
Modelling and Control for Web Real-Time Communication

Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo

Abstract— Congestion control for real-time media communi-
cation over the Internet is currently being addressed in IETF
and W3C bodies aiming at standardizing a set of inter-operable
protocols and APIs to enable real-time communication between
Web browsers. In this paper we propose a mathematical model
of the congestion control algorithm for real-time flows proposed
by Google. Based on this model, we design a control algorithm
that provides fair coexistence of real-time flows with TCP flows.

Index Terms— Real-time communication, WebRTC, conges-
tion control

I. INTRODUCTION AND RELATED WORK

The design of an efficient congestion control is crucial to
both avoid network congestion collapse and maximize the
user perceived quality. The requirements of real-time multi-
media traffic [7] differ significantly with respect to those of
bulk data which essentially require the minimization of flow
completion time [4]. In particular, such applications generate
delay-sensitive flows, meaning that the user perceived quality
is affected not only by the goodput, which is generally related
to the video image quality, but also by the connection latency
that should be kept low to allow a seamless and interactive
communication between peers.

For this reason such flows do not employ the TCP, which
implements reliability through retransmissions at the cost
of delayed delivery of packets, but favor the UDP, which
does not implement retransmissions. Since the UDP does not
provide a congestion control algorithm, video conferencing
applications have to implement this feature at the application
layer. As a matter of fact, well-designed delay-sensitive
applications adapt to network available bandwidth at least
to some extent, such as in the case of Skype [3] and other
applications [11].

The IETF working group (WG) RTP Media Congestion
Avoidance Techniques1 (RMCAT) has been established in
2012 with the purpose of standardizing congestion control
algorithms over the RTP. The IETF RTCWeb2 and the
W3C WebRTC working groups focus respectively on the
standardization of a set of protocols and set of HTML5 APIs
to enable inter-operable real-time communication among
Web browsers. Two end-to-end congestion control algorithms

L. De Cicco, G. Carlucci, and S. Mascolo are with the Dipartimento
di Ingegneria Elettrica e dell’Informazione at Politecnico di Bari, Via
Orabona 4, 70125, Bari, Italy Emails: g.carlucci@poliba.it,
luca.decicco@poliba.it, mascolo@poliba.it

This work has been partially supported by the project ”Platform for
Innovative services in the Future Internet” (PLATINO - PON01 01007)
funded by Italian Ministry of Education, Universities and Research (MIUR).

1http://datatracker.ietf.org/wg/rmcat/
2http://datatracker.ietf.org/wg/rtcweb/

Arrival
filter

Remote Rate 
 Controller

RTP packetsSender−side
Congestion
Controller

Receiver

REMB 
 Processing

Detector
Over−use

RTCP−REMB

γ

Network

Ar

m(ti)As

s

Fig. 1: Google congestion control architecture showing the
receiver internal structure

have been proposed so far within the IETF RMCAT work-
ing group: 1) the Network Assisted Dynamic Adaptation
(NADA) congestion control algorithm [10] whose simulation
have shown that the algorithm is able to contain queuing
delays and to provide a reasonable fairness when several
NADA flows share the bottleneck; 2) the Google Congestion
Control (GCC) [8], a hybrid loss-based/delay-based. The
Google’s proposal is particularly interesting since it has
already been implemented in Google Chrome, Firefox and
Opera browsers thus having a potential user base of more
than 1 billion users.

In a preliminary work we have found that GCC is able to
keep the queuing delay low while providing a high channel
utilization in the case there is no competing traffic [1].
However, in [2] we have shown that a GCC flow can be
starved by a concurrent TCP flow.

In this paper we propose a mathematical model of GCC
to show that a static threshold mechanism employed by the
receiver side controller is the cause of performance issues.
The theoretical findings are validated through an experi-
mental evaluation on the real system. Then, we propose an
adaptive threshold mechanism at the receiver-side controller
to overcome the issue of fair coexistence with TCP best effort
flows.

II. THE GOOGLE CONGESTION CONTROL

Fig. 1 shows an essential architecture of the Google
Congestion Control (GCC) algorithm. The sender employs
a UDP socket to send RTP packets and receive RTCP
feedback reports from the receiver. The overall congestion
control algorithm is distributed at the client and at the sender.
The receiver-side controller is a delay-based algorithm that
strives to keep the queuing delay small. Towards this end,
the algorithm computes the rate Ar and feeds it back to the
sender to limit the sending rate computed by a loss-based
algorithm running at the sender.

The following description is based on both the draft [8]
and an analysis of the Chromium code base.

A. The sender-side congestion control
The sender-side controller is a loss-based congestion con-

trol algorithm that acts every time tk the k-th RTCP report
message arrives at the sender or every time tr the r-th



REMB3 message, which carries Ar, arrives at the sender.
The RTCP reports include the fraction of lost packets fl(tk)
computed as described in the RTP RFC. The sender uses
fl(tk) to compute the sending rate As(tk), measured in kbps,
according to the following equation:

As(tk) =


As(tk−1)(1− 0.5fl(tk)) fl(tk) > 0.1

1.05(As(tk−1) + 1kbps) fl(tk) < 0.02

As(tk−1) otherwise
(1)

The rationale of (1) is simple: 1) when the fraction lost is
considered small (0.02 ≤ fl(tk) ≤ 0.1), As is kept constant,
2) if a high fraction lost is estimated (fl(tk) > 0.1) the rate
is multiplicatively decreased, whereas 3) when the fraction
lost is considered negligible (fl(tk) < 0.02), the rate is
multiplicatively increased.

