
The effect of reverse traffic on the performance of new
TCP congestion control algorithms

Saverio Mascolo∗ and Francesco Vacirca†

∗Dipartimento di Elettrotecnica ed Elettronica
Politecnico di Bari

Via Orabona 4, 70125 Bari, Italy
Email: mascolo@poliba.it

†Infocom Department
University of Rome ”La Sapienza”

Via Eudossiana 18, 00184 Rome, Italy
Email: vacirca@infocom.uniroma1.it

Abstract— In recent years, several new TCP congestion con-
trol algorithms have been proposed to speed up the TCP
over very fast networks. All these algorithms propose their
own modifications of the increasing/decreasing phases of classic
Reno/NewReno TCP. On the other hand, all of them preserve
the self-clocking mechanism, which is a fundamental part of the
classic Van Jacobson TCP congestion control. For this reason, it
is also said that the TCP dynamics is ack-clocked. An important
consequence of the ack-clocking is that a TCP flow can be
heavily affected by the presence of reverse traffic provoking
congestion along its ack path. In this paper we use the ns2
simulator to investigate the effect of reverse traffic on the
behavior of the new TCP stacks: BIC TCP, HSTCP, Hamilton
TCP (H-TCP), STCP and FAST TCP. Also Westwood+ TCP is
considered even though this stack was not designed to address
the special case of very fast networks and it employs the classic
slow-start+congestion avoidance probing phases of the TCP. We
consider reverse traffic of the same type of the forward traffic in
order to study the behavior of each single protocol with respect
to stability and fairness, which are fundamental properties to be
investigated before other important issues such as inter-protocol
friendliness. Simulation results reported in this paper reveal that
new TCP stacks designed for fast networks experience goodputs
comparable to those of standard TCP Sack or TCP Westwood+
but with larger packet retransmission probabilities and timeout
events when in the presence of reverse and web background
traffic.

Index Terms— HighSpeed Network, TCP congestion control,
ns2 simulations

I. INTRODUCTION

In recent years, issues regarding the behavior of TCP in
high-speed and long-distance networks have been extensively
addressed in the networking research community, both because
TCP is the most widespread transport protocol in the current
Internet and because bandwidth-delay product continues to
grow. The well known problem of TCP in high bandwidth-
delay product networks is that the TCP Additive Increase
probing mechanism is too slow in adapting the sending rate
to the available bandwidth.

This work is supported by the Italian Ministry for University and Research
(MIUR) under the PRIN project FAMOUS

To overcome this problem, many modifications have been
proposed such as FAST TCP [1], STCP [2], HSTCP [3], H-
TCP [4], BIC TCP [5] and CUBIC TCP [6].
It is important to remark that all new proposal must preserve
backward compatibility with standard TCP implementations, a
requirement that is usually referred to as “TCP friendliness”.
Friendliness enables new TCP stacks to coexists in the same
networks with older stacks. However, before investigating
inter-protocol issues such as friendliness, it is mandatory to
investigate the behaviour of each single protocol by itself
in order to test fundamental properties such as stability and
fairness. To the purpose, in order to investigate the basic
behaviour of these new stacks, we will consider a simple single
bottleneck scenario with few sender entities. In all tests TCP
senders will be equipped with the same stack to investigate
the intra-protocol behaviour of each protocol. In particular, the
effect of reverse and web background traffic will be analyzed
using the ns2 simulator [7].
The paper is organized as follows: Section II provides back-
ground on new generation TCP congestion control; Section
III reports simulation results and Section IV draws the con-
clusions.

II. BACKGROUND ON HIGH SPEED TCP
CONGESTION CONTROL

In this Section we briefly summarize main features of the
TCP stacks proposed for gigabit networks that we are going
to investigate in this paper. In particular, we will consider
the standard TCP NewReno SACK, STCP, HSTCP, H-TCP,
BIC and FAST TCP. In the following of the paper we will
refer to the set of TCP new proposals as New Generation
TCPs (NGTCPs) to distinguish them from standard TCP. Also
Westwood+ TCP is considered even though this stack was not
designed to address the special case of very fast networks and
it employs the classic slow-start+congestion avoidance probing
phases of the TCP.The reason is that the Westwood+ setting
of the control windows after congestion, which is based on
measuring the end-to-end available bandwidth, reveals to be



