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Synchronizing Hyperchaotic Systems by Observer Design

Giuseppe Grassi and Saverio Mascolo

Abstract—In this brief, a technique for synchronizing hyperchaotic
systems is presented. The basic idea is to make the driven system a linear
observer for the state of the drive system. By developing this approach, a
linear time-invariant synchronization error system is obtained, for which
a necessary and sufficient condition is given in order to asymptotically
stabilize its dynamics at the origin. The suggested tool proves to be
effective and systematic in achieving global synchronization. It does
not require either the computation of the Lyapunov exponents, or the
initial conditions belonging to the same basin of attraction. Moreover, it
guarantees synchronization of a wide class of hyperchaotic systems via
a scalar signal. Finally, the proposed tool is utilized to design a secure
communications scheme, which combines conventional cryptographic
methods and synchronization of hyperchaotic systems. The utilization of
both cryptographyand hyperchaos seems to make a contribution to the
development of communication systems with higher security.

Index Terms—Chaotic encryption, hyperchaotic circuits and systems,
synchronization theory.

I. INTRODUCTION

At first thought, chaotic phenomena generated by nonlinear systems
would seem singularly unsuited for engineering applications. In
reality, the broad-band frequency spectrum makes chaotic signals a
natural way of sending and receiving private communications. For
this reason, chaotic dynamics, synchronization of coupled dynamic
systems, and secure communications have been the topics of many
papers over the last few years [1]–[7].

Referring to synchronization, Carroll and Pecora [2] have theoret-
ically and experimentally shown that the dynamics of a drive system
and of a driven subsystem (response system) become synchronized
if the Lyapunov exponents of the response system are less then
zero, assuming that both the systems start in the same basin of
attraction. However, most of the methods concern the synchronization
of low dimensional systems, characterized by only one positive
Lyapunov exponent [2]–[4]. Since this feature limits the complexity
of the chaotic dynamics, it is believed that the adoption of higher
dimensional chaotic systems, with more than one positive Lyapunov
exponent, enhances the security of the communication scheme. There-
fore, hyperchaotic systems and hyperchaos synchronization have
recently become fields of active research [5]–[7]. In particular, in
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[5] the synchronization between hyperchaotic systems is achieved
by exploiting linear and nonlinear feedback functions, although the
attention is not focused on the number of the synchronizing signals.
In [6], a linear combination of the original state variables (i.e.,
a scalar signal) is used to synchronize hyperchaos in R¨ossler’s
systems. However, the approach in [6] cannot be considered a
systematic technique for synchronization, since the coefficients of
the linear combination are somewhat arbitrary. An interesting result
has been recently reported in [7], where a parameter control method
is proposed to achieve hyperchaos synchronization. In any case, the
computation of the Lyapunov exponents is still required in order to
verify the synchronization.

This brief makes a contribution in the context of hyperchaos
synchronization. Furthermore, an application to hyperchaos-based
cryptography is presented. The key idea is to make the response
system a linear observer for the state of the drive system. This
approach guarantees synchronization, because an observer has the
property that its state converges to the state of the plant; that
is, the state of the driven system converges to the state of the
drive one. The proposed technique has several advantages over the
existing methods. It proves to be simple and rigorous. It does not
require either the computation of the Lyapunov exponents or initial
conditions belonging to the same basin of attraction. Moreover,
global synchronization is achievable in a systematic way for several
examples of hyperchaotic systems reported in literature.

The paper is organized as follows. In Section II, a general class
of hyperchaotic systems is defined and the well-known concept
of linear observer is introduced to formalize the problem of hy-
perchaos synchronization. Following this approach, a linear time-
invariant synchronization error system is derived, along with a
necessary and sufficient condition for its asymptotic stabilization.
This technique guarantees synchronization of Rössler’s system [6],
the Matsumoto–Chua–Kobayashi (MCK) circuit [8] and its modified
version [9], two oscillators recently reported in literature [10], [11],
and a circuit with hysteretic nonlinearity [12]. A major advantage
is that all of these systems are synchronized using ascalar signal.
In order to show the effectiveness of the developed technique,
numerical simulations are carried out in Section III, whereas in
Section IV, a secure communications scheme is designed, which
combines conventionalcryptographicmethods and synchronization
of hyperchaotic systems. In Section V, some concluding remarks are
given.

