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Introduction

INTERNET

Sender
Receiver

The Internet is a relevant example of time-delay system due to
propagation of information over communication links

When packets arrive at a rate above the capacity of the
output link the router queue builds and congestion arises

TCP Congestion control is a building block of the Internet
designed to avoid congestion and preserve network stability
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TCP Congestion Control Models

The literature dealing with congestion control algorithms modeling
is very broad:

Stationary models: predict the average throughput based on
average measures such as round trip time, packet loss ratio

SQRT Formula (Mathis et al., 1997)
PFTK formula (Padhye et al., 1998)

Fluid Models: based on differential equations

Hollot et al. (2001): non-linear differential equations of
congestion window w(t) and queue length q(t)
Mascolo (1999): linear model comprising two time delays, an
integrator and a Smith Predictor.

Hybrid Models: time continuous differential equations
coupled with discrete dynamics (packet loss events, etc)

Hespana et al. (2001): describes all the phases of TCP
congestion control (slow start, cong. avoid., fast retx)
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Smith-predictor based Congestion Control
(S. Mascolo, 1999)
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Smith Predictor b(t)

w(t): Set-point (congestion window)
q(t): Queue length
T1,T2: source-destination and
destination-source delays

k: Controller gain
1/s: bottleneck link queue model
b(t): bottleneck available bandwidth
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Why using a Smith Predictor plus proportional controller?

If the delay T1 + T2 (RTT, round trip time) is exactly known,
the closed loop dynamics is that of a first order system (no
overshoots, system is always stable)

A unique parameter to tune having a direct influence on the
step response of the system

It models the TCP congestion control and its variants by
proper input shaping of the congestion window w(t)

A rate-based congestion control algorithm has been designed
and implemented (Grieco and Mascolo, 2004)

Focus of the paper

Smith-predictor is known to be sensitive to delay model
uncertainties. What’s the effect of a measurement error in the
delay on the stability of the system?
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Stability crossing curves for systems with two delays
(Gu, Niculescu, Chen, 2005)

Let us consider:

LTI SISO system G (s) = G0(s)e
−τs , G0(s) delay free plant

Smith predictor controller C (s), nominal delay τ = T1 + T2,
∆ delay uncertainty

Characteristic equation:

1 − h(s)e−τ1s + h(s)e−τ2s = 0 (1)

with:

h(s) =
C (s)G0(s)

1 + C (s)G0(s)
; τ1 = τ ; τ2 = τ + ∆
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The geometric approach

Geometric approach

The characteristic equation can be represented in the complex
plane as an isoceles triangle
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The characteristic equation is equivalent to the
following conditions

1 The triangular inequality must hold for the
triangle so that: |h(jω)| ≥ 1/2;

2 It must satisfy the phase rule;

3 The sum of the internal angles of the
isosceles triangle must be equal to π;

The method parametrizes the stability crossing curves in the delay
plane τ1, τ2
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Stability crossing curves (SCC)

Condition 1 (triangular inequality) ⇒ By imposing
|h(jω)| ≥ 1/2 the Frequency crossing set Ω is obtained that is
the union of a finite number of intervals of finite amplitude:

Ω =

n
⋃

i=1

Ωi

By imposing the other conditions it is obtained for ω ∈ Ω:

τu±
1 (ω) =

∠h(jω) + 2uπ ± q(ω)

ω
; τ v±

2 (ω) =
∠h(jω) + (2v − 1)π ∓ q(ω)

ω

q(ω) = arccos

(

1

2|h(jω)|

)

where u e v are integers. The stability crossing curves T are
obtained by drawing τ1(ω), τ2(ω) for all ω ∈ Ω and for all u
and v .
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SCC of the computer network congestion control model

For the considered network congestion control model τ = T1 + T2,
τ1 = τ̄ , τ2 = τ + ∆ and:

h(s) =
k

s + k

by making the change of variable z = s
k

(scaling of the closed-loop
eigenvalues by 1/k) we reduce the free parameters to two:

h(z) =
1

z + 1
; h1 = kτ1 ; h2 = kτ2 ⇒

1 − 1

1 + jω
e−jωh1 +

1

1 + jω
e−jωh2 = 0
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SCC of the computer network congestion control model