effective in gigabit networks as shown in [10].
The classic Van Jacobson TCP congestion control [11] is
essentially made of a probing phase and a decreasing phase.
The probing phase of standard TCP consists of an exponential
growing phase (i.e. the slow-start phase) and of a linear
increasing phase (i.e. the congestion avoidance phase). The
probing phase stops when congestion is experienced in the
form of 3 duplicate acknowledgments or a timeout. At this
point Reno or NewReno TCP implements a multiplicative de-
crease behavior. The Reno/NewReno setting of the congestion
window during the congestion avoidance phase is: on ACK
reception, cwnd is increased by 1/cwnd, when a loss occurs
(3 DUPACKs are received), cwnd is halved.
This behavior can be generalized as follows:

a) On ACK reception:

cwnd←− cwnd + a (1)

b) When 3 DUPACKs are received:

cwnd←− cwnd− b · cwnd (2)

where a is 1/cwnd and b is 0.5. Some of the NGTCP
algorithms can be easily described in terms of particular
settings of a and b parameters.
STCP [2]. In the Scalable TCP , the increase factor a is set
to a constant value to make the growth of cwnd independent
of cwnd itself. The author suggests to set a = 0.01, which
permits the rate to double in about 70 round trip times for any
rate. The decreasing factor b is set to 0.125.
HSTCP [3]. The High Speed TCP congestion control algorithm
is divided into two parts depending on the value of the conges-
tion windows. If cwnd is lower than a threshold cwndlow of
38 packets , the values of a and b are the same of NewReno.
When cwnd is between cwndlow and cwndhigh packets, a
and b are computed as:

b = (0.1− 0.5) ·
log cwnd− log cwndlow

log cwndhigh − log cwndlow

+ 0.5 (3)

a = 2 · cwnd2 · p(cwnd)
b

2− b
(4)

where p(w) = 0.078/w1.2. The rationale behind Equations
3 and 4 is the choice of a predefined response function that
maps the steady-state packet drop probability to the average
sending rate. The original TCP response function w = 1.2/

√
p

is modified to w = 0.12/p0.835

H-TCP [4]. Hamilton TCP is another enhancement of TCP
for high bandwidth-delay networks. It defines ∆i as the time
elapsed from the last congestion event for the i-th source. If
∆i is lower than a threshold ∆th the protocol behaves like
NewReno TCP. If ∆i > ∆th, the increment factor a is equal
to:

a = 1 + 10(∆i −∆th) + (
∆i −∆th

2
)2 (5)

It can be noticed that the increment factor has a quadratic trend
in relation with the time elapsed from the last congestion event.
The decrement factor b is set dynamically by considering that

full link utilization is achieved when the bottleneck buffer does
not remain empty for a long period. To this purpose the authors
propose to set b = 1− RTTmin

RTTmax

. This setting is similar to FAST
and Westwood+ TCP window settings.
BIC TCP [5]. The BIC protocol consists of two parts: a
binary search increase phase and an additive increase phase.
In the binary search phase the congestion window setting is
performed as a binary search problem. After a packet loss, the
congestion window is reduced by a constant factor b, cwndmax

is set to the window size before the lost and cwndmin is set
to the value of congestion window after the loss (cwndmin =
b·cwndmax). If the difference between the congestion window
middle point (cwndmax + cwndmin)/2 and the minimum
congestion window cwndmin is lower than a threshold Smax

the protocol starts a binary search algorithm increasing the
congestion window to the middle point, otherwise the protocol
enters a “linear increase” phase and increments the congestion
window by one for each received ACK. If BIC does not
get a loss indication at this window size, then the actual
window size become the new minimum window; otherwise, if
it gets a packet loss then the actual window size becomes
the new maximum. The process goes on till the window
increment becomes lower than the Smin threshold and the
congestion window is set to cwndmax. If the window grows
more than cwndmax, the protocol enters into a new phase
(“max probing”) that is specular to the previous phase; that
is, it uses the inverse of the binary search phase first and then
the additive increase. The default value of b is 0.2.
Westwood+ TCP [8], [9]. The main idea of Westwood+ TCP is
to set the control windows after congestion such that the band-
width available at the time of congestion is exactly matched.
The available bandwidth is estimated by counting and averag-
ing the stream of returning ACK packets. In particular, when
three DUPACKs are received, the congestion window (cwnd)
is set equal to the estimated bandwidth (BWE) times the
minimum measured round trip time (RTTmin).
FAST TCP [1]. FAST TCP employs an alternative congestion
control algorithm. It uses both queuing delays and packet
losses as indications of congestion in the network. Under
normal working conditions, the congestion window is updated
every RTT and depends on the estimation of the average RTT.
At every update the congestion window is set equal to:

