bound. In [27] and [32] schemes to auto tune RED parameters are 
proposed. These schemes essentially increase the maxp parameter when the average 
queue length exceeds a fixed target and decrease maxp when the average queue length 
falls below the target level. The Balanced RED algorithm, which tries to regulate the 
bandwidth assigned to each flow by doing per flow accounting, is proposed in [30]. 
BRED stores the per flow buffer level and for each incoming packet it computes the 
drop probability as a function of the buffer level of the flow to which the packet 
belongs. Finally Dynamic RED [31] proposes to discard packets with a load dependent 
probability. In particular DRED continuously update the drop probability by 
employing an integral controller with a gain in cascade. The input of the controller is 
the difference between the average queue length and the target buffer level whereas the 
output is the drop probability. 
In this section, we introduce a simpler variant of RED that we call EASY RED. We 
show that EASY RED improves fairness and that it is not sensitive to parameters 
tuning. EASY RED does not average the queue length but it relates the drop 
probability to the instantaneous queue level. In fact, the purpose of early discard is to 
signal congestion to the sender as soon as possible. In contrast to this, the queue 
average of RED introduces delay, which is harmful for congestion control purposes. In 
control terms, averaging means the introduction of an extra pole in the control loop 
[20],[22]. 
EASY RED has only two parameters to be tuned: (1) the min_th and (2) the constant 
drop probability when the instantaneous queue length is greater or equal to min_th. 
Fig. 2 shows the dropping profile of EASY RED and RED. EASY RED has a flat 
dropping probability that is function of the instantaneous queue length, whereas RED 
has a linearly increasing drop probability that jumps to one when the average queue 
length reaches the max_th [23]. The gentle variant of RED eliminates the jump to one 
using another linear piece of curve [24]. 
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Fig. 2. Drop Probability. (a) Easy RED; (b) RED 
 



 

 

4. Performance Evaluation  

In this section, we test TCPW using the ns-2 simulator [7] and we validate results 
obtained in Sec. 2, which are: (1) TCP Westwood improves fairness; (2) TCP 
Westwood is friendly to Reno. Moreover we test the behavior of EASY RED. 
In order to evaluate the performance of TCP Westwood we consider N greedy 
connections sharing a FIFO bottleneck, with N=5,10,40,70,100 and RTT ranging 
uniformly from (250/N)ms to 250ms. The sources transmit data during a period of 30 
seconds. The segment size is 1500 Bytes long. The bottleneck link bandwidth is set 
equal to 10Mbps or 100Mbps and the bottleneck queue capacity is set equal to the link 
capacity times the maximum round trip propagation time, that is, the bottleneck queue 
size is set equal to 200 and 2000 segments, respectively. Note that these settings allow 
a number of segments proportional to the number of flows be accommodated in the 
bottleneck queue so avoiding the many flows effect [13]. To provide a single numerical 
measure reflecting the fair share distribution across the various connections we use the 
Jain Fairness Index defined as: 
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where bi is the throughput and N is the number of connections [8]. 

4.1 Fairness of TCP Westwood  

In this section, we compare the fairness of TCPW versus the fairness of TCP Reno 
without using AQM policies. Fig. 3 (a) shows the Jain fairness index as a function of 
the number of connections when the bottleneck capacity is 10Mbps and Fig. 3 (b) 
when the bottleneck capacity is 100Mbps. Fig. 3 shows that TCPW improves fairness 
up to 200% when bottleneck capacity is 100Mbps and up to 60% when bottleneck 
capacity is 10Mbps.  
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Fig. 3. Jain’s fairness Indexes: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link 

Figs. 4(a) and (b) show the corresponding mean throughputs computed as the sum of 
all the throughputs of the N TCP sources sharing the bottleneck divided by N. To give 
a further insight, Figs 5(a) and (b) show the curves of Bytes_sent vs. time in the case of 
40 connection using Reno and in the case of 40 connections using Westwood, 



 

 

respectively. The bottleneck is 100Mbps. Figures clearly show that Reno curves are 
much more spread than Westwood curves, i.e. TCPW increases fairness. 
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Fig. 4. Mean Throughputs: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link 
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Fig. 5. Bytes sent vs. time. (a) 40 Reno connections. (b) 40 Westwood connections 

4.2 Interaction with AQM Policies 

In this section, we study the effect of AQM policies on the performance of TCP Reno 
and Westwood. Moreover, we evaluate the performance improvement when Easy RED 
is employed.  
Fig. 6(a) shows the Jain fairness index as a function of the number of Westwood 
connections when the bottleneck capacity is 10Mbps and Fig. 6(b) when the bottleneck 
capacity is 100Mbps. Four curves are shown that refer to RED, Gentle RED, EASY 
RED and no AQM, i. e. drop from tail, policy. Fig. 6(a) shows that EASY RED does 
not change the fairness whereas RED and gentle RED reduces the fairness with respect 
to simple drop of tail. Fig. 6(b) shows that EASY RED improves fairness up to 12% 
with respect to no AQM policies whereas RED and gentle RED reduces fairness with 
respect no AQM. Figs. 7(a) and (b) show corresponding mean throughputs: RED and 
gentle RED reduces the throughput of Westwood with respect to EASY RED and drop 
tail.  
Figs.8(a) and (b) show the Jain fairness index as a function of the number of Reno 
connections when the bottleneck capacity is 10Mbps and 100Mbps, respectively. Fig. 8 
(a) shows that for N<40 EASY RED improves fairness up to 40% whereas RED and 
gentle RED reduces fairness also respect to no AQM policies for N>10. In the case of 
Fig. 8(b), EASY RED improves fairness up to 65% with respect to RED policy and up 