II. HYPERCHAOSSYNCHRONIZATION USING LINEAR OBSERVER

The goal of synchronization is to design a coupling between two
chaotic systems, called drive system and response system, so that
their dynamics become identical after a transient time. The coupling
is implemented via a synchronizing signal, which is generated by the
drive system. In this brief, the attention is focused on the following
class of dynamic systems.

Definition 1: A hyperchaotic system belongs to the classCm if
its state and output equations can be written, respectively, as

_x(t) =Ax(t) +Bf(x(t)) + c (1)

y(t) =h(x(t)) (2)

whereA 2 <n�n, B 2 <n�m, f = (f1(x); f2(x); � � � ; fm(x))
T 2

<m�1 with fi 6= fj for i 6= j, m � n, c 2 <n�1 and
y = (h1(x); h2(x); � � � ; hm(x))

T 2 <m�1.
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Each classCm represents a partition of the setC of all hyperchaotic
systems described by ordinary differential equations. More precisely,
it resultsC =

n

i=1
Ci with Ci Cj = ;. Note that the classes

considered herein do not include hyperchaotic systems described by
partial differential equations or delay differential equations. From
a practical point of view, a system belonging to the classCm

is characterized bym independent nonlinear elements. The class
characterized by asinglenonlinear element includes several chaotic
and hyperchaotic systems. Chua’s circuit [1], higher-dimensional
Chua circuits [14], and Chua’s oscillator [1] are well-known examples
of chaotic systems belonging to classC1. Regarding hyperchaos,
Rössler’s system [6], the MCK circuit [8] and its modified version
[9], the oscillators in [10] and [11], and the circuit with hysteretic
nonlinearity in [12] all belong to the classC1. Regarding higher
classes, the Lorenz system [15], Rössler’s system [16], the coupled
Chua’s circuit in [17], and the circuit proposed by Carroll and Pecora
in [18] belong to the classC2, whereas the coupled Lorenz systems
in [15] and the coupled Chua’s circuits forming a ring in [19] belong
to the classesC4 andC5, respectively.

Given the drive system (1), most of the synchronization schemes
proposed in the literature do not give a systematic procedure to
determine the response system and the drive signal (2). Hence, most
of these schemes are closely related to the given drive system and
could not be easily generalized to a class of chaotic systems. The
proposed approach overcomes this drawback by exploiting known
results from linear control theory. In particular, the response system
is chosen in theobserverform [13], and the drive signal is designed so
that a linear time-invariant synchronization error system is obtained.

Definition 2: Given system (1) and (2), the linear dynamic system

_̂x(t) =Ax̂(t) +B(y(t)� ŷ(t)) + c (3)

ŷ(t) =K x̂(t) (4)

whereK 2 <m�n is a matrix to be determined, is said to be an
observerfor the state of system (1) and (2), if the synchronization
error system has an asymptotically stable equilibrium point fore = 0;
with e(t) = (x̂(t)� x(t)) . Furthermore, system (3) and (4) is said
to be aglobal observer of systems (1) and (2), ife(t)! 0 ast!1

for any initial conditionx̂(0); x(0) [4], [13].
The synchronizing signal (2) can be viewed as an artificial output,

which is properly designed to feed the response system (3) and (4).
By taking

y(t) = f(x(t)) +Kx(t) (5)

it can be easily shown that the error system is linear time-invariant

_e(t) = (A�BK) e(t) = Ae(t) +Bu(t) (6)

whereu(t) = �Ke(t) 2 <m�1 plays the role of a state feedback.
Namely, by substituting (5) in (3), the error system is

_e =Ax̂+B(y(t)� ŷ(t)) + c� (Ax+Bf(x) + c)