min

{

2 · cwnd, (1− γ)cwnd + γ

(

baseRTT

RTT
cwnd + α

)}

(6)
where baseRTT is the minimum RTT observed, RTT is the
estimation of the average round trip time, γ belong to the
interval between 0 and 1 and α is a parameter that controls
the fairness between flows and the number of packets that each
flow attempts to keep into the network buffers.

III. SIMULATION RESULTS

Figure 1 shows the reference scenario employed for carrying
out computer simulations. It consists of 6 TCP Senders estab-
lishing connections with 6 TCP Receivers and two networks
of hosts (X and Y) that generate Web traffic.



C

RTT

R1 R2

Network X Network Y

Web Traffic

Sender ASender B

Receiver C

Receiver D

Receiver A
Receiver B

Sender D

Sender E

Sender F

Receiver E

Receiver F

Sender C

Fig. 1. Simulation scenario.

The bottleneck link between routers R1 and R2 is provisioned
with a capacity C of 250 Mbit/s. Links between router R1 and
TCP senders/receivers and links between router R2 and TCP
senders/receivers are provisioned with a capacity greater than
C so that the link R1-R2 is the bottleneck for each TCP flow.
In all simulations the bottleneck buffer size B is set equal
to the bandwidth-delay product [17]; the packet size is 1500
bytes.
Simulations have been performed using the network simulator
[7] version 2.28 with code and settings shown in [13], [14],
[15] and [16]. The limited slow start algorithm [20] has been
enabled to avoid that at the starting of the connections a large
number of packets is lost causing starvation.

A. Scenario with on-off reverse traffic

In the first simulation scenario that we consider, all TCP
senders are greedy FTP users and employ the same flavor
of the TCP protocol stack. Senders A and B start randomly
within the first ten seconds of the simulation and last for
the whole length of the simulation, which is 1000 seconds,
whereas senders C and D start at second 333 and terminate at
second 666. Every simulation run can hence be divided into
three different phases: during the first phase (between 0 and
333 seconds) connection A and B share the whole bottleneck
capacity; during the second phase (between 333 seconds and
666 seconds) connections C and D are also active and generate
reverse traffic for connections A and B, which share the
bandwidth with the ACKs belonging to connections C and
D; during the last part of the simulation C and D are switched
off again. Propagation delays of the dedicated links between
R1 and the hosts on the left side of the figure and between R2
and the hosts on the right side are 2.5 ms. The propagation
delay of the R1-R2 link is set to have two simulation cases:
one case with connections having RTTs equal to 40ms and the
other with RTT=160ms.
This particular scenario clearly aims at investigating the be-
haviour of new TCP stacks in the presence of reverse traffic of
the same nature, which is a more than reasonable assumption.
In the following, performance results always refer to those of
Sender-Receiver A and Sender-Receiver B connections.
It is worth noting that all the NGTCP protocols used in this

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

50

100

150

200

250

G
oo

dp
ut

 M
bi

t/s

(a) RTT=40ms

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

50

100

150

200

250

G
oo

dp
ut

 M
bi

t/s

(b) RTT=160ms

Fig. 2. Goodput in the three phases of simulations with Web traffic disabled
for the different TCP stacks.