 

 

to 165% with respect to drop tail. Figs. 9(a) and (b) show the corresponding mean 
throughputs. Note that, in the case of 100Mbps bottleneck, RED and gentle RED 
reduces the Reno throughput with respect to EASY RED and drop tail.  
RED parameters have been set as suggested by [23]: filter constant q_weight=0.002, 
min_th=5, max_th=15, maximum drop probability = 0.1. Gentle RED parameters have 
been set following recommendations in [24]. EASY RED parameters have been set as 
follows: pdrop=0.01 and min_th=queue_capacity/3.  
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Fig. 6. Jain’s fairness Indexes: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link 
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Fig. 7. Mean Throughputs: 10Mbps bottleneck link; (b) 100Mbps bottleneck link 
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Fig. 8. Jain’s fairness Indexes: 10Mbps bottleneck link; (b) 100Mbps bottleneck link 
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Fig. 9. Mean Throughputs: (a) 10Mbps bottleneck link; (b) 100Mbps bottleneck link 

4.3 Sensitivity of Easy RED to Parameters setting 

To investigate the effects that the pdrop parameter used in Easy RED has on the 
fairness and throughput, we vary prodp from 0.01 to 0.1 by keeping 
min_th=queue_capacity/3. Figs. 10-13 show that fairness indexes and mean 
throughputs of Reno and Westwood are not sensitive to pdrop over links with capacity 
of 10Mbps and 100Mbps.  
To investigate the effect of the min_th parameter we set min_th=queue_capacity/a and 
we vary a from 2 to 4 by keeping pdrop=0.01. Figs. 14-17 show that fairness indexes 
and mean throughputs of Reno and Westwood are not sensitive to min_th. 
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Fig. 10. Sensitivity of the Jain fairness indexes to pdrop: (a) 10Mbps link; (b) 100Mbps link 
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Fig. 11. Sensitivity of mean throughputs to pdrop: (a) 10Mbps link; (b) 100Mbps link 
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Fig. 12. Sensitivity of the Jain fairness indexes to pdrop: (a) 10Mbps link; (b) 100Mbps link 
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Fig. 13. Sensitivity of mean throughputs to pdrop: (a) 10Mbps link; (b) 100Mbps link 
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Fig. 14. Jain’s fairness Indexes sensitivity to min_th: (a) 10Mbps link; (b) 100Mbps link 
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Fig. 15. Mean Throughputs sensitivity to min_th. (a) 10Mbps link; (b) 100Mbps link 
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Fig. 16. Jain’s fairness Indexes sensitivity to min_th: (a) 10Mbps link; (b) 100Mbps link 
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Fig. 17. Mean Throughputs sensitivity to min_th: (a) 10Mbps link; (b) 100Mbps link 

4.4 Friendliness of TCP Westwood 

Friendliness relates to how connections running different TCP flavors affect the 
performance of one another. In particular, we demand that a newly proposed TCP be 
friendly to the TCP versions already in use in the Internet. That is, the new TCP 
connections must be able to coexist with connections using existing TCP protocols 
while providing opportunities for all connections to progress satisfactorily. At a 
minimum, the new connections should not cause the starvation of the connections 
using the existing version of TCP.  
We simulate the same scenario described in the previous sections with N=10,40,70,100 
connections. The Westwood connections are mixed with the Reno connections. In 
particular, N/2 Reno and N/2 Westwood connections are mixed. Round trip times are 
spread as in the scenario described in the previous section. 
Table I and Table II show fairness indexes and mean throughputs when the bottleneck 
link capacity is 10Mbps and 100Mbps, respectively. Results show that indexes 
obtained in the mixed environments are better than ones obtained with only Reno 
connections, especially over the 100Mbps high speed link, that is, TCPW is more than 
friendly to Reno. 

 
 



 

 

Table 1. 10Mbps bottleneck link 

Connections Fairness Index Mean Throughput 
(Mbps) 

100 West 0.94 0.117 
50 West 50 Reno 0.9 0.113 
100 Reno 0.94 0.107 
70 West 0.93 0.16 
35 West 35 Reno 0.9 0.155 
70 Reno 0.92 0.148 
40 West 0.96 0.266 
20 West 20 Reno 0.87 0.261 
40 Reno 0.86 0.256 
10 West 0.89 0.949 
5 West 5 Reno 0.8 0.952 
10 Reno 0.7 0.949 

Table 2. 100Mbps bottleneck link 

Connections Fairness Index Mean Throughput 
(Mbps) 

100 West 0.78 1.04 
50 West 50 Reno 0.64 1.02 
100 Reno 0.51 0.997 
70 West 0.79 1.46 
35 West  35 Reno 0.66 1.43 
70 Reno 0.31 1.43 
40 West 0.84 2.39 
20 West 20 Reno 0.58 2.38 
40 Reno 0.42 2.42 
10 West 0.93 8.67 
5 West 5 Reno 0.65 8.74 
10 Reno 0.3 9.17 

5. Conclusions  

We have shown, via both mathematical modeling and extensive simulations, that TCP 
Westwood provides a sensible fairness increment with respect to TCP Reno over high-
speed networks. Moreover, we have shown that it is friendly to Reno. We have also 
introduced a simpler variant of RED, called EASY RED, which improves fairness of 
Reno connections more than RED, whereas the improvement in the case of Westwood 
connections is much smaller since Westwood already exhibits a fairer behavior by 
itself.  
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