By imposing |h(jω)| ≥ 1/2 we obtain the frequency crossing set:

Ω = (0,
√

3]

and by varying ω ∈ Ω, the sign and u and v in the integers we
obtain the stability crossing curves T parametrized as follows:

hu±
1 (ω) =

− arctanω + 2uπ ± arccos
(√

1+ω2

2

)

ω

hv±
2 (ω) =

− arctanω + (2v − 1)π ∓ arccos
(√

1+ω2

2

)

ω
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Stability crossing curves of the considered system
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Problem

Find the maximum uncertainty δ
such that the system is
asymptotically stable for all
∆ ∈ [−δ, δ]. Thus we have to
solve this problem:

δ = min
h∗

1 ∈R+

min
u,v

min
τ

v±
2 ∈T

|hv±
2 − h∗

1 |

This problem is equivalent to
finding the minimum distance
between a generic point of the
positive bisector and a generic
SCC. Thus it is sufficient to
impose dh1

dh2
= 1 ⇔ dh1

dω
= dh2

dω
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Stability crossing curves of the considered system
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By considering the closest curves
to the positive bisector we can
restrict to the subset of stability
crossing curves:

T ⊂ T = T −
u,u ∪ T +

u,u+1

For the positive curves v = u + 1,
for the negative ones u = v (see
figure).
By considering the positive curves
(v = u + 1) and imposing
dh1

dω
= dh2

dω
it turns out:
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 √
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Robust Stability Analysis
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h2=h1+1.4775

STABIL
IT

Y R
EGIO

N

By solving the equation for ω
we obtain a unique solution in
Ω, ω = 1.3483 rad

s
. Let us

substitute ω in h1(ω) and
h2(ω), obtaining:

h1(ω) = h1 = 4.6601u − 0.2654

h2(ω) = h2 = 4.6601v − 3.4480

By subtracting the two
equations (v = u + 1) we find
that the tangents parallel to
the positive bisector belonging
to the curves T +

u,u+1 lie on the
line:

h2 = h1 + 1.4775
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Robust Stability Analysis

Proposition

A necessary and sufficient condition for the asymptotic stability of
the system regardless the value of the nominal delay τ = T1 + T2

is that |∆| < α

k

By recalling that h2 = h1 + 1.4775 and h1 = kτ1, h2 = kτ2 we
obtain the condition:

k(τ2 − τ1) < 1.4775 ⇒

∆ <
1.4775

k
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Simulation set-up

Matlab SIMULINK model

Available bandwidth b(t): step function t = 1 sec, final value
b = 100 packets/sec

Queue set point w(t): step function at t = 0 sec, final value
w = 150 packets.

NominalRTT : τ = 1 sec.

Controller gain: k = 4 sec−1 , thus the maximum delay
uncertainty is δ ∼= 0.37 sec.

Delay uncertainty ∆: either 0, or δ/2 or δ
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Simulation results
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Queue length q(t): as
expected, the
performance degrades as
∆ increases, providing an
acceptable resposnse for
∆ = δ/2 , whereas when
∆ = δ presistent
oscillations occur.



Introduction SP congestion control Review of the geometric approach SCC of the congestion control model Robust stability

Simulation results
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Queue length q(t): as
expected, the
performance degrades as
∆ increases, providing an
acceptable resposnse for
∆ = δ/2 , whereas when
∆ = δ presistent
oscillations occur.

Input Rate r(t): The
input rate is able to track
the available bandwidth
b(t), but when ∆ = δ
persistent oscillation
occurs.
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Conclusions

We found a simple necessary and sufficient condition on the
gain of the proportional controller k in order to retain
asymptotic stability regardless the value of the nominal delay
τ = T1 + T2 by employing a geometric approach.

The maximum uncertainty allowed does not depend on the
nominal delay τ . This makes the controller effective even with
large delays.

The condition |∆| < α/k expresses a natural trade-off
between the maximum delay mismatch δ and the proportional
gain that can be used to tune the controller gain k.

Congestion control algorithms that employ controllers made
by a Smith predictor plus a proportional gain can be easily
tuned in order to be robust to a bounded delay uncertainty.
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