paper are used with the SACK option enabled except in the
case of Westwood+ TCP. In fact, in case the SACK option
is not enabled, we have verified that all NGTCP protocols
analyzed in this paper perform very badly due to the large
number of packets that are lost in one window. In fact, classical
TCP congestion control increases the congestion window of
at maximum one packet per round trip time, enabling TCP
congestion control to wait an entire round trip time for a
new probing. On the other hand, since NGTCPs have been
designed to be faster than normal TCP to reach the steady state
in the presence of high bandwidth-delay product networks,
the congestion window is always increased of more than one
packet per round trip time, leading to a large number of packets
that need to be recovered during the Fast Recovery phase.
Therefore, without the SACK information, NGTCPs are not
able to recover all packets that are lost in the same window in
about one round trip time, and starvation of data transfer can
happen if the TCP transmission and receiver buffers are not
large enough to store all the out-of-order packets received in
the recovery phase. This behaviour will be further investigated
in the extended version of this paper.
Figure 2 shows the goodputs of each protocol stack during the
three phases of the simulation scenario in the cases of RTT
equal to 40ms (Figure 2(a)) and RTT equal to 160ms (Figure
2(b)).
When RTT is 40ms (corresponding to a bandwidth-delay of
833 packets), all protocols achieves a high goodput level
(above the 98% of link utilization) in the first and in the
third phase of the simulation. During the second phase of
the simulation, all TCP stacks dynamics are affected by the



SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

0.5

1

1.5

x 10
−3

R
et

ra
ns

m
is

si
on

 p
ro

ba
bi

lit
y

(a) RTT=40ms

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

0.5

1

1.5

x 10
−3

R
et

ra
ns

m
is

si
on

 p
ro

ba
bi

lit
y

(b) RTT=160ms

Fig. 3. Retransmission probabilities in the three phases of simulations with
Web traffic disabled for the different TCP stacks.

presence of reverse traffic, which does not allow TCP protocols
to achieve full link utilization. The link utilization varies from
the 90% of FAST TCP to the 78% obtained with H-TCP.
When RTT is 160ms, all protocols provide high link utilization
(above 96%), including SACK TCP and Westwood+ TCP that
are fast to reach the maximum congestion window thanks to
the slow start phase. In the second phase of the simulation,
when the reverse traffic is active, results change and the highest
link utilization is achieved by SACK TCP whereas FAST TCP
achieves the lowest link utilization (i.e. about 60% of the avail-
able bandwidth). Among other protocols, BIC obtains 92% of
link utilization, followed by STCP, Westwood+, HSTCP and
H-TCP in the order. In the last 333 seconds of simulations,
all protocols provide full link utilization.
Besides link utilization provided by each protocol, it is also
important to look at the packet retransmission probability that
each congestion control algorithm experiences when trying
to achieve full link utilization. Figure 3 shows the packet
retransmission probability measured during the three phases
of simulations for RTT equals to 40ms (a) and 160ms (b).
It is worth noting that: i) FAST TCP congestion control
experiences a very small amount of packet losses as expected;
ii) H-TCP increases its aggressiveness when the round trip
delay increases, provoking a larger number of packet losses,
iii) the packet retransmission probability of BIC TCP and
HSTCP decreases with the increasing RTT, iv) STCP packet
loss probability is almost independent of the RTT when the re-
verse traffic is not present and v) SACK TCP and Westwood+
TCP packet retransmission probabilities are smaller than those

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

50

100

150

200

250

G
oo

dp
ut

 M
bi

t/s

(a) RTT=40ms

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

50

100

150

200

250

G
oo

dp
ut

 M
bi

t/s

(b) RTT=160ms

Fig. 4. Goodput in the three phases of simulations with Web traffic enabled
for the different TCP stacks.

of other protocols and decrease when RTT increases. To
conclude, from Figures 2 and 3 it can be said that, except
from FAST TCP, all new TCPs provide goodputs comparable
to those of standard TCP SACK but with larger packet drop
rates.

B. Scenario with reverse traffic + background Web traffic

This scenario is derived from the previous one by superposing
background Web traffic in both directions in order to avoid
phase effects. Hosts in network X and network Y shown
in Figure 1 generate Web traffic with standard SACK TCP
as transport protocols from network X to network Y and
vice versa. Web traffic is generated according to the follow-
ing model. The interarrival time between new connections
is generated with an exponential distribution and a random
number of packets is associated to each new flow, drawn from
an empirical distribution. Here 4 different lengths have been
considered: 50% of flows have 1 packets, 20% have 6 packets,
20% have 18 packets, the remaining 10% have 190 packets.
This simple web traffic model allows us to control the traffic
load generated by networks X and Y. In all simulations we set
the inter-arrival time to 50 ms, which contributes an offered
load of about 5.8 Mbit/s per direction.
Figures 4 and 5 show goodputs and packet retransmission
probabilities during the three different phases of the simu-
lations with the Web traffic on for the whole length of the
simulations. Goodputs are close to the ones obtained when
the Web traffic is not active minus the portion of bandwidth
used by the Web traffic. The only difference is the goodput
experienced by FAST TCP when RTT is 160ms, that increases



SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

0.5

1

1.5

x 10
−3

R
et

ra
ns

m
is

si
on

 p
ro

ba
bi

lit
y

(a) RTT=40ms

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

0.5

1

1.5

x 10
−3

R
et

ra
ns

m
is

si
on

 p
ro

ba
bi

lit
y

(b) RTT=160ms

Fig. 5. Retransmission probability in the three phases of simulations with
Web traffic enabled for the different TCP stacks.

from 150 Mbit/s to 175Mbit/s when both Web traffic and the
reverse traffic are active.
As far as regards the packet retransmission probability, Figure
5 shows that packet retransmissions increase in most of the
cases when in the presence of Web traffic.
A further insight into the behaviour of the different TCP stacks
is provided by Figures 6-12, which plot congestion window
dynamics during the simulations. Figures show the congestion
window of Sender A and Sender B for the different TCP stacks
(SACK, HSTCP, H-TCP, BIC, STCP Westwood+ and FAST
TCP respectively) in the presence of homogeneous reverse
traffic, i.e. same TCP stack and Web traffic active. In all the
figures the upper and lower part represent the case of RTT
equals to 40 and 160 ms respectively. During the first phase
of the simulation (between 0 and 333 seconds) connections A
and B share the whole bottleneck capacity; during the second
phase (between 333 seconds and 666 seconds) connections C
and D are active and connections A and B share the bandwidth
with ACKs belonging to connections C and D. In the last part
of the simulation C and D are switched off again.
From the figures it is possible to notice that in the presence of
background Web traffic, the congestion windows of H-TCP,
HSTCP, BIC and STCP drop to 1 several times because of
timeout expiration. The lower is the RTT, the higher is the
number of timeouts that occur. Another result that is worth
noting is the congestion window behaviour of STCP when
RTT is 160ms: in this case the congestion windows of the two
forward connections are always remarkably different meaning
that the fairness is low.

0 200 400 600 800 1000
0

500

1000

1500

(a)

cw
nd

 (
pa

ck
et

s)

SACK A
SACK B

0 200 400 600 800 1000
0

2000

4000

6000

(b)

cw
nd

 (
pa

ck
et

s)

SACK A
SACK B

Fig. 6. SACK TCP: Congestion window evolution with Web traffic enabled:
(a) RTT=40ms and (b) RTT=160ms.

0 200 400 600 800 1000
0

500

1000

1500

(a)

cw
nd

 (
pa

ck
et

s)

HSTCP A
HSTCP B

0 200 400 600 800 1000
0

2000

4000

6000

(b)

cw
nd

 (
pa

ck
et

s)

HSTCP A
HSTCP B

Fig. 7. HSTCP: Congestion window evolution with Web traffic enabled: (a)
RTT=40ms and (b) RTT=160ms.

0 200 400 600 800 1000
0

500

1000

1500

(a)

cw
nd

 (
pa

ck
et

s)

H−TCP A
H−TCP B

0 200 400 600 800 1000
0

2000

4000

6000

(b)

cw
nd

 (
pa

ck
et

s)

H−TCP A
H−TCP B

Fig. 8. H-TCP: Congestion window evolution with Web traffic enabled: (a)
RTT=40ms and (b) RTT=160ms.



0 200 400 600 800 1000
0

500

1000

1500

(a)

cw
nd

 (
pa

ck
et

s)
BIC A
BIC B

0 200 400 600 800 1000
0

2000

4000

6000

(b)

cw
nd

 (
pa

ck
et

s)

BIC A
BIC B

Fig. 9. BIC: Congestion window evolution with Web traffic enabled: (a)
RTT=40ms and (b) RTT=160ms.

0 200 400 600 800 1000
0

500

1000

1500

(a)

cw
nd

 (
pa

ck
et

s)

STCP A
STCP B

0 200 400 600 800 1000
0

2000

4000

6000

(b)

cw
nd

 (
pa

ck
et

s)

STCP A
STCP B

Fig. 10. STCP: Congestion window evolution with Web traffic enabled: (a)
RTT=40ms and (b) RTT=160ms.