After As is computed through (1), the following assign-
ment is performed to ensure that As never exceeds the last
received value of Ar:

As ← min(As, Ar). (2)

B. The receiver-side controller

The receiver-side controller is a delay-based congestion
control algorithm which computes Ar according to the
equation shown in the states of Fig. 3, where, ti denotes the
time the i-th group of RTP packets are depacketized to form a
video frame at the receiver, η ∈ [1.005, 1.3], α ∈ [0.8, 0.95],
and R(ti) is the receiving rate measured in the last 500ms.
Fig. 1 shows a detailed block diagram of the receiver-side
controller that is made of several components described in
the following.

The remote rate controller is a finite state machine (see
Fig. 3) in which the state σ is changed by the signal s
produced by the over-use detector based on the output of
the arrival-time filter. The REMB Processing decides when
to send Ar to the sender through a REMB message based
on the value of the rate Ar. Finally, it is important to notice
that Ar(ti) cannot exceed 1.5R(ti).

In the following we give more details on each block.
1) The arrival-time filter: The goal of the arrival-time

filter is to estimate the queuing time variation m(ti). To the
purpose, it measures the one way delay variation dm(ti) =
ti− ti−1− (Ti− Ti−1), where Ti is the timestamp at which
the i-th video frame has been sent and ti is the timestamp at
which it has been received. The one way delay variation is
considered as the sum of three components [8]: 1) the trans-
mission time variation, 2) the queuing time variation m(ti),
and 3) the network jitter n(ti). The following mathematical
model is proposed in [8] :

d(ti) =
∆L(ti)

C(ti)
+m(ti) + n(ti) (3)

where ∆L(ti) = L(ti) − L(ti−1), L(ti) is the i-th video
frame length, C(ti) is an estimation of the bottleneck link ca-
pacity, and n(ti) is the network jitter modeled as a Gaussian
noise. A Kalman filter is employed to extract the state vector

3http://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03

new state estimate

to overuse
detector

new video
frame size

state 
prediction

from

network

Kalman Gain
correctioninnovation

θ(ti)
z−1

H(ti) = [∆L(ti) 1]
θ(ti−1)

+
+

+

dm(ti)

L(ti)

−

θ(ti) =

[ 1
C(ti)

m(ti)

]
K(ti) =

[
kc(ti)
km(ti)

]

d(ti)

n(ti)

Fig. 2: State space estimation with Kalman filter

underuse

Hold Incr.

normaloveruse

underuse

normal

overuse

Decr.

normal/underuse

overuse

Ar(ti) = Ar(ti−1) Ar(ti) = ηAr(ti−1)Ar(ti) = αR(ti)

Fig. 3: Remote rate controller finite state machine and over-
use detector signaling

θ(ti) = [1/C(ti), m(ti)]
ᵀ from (3) that aims to steer to zero

the difference dm(ti)− d(ti). Fig. 2 shows how a new state
estimate is obtained: at each step the innovation or residual
dm(ti) − d(ti) is multiplied with the Kalman gain K(ti)
which provides the correction to the state prediction. The
Kalman gain employed in the algorithm is an array of two
components km(ti) and kc(ti). We are interested in km(ti)
that provides the correction to the queuing time variation
m(ti) at each step according to:

m(ti) = (1−km(ti))·m(ti−1)+km(ti)·(dm−
∆L(ti)

C(ti)
) (4)

Eq. (4) shows that the Kalman filter in Fig. 2 in the case of
the random walk model (identity state matrix) is equivalent
to an EWMA filter [5] that is made of two additive terms: the
first one takes into account the contribution of the previous
state estimate m(ti−1) and the second term accounts for
the contribution of the measurement dm −∆L(ti)/Ci. The
gain km(ti) ∈ [0, 1] balances this contribution: if km(ti) is
large more weight goes to the measurement, otherwise more
weight goes to the previous state estimate. The Kalman gain
is updated according to the process and the measurement
noise estimated [8].

2) The over-use detector: Every time ti a video frame
is received, the over-use detector produces a signal s that
drives the state σ of the FSM (Fig. 3) based on m(ti)
and a threshold γ. When m(ti) > γ, the overuse signal is
generated. On the other hand, if m(ti) decreases below γ,
the underuse signal is generated, whereas the normal signal
is triggered when −γ ≤ m(ti) ≤ γ.

3) Remote rate controller: This block computes Ar ac-
cording to the equations shown in the finite state machine
of Fig. 3 driven by the signal s produced by the over-
use detector. Ar is increased (Increase state), decreased
(Decrease state) or kept constant (Hold state) depending on
its state.