=Ae+B(f(x) +Kx�Kx̂)�Bf(x)

=Ae�BKe = Ae+Bu:

Now the aim is to make the response system (3) and (4) an
observer for the state of the drive system (1) and (2). This objective
is achieved if system (6) is globally asymptotically stabilized at the
origin. Referring to this concept, a result from linear control theory
is briefly summarized [13]. Namely, then-dimensional linear time-
invariant, multivariable dynamic system_x = Ax+Bu is controllable
if the controllability matrix B AB A2B � � � An�1B is full
rank. In this case, all the eigenvalues are controllable, i.e., they can
be arbitrarily assigned by the introduction of state feedback. Thus, a
theorem for hyperchaos synchronization can be stated.

Theorem: Consider a dynamic system belonging to the classCm

and a response system described by (3) and (4). Let (5) be the
synchronizing signal. Then, a necessary and sufficient condition for
the existence of a feedback gain matrixK; such that system (3)
and (4) becomes global observer of system (1) and (2) is that the
uncontrollable eigenvalues of system (6), if any, have negative real
parts.

Proof: System (6) can be transformed to the Kalman control-
lable canonical form [13] by means of a coordinate transformation
e = Te = [T1 T2 ]e, with the property thatT�1 = tT

_ec
_enc

=
T T
1 AT 1 T T

1 AT 2

0 tT2 AT 2

ec
enc

+
T T
1 B

0
u

=
Ac A12

0 Anc

ec
enc

+
Bc

0
u (7)

where the eigenvalues ofAc are controllable (i.e., they can be placed
anywhere by state feedbacku = �Ke), whereas the eigenvalues of
Anc are uncontrollable (i.e., they are not affected by the introduction
of any state feedback). Therefore, a necessary and sufficient condition
to globally asymptotically stabilize system (6) is that the eigenvalues
of Anc lie in the left-half plane. Sincee ! 0 implies e ! 0, it
follows thatx̂! x ast!1. As a consequence, system (3) and (4)
becomes global observer of state equation (1) with output (5). This
completes the proof.

Remark 1: The dynamic system described by (3) and (4) is a
particular implementation of the Luenberger observer [13]. Namely,
the external excitation in (3) is only the output signal (5), whereas
in the standard structure the excitation is composed of both the input
and the output of the plant.

III. SYNCHRONIZATION EXAMPLES

A. Systems Belonging to the ClassC1

C1 represents an important class of hyperchaotic systems. In fact,
a remarkable feature is that systems belonging to this class can be
synchronized using ascalar signal.

1) Simplified MCK Circuit: In 1986, the MCK circuit led to the
first experimental observation of hyperchaos from a real physical
system [8]. Recently, a simplified MCK circuit has been proposed [9].
In particular, the three-segment piecewise-linear resistor implemented
in [8] has been replaced with a diode, whereas the remaining circuit
elements have not been modified. All of these elements are linear and
passive, except an active resistor, which has negative resistance. By
considering the parameters reported in [9], the state equations of the
simplified MCK circuit are given by

_x1
_x2
_x3
_x4

=

0 �1 0 0
1 0:5 0 0
0 0 0 �10
0 0 1:5 0

x1
x2
x3
x4

+

�1
0
10
0

g(x1; x3) (8)

whereg(�) is the diode characteristic

g(x1; x3) =
0; if x1 � x3 � 1
3(x1 � x3 � 1); if x1 � x3 > 1:

Let

y(t) = g(x1; x3) +

4

i=1

Kixi (9)
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be the scalar output. Clearly, system (8) and (9) belongs to the class
C1. By applying the proposed method, the linear response system is

_̂x1
_̂x2
_̂x3
_̂x4

=

0 �1 0 0
1 0:5 0 0
0 0 0 �10
0 0 1:5 0

x̂1
x̂2
x̂3
x̂4

+

�1
0
10
0

y(t)�

4

i=1

Kix̂i : (10)

Since the controllability matrix of the error system

_e1
_e2
_e3
_e4

=

0 �1 0 0
1 0:5 0 0
0 0 0 �10
0 0 1:5 0

�

�1
0
10
0

[K1K2K3K4 ]

e1
e2
e3
e4

(11)

is full rank, its eigenvalues can be moved anywhere. By placing them
in �2, it results inK = [�2:6302 �0:6054 0:5870 0:7763 ];

and system (10) becomes a global observer of system (8). This means
that x̂ ! x; as t ! 1 for each initial statêx(0) of the response
system (10).