0 200 400 600 800 1000
0

500

1000

1500

(a)

cw
nd

 (
pa

ck
et

s)

WESTWOOD+ A
WESTWOOD+ B

0 200 400 600 800 1000
0

2000

4000

6000

(b)

cw
nd

 (
pa

ck
et

s)

WESTWOOD+ A
WESTWOOD+ B

Fig. 11. Westwood+ TCP: Congestion window evolution with Web traffic
enabled: (a) RTT=40ms and (b) RTT=160ms.

0 200 400 600 800 1000
0

500

1000

1500

(a)

cw
nd

 (
pa

ck
et

s)

FAST A
FAST B

0 200 400 600 800 1000
0

2000

4000

6000

(b)

cw
nd

 (
pa

ck
et

s)

FAST A
FAST B

Fig. 12. FAST TCP: Congestion window evolution with Web traffic enabled:
(a) RTT=40ms and (b) RTT=160ms.

As far as regards SACK and Westwood+, both protocols are
not affected by reverse traffic and timeout events are quite
infrequent.
Also FAST TCP flows are not affected by timeout events;
however looking at the congestion window behaviors, it is
possible to observe that they do not share the bandwidth fairly:
when RTT is 40ms the congestion windows of Sender A and
B in the first phase of the simulation are stabilized to two
distinct values (about 550 and 950 packets) indicating a high
level of unfairness between the two flows. When the reverse
connections start, the two congestion window converge to the
same value and the congestion windows oscillates frequently.
In the case of RTT=160ms, the unfairness between Sender A
and Sender B persists also when the reverse traffic is active;
moreover, as also shown in Figure 4, values of congestion
windows during the phase with reverse traffic lead to low link
utilization.

TABLE I

TIMEOUT EVENTS WITHOUT WEB TRAFFIC.

TCP stack RTT=40ms RTT=160ms
Phase 1 2 3 1 2 3

SACK 0 1 0 0 0 0
HSTCP 0 15 0 0 4 0
H-TCP 0 26 0 0 7 0

BIC 1 19 0 0 3 0
STCP 0 45 0 0 10 0

Westwood+ 0 5 0 0 1 0
FAST 0 0 0 0 0 0

The last metric we investigate is the number of timeout events
that occur during the three phases of the simulations. Tables I
and II report the number of timeout events with and without
background Web traffic, respectively. When the Web traffic is
off (Table I), timeouts occur only when the reverse traffic is
active; SACK TCP, FAST TCP and Westwood+ experience
a very small number of timeouts, whereas BIC, HSTCP, H-
TCP and STCP experience a larger number of timeout events



TABLE II

TIMEOUT EVENTS WITH WEB TRAFFIC.

TCP stack RTT=40ms RTT=160ms
Phase 1 2 3 1 2 3

SACK 0 0 0 1 0 0
HSTCP 11 12 15 3 2 2
H-TCP 13 9 15 0 9 1

BIC 10 19 8 0 1 0
STCP 32 51 24 4 14 3

Westwood+ 0 4 1 1 0 0
FAST 0 1 0 0 0 0

that decreases when the RTT increases. STCP experiences the
highest number of timeouts: 45 timeout events when RTT is
40ms and 10 timeouts when RTT is 160ms. When the Web
traffic is on (Table II), timeouts occur during all simulation
phases. For instance, in the case of STCP the number of
timeouts in the three phases of the simulation is 32, 51 and 24
when RTT is 40ms, whereas when RTT is 160ms, the number
of timeouts is much lower: 4, 14 and 3.
It is worth noticing that a high number of timeouts does
not necessarily impact the performance of the protocols in
terms of link utilization; however a high number of timeouts
indicates that the protocol is highly unstable and, in case
of congestion, its control mechanism is not able to decrease
the congestion window as a protocol designed for congestion
avoidance should be.
It is also worth noting that, when the reverse traffic is active,
SACK TCP congestion control is able to achieve the same
performance of NGTCP protocols in terms of link utilization
but with a smaller packet retransmission probability and with
a smaller number of timeout events. In particular, all protocols
provide goodput values that are comparable to each other
within a 10% margin with the only exception of FAST TCP
during the phase with reverse traffic. However, the packet
retransmission probabilities of SACK and Westwood+ are
between one and two order of magnitude smaller than those
of the other protocols. This indicates that all these NGTCPs,
except from FAST TCP, are designed to be very aggressive
and thus do not avoid congestion in the sense that classic Van
Jacobson algorithm does. For these reasons, we believe that
stability of these protocols still need to be tested in large scale
scenarios with hundreds of connections.