Remark 2: The proposed approach does not require initial condi-
tions of drive and response systems belonging to the same basin of
attraction. This means that, in some sense, the technique developed
herein overcomes the drawback related to the sensitive dependence
on the initial condition of the chaotic systems to be synchronized [2].
Furthermore, since system (11) is controllable and all its modes can
be arbitrarily assigned, synchronization can be achieved according to
any specified design features.

2) Hysteresis Chaos Generator:The four-dimensional au-
tonomous circuit reported in [12] contains one inductor, two
capacitors, one negative conductor, a current-controlled nonlinear
resistor, and one small inductor serially connected with it. The
circuit dynamics can be written in dimensionless form as

_x1
_x2
_x3
_x4

=

0 0 �1 �1
0 2
� 
 0
� �� 0 0
1=" 0 0 0

x1
x2
x3
x4

+

0
0
0

�(1=")

f(x4)

(12)

where the nonlinear resistor is described by

f(x4) =

x4 + (1 + �); if x4 � ��

�(1=�)x4; if �� < x4 < �

x4 � (1 + �); if x4 � �:

(13)

If " ! 0, (12) is simplified into a constrained system that
brings on hysteretic switching [12]. In this case, all motions in the
phase space can, in fact, be divided into fast and slow ones. These
motions highlight that the three-segment piecewise-linear resistor (13)
behaves as a device with hysteretic nonlinearity [12]. In particular,
for 
 = 1, � = 0:95, � = 14, and� = 1, laboratory experiments and

numerical computations have confirmed the generation of hyperchaos
and related phenomena.

Let y(t) = f(x4)+
4

i=1
Kixi be thescalaroutput of (12), and let

_̂x1
_̂x2
_̂x3
_̂x4

=

0 0 �1 �1
0 2
� 
 0
� �� 0 0
1=" 0 0 0

x̂1
x̂2
x̂3
x̂4

+

0
0
0

�(1=")

y(t)�

4

i=1

Kix̂i (14)

be the linear response system in the observer form. Since
the controllability matrix of the error system is full rank,
the eigenvalues can be placed, for instance, in�3 for
K = [�0:9516 �0:0403 �0:0123 �0:0136 ]. It can be
concluded that global synchronization is achieved between the
hysteresis hyperchaos generators described by (12) and (14).

Remark 3: It is easy to show that the proposed approach can be
applied to other examples of hyperchaotic systems belonging to the
classC1, such as R¨ossler’s system [6], the MCK circuit proposed in
1986 [8], and the oscillator with gyrators, illustrated in [11].

B. Systems Belonging to Higher Classes

In this section, an example of a high-dimensional chaotic system
is synchronized. In particular, a 15-dimensional dynamic system
belonging to the classC5 is considered, for which experimental
observation of hyperchaos have been reported in [19]. The system
consists of five identical coupled Chua’s circuits forming a ring. Each
Chua’s circuit contains a linear resistor, three linear energy-storage
elements, and a single nonlinear resistor with a three-segment linear
characteristic. In this case, (1) and (3)–(5) give

A =

A1 A2 0 0 0
0 A1 A2 0 0
0 0 A1 A2 0
0 0 0 A1 A2

A2 0 0 0 A1

A1 =
�3:2 10 0

1 �1:01 1
0 �14:87 0

A2 =
0 0 0
0 0:01 0
0 0 0

; 0 2 <3�3

b =

b 0 0 0 0
0 b 0 0 0
0 0 b 0 0
0 0 0 b 0
0 0 0 0 b

b =
2:95
0
0

; 0 2 <3�1; c = 0 2 <15�1

f(x) = [f(x1) f(x4) f(x7) f(x10) f(x13) ]
T

f(xi) = jxi + 1j � jxi � 1j:

Since the controllability matrix[B AB A2B � � � A14B ]
of the error system (6) is full rank, the proposed Theorem
assures the existence of a feedback matrixK 2 <5�15

such that x̂ ! x as t ! 1 for any initial state. For
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Fig. 1. A block diagram illustrating the proposed secure communications approach.

instance, the set of the error system eigenvalues becomes
f�1; �1; �1; �1; �1; �2; �2; �2; �2; �2; �3; �3; �3; �3
�3g for

K =

K1 K2 0 0 0
0 K1 K2 0 0
0 0 K1 K2 0
0 0 0 K1 K2

K2 0 0 0 K1

where

K1 = [0:6068 0:3695 1:5547 ]

K2 = [0:0034 0:0135 0:0034 ]; 0 2 <1�3
:

Again, global synchronization is achieved between drive and response
systems.

IV. A PPLICATION TO CRYPTOGRAPHY

The synchronization approach illustrated in Section II can be
applied to design secure communications systems. By exploiting the
idea proposed in [20] and [21], it is possible to combine conventional
cryptographic methods and synchronization of chaotic systems to
design hyperchaos-based cryptosystems. A block diagram illustrating
the proposed approach is reported in Fig 1. The encrypter consists
of a hyperchaotic system and an encryption function, which is used
to encrypt the message signal by means of the chaotic key [20].
The decrypter, which basically consists of a linear observer and a
decryption function, enables the message signal to be retrieved when
synchronization is achieved between the transmitting and receiving
systems. Herein a four-dimensional (4-D) hyperchaotic oscillator
belonging to the classC1 is considered [10]. Its hyperchaotic behavior
has been confirmed by both laboratory experiment and numerical sim-
ulation. The dynamics of the circuit can be written in dimensionless
form as [10]

_x1
_x2
_x3
_x4

=

0:7 �1 �1 0
1 0 0 0
3 0 0 �3
0 0 3 0

x1
x2
x3
x4

+

0
0
0

�1

30(x4 � 1)H(x4 � 1) (15)

where H is the Heaviside function (i.e.,H(u) = 0; if u <

0; H(u) = 1; if u � 0). In order to encrypt the message signal
p(t) = 0:5 sin t, ann-shift cipher [20] is chosen

een(t) = f1(� � � f1(f1(p(t); K(t)); K(t)); � � � ; K(t)) (16)

where the following nonlinear function

f1(x; K) =
(x+K) + 2h; �2h � (x+K) � �h
(x+K); �h < (x+K) < h

(x+K)� 2h; h � (x+K) � 2h
(17)

is recursively used for the encryption, withh = 4; n = 30; and
K(t) = x2(t). The encrypted signal is fed back to the chaotic system
as follows [3], [20]

_x1
_x2
_x3
_x4

=

0:7 �1 �1 0
1 0 0 0
3 0 0 �3
0 0 3 0

x1
x2

x3
x4

+

0
0
0

�1

30(x4 � 1)H(x4 � 1) +

0
0
0

�1

een(t) (18)

whereas the output is given by

y(t) = 30(x4 � 1)H(x4 � 1) +

4

i=1

Kixi: (19)

By considering thescalar transmitted signal

z(t) = y(t) + een(t) (20)

and by applying the proposed technique, the dynamics of the de-
crypter can be written as

_̂x1

_̂x2

_̂x3

_̂x4

=

0:7 �1 �1 0
1 0 0 0
3 0 0 �3
0 0 3 0

x̂1
x̂2
x̂3
x̂4

+

0
0
0

�1

(z(t)� ŷ(t)) (21)

where

ŷ(t) =

4

i=1

Kix̂i: (22)

It is worth noting thaty(t) masks the encrypted signaleen(t),
which in turn hides the message signalp(t). Taking into account
the considerations reported in [21], it can be stated that both the
increased complexity of the transmitted signal and the adoption of a
hyperchaotic system enable to overcome the low-security objections
against low-dimensional chaos-based schemes.