C. Scenario with reverse traffic + background Web traffic +
different RTTs

This scenario is obtained by adding two more TCP flows in
the forward direction (Connections between Sender-Receiver
E and F of Figure 1) to the previous simulation scenario.
The RTT experienced by connection A, B,C and D is 80ms,
whereas RTT experienced by Connection E and F is 40ms.
Connection A and B start at the beginning of simulation,
whereas Connection E and F start around time 250s. Between
333s and 666s, the reverse traffic (Connection C and D) is
active. At 750s, connections B and F are turned off. In the
last 250 seconds of the simulation only connections A and

E, which have different RTTs, are active. The purpose of
this scenario is to investigate how bandwidth is allocated by
different NGTCPs flows with different RTTs. Figure 13 plots
the congestion window dynamics of connections A, B, E and F
when different TCP stacks are employed. Figures 14, 15 and
16 show the goodput of the forward connections in the first
250 seconds, between 333 and 666 seconds and between 750
and 1000 seconds respectively. In the first figure, the bar plot
depicts goodputs of connections A, B both having a RTT equal
to 80ms. BIC and H-TCP provide a fair bandwidth sharing
whereas other protocols do not. By comparing the goodputs
with Figure 13, we notice that in case of STCP, HSTCP, SACK
and Westwood+ TCP, the unfairness between the two flows is
mainly due to a transient phase of the congestion windows. As
far as regards FAST TCP, the unfairness is due to the setting
of the congestion window. Figure 15 shows the goodputs of
connections A, B (both with RTT=80ms) and E, F (both with
RTT=40ms). FAST TCP and H-TCP connections obtain all the
same goodput showing that both protocols are fair in sharing
the bandwidth no matter the experienced RTT. In case of
SACK and Westwood+ TCP, goodputs of connections with
RTT=80ms are roughly one half of the goodput of connections
with RTT40ms . Other protocols are highly unfair when RTTs
are different. Same results are obtained in the last part of the
simulation, when only connections A and E - with different
RTT- are active. As it is shown in Figure 16, all protocols
except from FAST TCP and H-TCP are not able to provide
fair bandwidth sharing. In the case of STCP, for instance, the
ratio between Connections A and E goodputs is about 1:17.

IV. CONCLUSION

In this paper the effect of reverse traffic on new transport
protocols designed for highspeed networks has been investi-
gated. Simulation results show that all new protocols are fast
enough to reach full link utilization and exhibit a remarkable
window oscillation behavior in the presence of reverse traffic
of the same nature, which is a normal network operating
condition. All analyzed protocols suffer in some particular
scenarios. For instance, FAST TCP performs very well in
the scenario with different RTTs, providing fair bandwidth
sharing. However, the same protocol is not able to fully exploit
the bandwidth when the reverse traffic is active. In the presence
of background Web traffic and reverse traffic, the number of
timeouts and retransmissions experienced by NGTCP proto-
cols is very high compared to standard TCP, which means
that these protocol do not implement an efficient congestion
avoidance phase such as the Van Jacobson algorithm does.
This feature may impact network stability in the case of large
scale scenarios and needs further investigation.
As a further work, the effect of the bottleneck buffer size on
new transport protocols will be investigated [19].

REFERENCES

[1] C. Jin, D. X. Wei and S. H. Low, “FAST TCP: motivation, architecture,
algorithms, performance,” Proc. of INFOCOM 2004, March 2004, Hong
Kong, China.