Since the error system between (21) and (18) is linear time-
invariant and its controllability matrix is full rank, the decrypter
(21) becomes a global observer of the encrypter (18) by a suitable
choice ofK. For instance, by choosing the set of the error system
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Fig. 2. Time waveform of the transmitted signal in (20).

Fig. 3. Time waveform of the recovered signal in (25).

eigenvalues asf�0:5� 3:486j; �0:5� 0:8222j g, it resultsK1 =
�3:6937, K2 = 0:2445, K3 = 1:0727 andK4 = �2:7000.

The encrypted signal recovered by the decrypter is

êen(t) = z(t)� ẑ(t) (23)

where

ẑ(t) = 30(x̂4 � 1)H(x̂4 � 1) + ŷ(t): (24)

By using the keyK̂(t) = x̂2(t) generated by the decrypter, the
following message signal is retrieved:

p̂(t) = f1 � � � f1 f1 êen(t); �K̂(t) ; �K̂(t) ; � � � ; �K̂(t)

(25)

where the decryption rule is the same as the encryption one [20].
Since encrypter and decrypter are synchronized, it resultsx̂(t) !
x(t), that is,K̂(t)! K(t) andêen(t)! een(t). As a consequence,
from (16) and (25) it follows that̂p(t) ! p(t).

The validity of the proposed secure communications scheme is
confirmed by simulation results. In particular, the hyperchaotic trans-
mitted signal (20) is reported in Fig. 2, whereas the recovered
message signal (25) is shown in Fig. 3. This figure clearly highlights
that p̂(t) ! p(t).

V. DISCUSSION

An interesting approach tochaossynchronization, based on the
concept of observer design, has been proposed in [4]. In particular,
synchronization is achieved by considering a linear output for the
drive system, whereas for the response one, a Luenberger observer is
chosen. This leads to a nonlinear and nonautonomous synchronization
error system for which it is not easy to obtain the stability properties
of the origin. Thus, the conclusion of the analysis developed in [4] is
that local synchronization is possible under relatively mild conditions,
whereas global synchronization can be achieved only if the system
can be transformed to Brunowsky canonical form. On the other hand,
the technique developed herein chooses a nonlinear output for the
drive system, so that global synchronization is achievable if the linear
error dynamics is stabilized at the origin.

In [3], the attention is focused on synchronization ofchaotic
systems. When dealing with hyperchaos, the hypothesis in [3] (that
is, eigenvalues ofA be in the open left-half plane) seems hard to
be satisfied. In fact, by examining the matrixA for each system in
Section III, it results thatA always has eigenvalues with positive real
part. As a consequence, the approach in [3] cannot be exploited for
synchronizing the systems considered herein.

Some considerations have to be made with regard to the more
general case of hyperchaos synchronization illustrated in Section III-
B. To this purpose, it should be noted that the results obtained in
this case prove to be not so good as those illustrated in Section III-
A. This is because the ring of Chua’s circuits can be synchronized
only by transmitting as many signals as the number of nonlinear
elements. Therefore, if one wants to use just a scalar signal to
synchronize systems with more than one independent nonlinear terms,
the computation of the Lyapunov exponents is still an effective
approach. Nevertheless, the technique illustrated in Section III-B can
be considered a simple and systematic way to synchronize high-
dimensional complex systems in the form (1) and (2), especially when
the attention is not focused on the adoption of a scalar synchronizing
signal.

The advantages and the shortcomings of the proposed secure
communications scheme are now discussed. By using ascalarsignal,
the suggested approach exploits hyperchaos and cryptography to
enhance the level of security of the communications scheme. In fact,
several researchers believe that both the increased complexity of the
transmitted signal and the adoption of hyperchaotic systems enable to
overcome the low-security objections against low-dimensional chaos-
based schemes [6], [20], [21]. However, it should be pointed out that
this is a conjecture, the truthfulness of which needs to be further
investigated. As a consequence, it is not easy at present to assess
the level of security of a communications scheme. Lastly, it should
be pointed out that some features of the proposed scheme might
hamper the security level. For instance, each variation of any of the
parameters will change the spectrum or total power of the transmitted
signal.

VI. CONCLUSION

By considering a linear observer and by designing a suitable
synchronizing signal, the technique developed in this brief generates
a linear time-invariant synchronization error system between the
drive and the response systems. In this way, global synchronization
is obtainable if the uncontrollable eigenvalues of the error system,
if any, have negative real parts. It should be emphasized that
synchronization can be achieved via a scalar signal for a wide class of
hyperchaotic systems, which includes the MCK circuit, its modified
version, a circuit with hysteretic nonlinearity, R¨ossler’s system, and
an oscillator with gyrators. Furthermore, the tool developed herein has
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been utilized to design a secure communications system based on a 4-
D hyperchaotic oscillator. The scheme, by combining cryptography
and hyperchaos synchronization, seems to make a contribution to
the development of communication systems with higher security.
Simulation results have confirmed the effectiveness and the simplicity
of the approach developed herein.
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Comments on “Linear Circuit Fault Diagnosis
Using Neuromorphic Analyzers”

Giulio Fedi, Stefano Manetti, and Maria Cristina Piccirilli

Abstract—In a recent paper, Spina and Upadhyaya presented a method
for the fault diagnosis of analog linear circuits. The method, which is
based on a white noise generator and an artificial neural network for
response analysis, has been applied to circuits of reasonable dimensions,
taking into account the effect of the component tolerances. However, the
proposed method does not take into account the testability analysis of the
circuit under test. Research on testability analysis of linear circuits has
been developed by several authors in the last 20 years, and algorithms
and programs for testability evaluation have been presented in several
publications. It is our opinion that the testability analysis concept could be
useful in the approach proposed by Spina and Upadhyaya to improve the
quality of the results even further. In this brief, we discuss this possibility.

Index Terms—Analog system fault diagnosis, analog system testing,
fault location.

I. TESTABILITY AND CANONICAL AMBIGUITY GROUPS

In the above paper,1 Spina and Upadhyaya presented a method
for the fault diagnosis of analog linear circuits. In the analog fault
diagnosis field, an essential point is constituted by the concept
of testability which, independently of the method which will be
effectively used in fault location, gives theoretical and rigorous upper
limits to the degree of solvability of the problem once the test point
set has been chosen.

The testability is strictly tied to the concept of network-element-
value-solvability, which was first introduced by Berkowitz [1]. Suc-
cessively, a very useful testability measure was introduced by Saeks
et al. [2]–[4]. Other definitions have been presented in subsequent
years [5], [6], but, at present, there is no universal definition of analog
testability. In this brief, we adopt the Saeks definition because it
provides a well-defined quantitative measure of testability. In fact,
this definition of testability gives a measure of solvability to the
fault diagnosis equations, nonlinear with respect to the component
values, and indicates the ambiguity which will result from an attempt
to solve such equations in a neighborhood of almost any failure.
Algorithms for evaluating this kind of testability measure have been
developed by the authors, at first using a numerical approach [7],
[8]. These methods were suitable only for networks of moderate size
because of the inevitable roundoff errors introduced by numerical
algorithms. This limitation has been overcome with the introduction
of the symbolic approach [9]–[11] through an efficient manipulation
of algebraic expressions [12], [13].

Another concept which is strictly related to that of testability and
is extremely useful, particularly in case of low-testability value, is
that of a canonical ambiguity group. Roughly speaking, an ambiguity
group is a set of components that, if considered as potentially faulty,
do not give unique solution in the phase of fault location. A canonical
ambiguity group is simply an ambiguity group which does not contain
other ambiguity groups. The knowledge of the canonical ambiguity
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