0 200 400 600 800 1000

500
1000
1500
2000
2500

(a)SACK

cw
nd

 (
pk

ts
)

0 200 400 600 800 1000

500
1000
1500
2000
2500

(b)BIC

cw
nd

 (
pk

ts
)

0 200 400 600 800 1000

500
1000
1500
2000
2500

(c)HSTCP

cw
nd

 (
pk

ts
)

0 200 400 600 800 1000

500
1000
1500
2000
2500

(d)H−TCP

cw
nd

 (
pk

ts
)

0 200 400 600 800 1000

500
1000
1500
2000
2500

(e)STCP

cw
nd

 (
pk

ts
)

0 200 400 600 800 1000

500
1000
1500
2000
2500

(f)WESTWOOD+

cw
nd

 (
pk

ts
)

0 200 400 600 800 1000

500
1000
1500
2000
2500

(g)FAST

cw
nd

 (
pk

ts
)

Fig. 13. Congestion window evolution with Web traffic enabled.

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

20

40

60

80

100

120

140

G
oo

dp
ut

 M
bi

t/s

Fig. 14. Goodputs of Connection A and B during the first 250 seconds.

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

20

40

60

80

100

120

G
oo

dp
ut

 M
bi

t/s

Fig. 15. Goodputs of Connection A, B, E and F between 333s and 666s.

SACK HSTCP H−TCP BIC STCP Westwood+ FAST
0

50

100

150

200

G
oo

dp
ut

 M
bi

t/s

Fig. 16. Goodputs of Connection A and E in the last 250 seconds.

[2] Tom Kelly, “Scalable TCP: Improving Performance in Highspeed Wide
Area Networks,” Proc of PFLDnet 2003, February 2003, Geneva,
Switzerland.

[3] Sally Floyd, “HighSpeed TCP for Large Congestion Windows,” RFC
3649, Experimental, December 2003.

[4] R.N. Shorten, D.J. Leith, “H-TCP: TCP for high-speed and long-distance
networks” Proc. PFLDnet, Argonne, 2004.

[5] L. Xu, K. Harfoush, I. Rhee, “Binary Increase Congestion Control for
Fast, Long Distance Networks,” Proc. of INFOCOM 2004, March 2004,
Hong Kong, China.

[6] I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” Prof. of PFLDnet 2005, February 2005, Lyon, France.

[7] The network simulator. URL: www.isi.edu/nsnam/ns/
[8] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, R. Wang, ”TCP West-

wood: End-to-End Bandwidth Estimation for Efficient Transport over
Wired and Wireless Networks,“ Proceedings of ACM Mobicom, Rome,
Italy, July 2001.

[9] L. A. Grieco, S. Mascolo “Performance evaluation and comparison
of Westwood+, Vegas and New Reno TCP congestion control,” ACM
Computer Communication Review, April 2004.

[10] S. Mascolo, G Racanelli, “Testing TCP Westwood+ over Transatlantic
Links at 10 Gigabit/Second rate,” in proc. of PFLDNet 2005, Lyon,
France, Feb. 2005.

[11] V. Jacobson, R. Braden, D. Borman, “TCP Extensions for High Perfor-
mance,” RFC 1323, May 1992.

[12] G. Appenzeller, I. Keslassy, N. McKeown, “Sizing Router Buffers,”
Proc. of Sigcomm 2004, August 30 - Sept. 3, 2004, Portland, Oregon,
USA.

[13] http://dsd.lbl.gov/ evandro/hstcp/simul/simul.html
[14] http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-

script/script.htm
[15] http://www.hamilton.ie/net/index.htm
[16] T.Cui and L. Andrew, “FAST TCP simulator module for ns-2, version

1.1”, available from http://www.cubinlab.ee.mu.oz.au/ns2fasttcp
[17] Villamizar, C. and Song C. (1995), “High Performance TCP in

ANSNET”, ACM Computer Communication Review, vol. 24, no. 5,
pp. 45-60.

[18] Y. Li, D. Leith and R. N. Shorten, “Experimental Evaluation of TCP
Protocols for High-Speed Networks,” Hamilton Institute Technical re-
port, available at http://www.hamilton.ie/net/eval/results HI2005.pdf

[19] S. Mascolo, F. Vacirca, “Congestion Control and Sizing Router Buffers
in the Internet, in Proc. of 44th Conference on Decision and Control,
Sevilla, Spain, December 2005.

[20] S. Floyd, “Limited Slow-Start for TCP with Large Congestion Win-
dows,” IETF RFC 3742, March 2004.