4) REMB Processing: This block notifies the sender
with the computed rate Ar through REMB messages. The
REMB messages are sent either every 1s, or immediately, if
Ar(ti) < 0.97Ar(ti−1), i.e. when Ar has decreased more
than 3%.



TCP
sink

start/stop

GCC Receiver

start/stop

GCC Sender

TCP
sender

Bottleneck

 

Controller

Node 1 Node 2

d

b

T̄q

shaper
Traffic

Fig. 4: Experimental testbed

III. EXPERIMENTAL TESTBED

Fig. 4 shows the testbed that we have used to evaluate
the algorithm in an emulated WAN scenario. It consists
of: two machines are connected through an Ethernet cable
running a Chromium browser each4 and an application to
generate or receive TCP long-lived flows; another machine
is the testbed controller orchestrating the experiments. The
testbed controller undertakes the following tasks: 1) it places
the WebRTC calls in an automated way; 2) it sets the one-
way delay d in both directions resulting in a round-trip
propagation delay RTTm = 2d; 3) it sets the link capacity b
and the bottleneck buffer size T̄q; 4) it starts the TCP flows.

The bottleneck, that emulates an Internet scenario, has
been created through the NetEm linux module that imposes
a one-way delay d in both the directions and with the
token bucket filter (TBF) policy5 that creates a link capacity
constraint b for the traffic received by Node 1.

We have modified the WebRTC sources to log the key
variables of the congestion control algorithm. The TCP
Source uses the TCP Cubic congestion control algorithm,
the default version used in the Linux kernel.

For each experiment, we compute the following metrics
to evaluate the performance of the algorithm: 1) Channel
Utilization: U = rr/b, where b is the known link capacity
and rr is the average received rate; 2) Loss ratio: l =
(packets lost)/(packets received); 3) number of delay-based
decrease events ndd: i.e. the number of times that a received
REMB message reduces the sending rate As to the rate Ar
computed by the delay-based controller according to (2); this
metric is directly related to the weight of the delay-based
component on the computation of the sending rate: a very
small ndd means that the overall behaviour of the algorithm
is loss-based; 4) Queuing delay Tq: measured averaging the
value RTT (t)−RTTm, over all the RTT samples reported
in the RTCP feedbacks during an experiment.

IV. WHY AN ADAPTIVE THRESHOLD γ IS NECESSARY

In this section we show that the threshold γ, used in
the over-use detector, must be made adaptive otherwise two
issues can occur: 1) the delay-based controller could be
disabled (Section IV-A) and 2) the GCC flow may be starved
by a concurrent TCP flow (Section IV-B).

4http://code.google.com/p/chromium/
5http://lartc.org/

A. The single flow case
We start by considering a GCC flow accessing a bottleneck

of constant bandwidth capacity b with a drop tail queue
whose maximum size is equal to qM . In the following
we prove that with a static setting of γ the receiver-side
controller may be inhibited, with the consequence of making
the overall congestion control algorithm loss-based.

Proposition 1: Let us consider one GCC flow accessing a
bottleneck with a maximum queuing time T q . The receiver-
side component cannot generate over-use signals, and thus
the receiver-side controller is inactive, if the following con-
dition holds:

γ >

√
2
T q
τ

+
T q
τ
, (5)

where τ is the time constant of the exponential increase phase
of the sending rate computed using (1) by the loss-based
algorithm.

Proof: We start by recalling that the receiver-side
controller has the goal of stopping the exponential increase
of the sending rate (1) before the queuing delay gets too
large. Towards this end, the overuse detector of the receiver-
side controller compares m(t) with a static threshold γ and
it triggers a decrease of the rate if m(t) > γ. Thus, if the
maximum value mM of the one way queuing delay m(t)
is less than γ the generation of over-use signal is inhibited.
Therefore, to prove this proposition we need to show that if
(5) holds, it turns out that mM < γ.

We start by computing mM = max(m(t)). Since m(t) is
defined as the queuing delay variation, we can write:

m(t) = Ṫq(t) =
q̇(t)

b
(6)

where we have used the model Tq(t) = q(t)/b [6]. The queue
length, measured in bytes, can be modelled as follows [9]:

q̇(t) =


0 q(t) = 0, r(t) < b or

q(t) = qM , r(t) > b

r(t)− b otherwise
(7)

The fraction of lost bytes fl(t) can be computed as the ratio
between the queue overflow rate o(t) and the sending rate
r(t), i.e. fl(t) = o(t)/r(t). Since o(t) = r(t) − b when
q(t) = qM and r(t) > b, we can write:

fl(t) =

{
1− b

r(t) q(t) = qM , r(t) > b

0 otherwise
(8)

The following fluid flow model for r(t) can be derived from
(1) and (8) after some computations:

ṙ(t) =


− 1

2 (r(t)− b) fl(t) > 0.1
1
τ r(t) fl(t) < 0.02

0 otherwise
(9)

By combining (7) and (6) we obtain:

m(t) =
q̇(t)

b
=


0 q(t) = 0, r(t) < b or

q(t) = qM , r(t) > b
r(t)
b − 1 otherwise

(10)



0 050 50100 100150 150200 200250 250300 300
0 0

500 500

1000 1000

k
b
p
s

k
b
p
s

0 50 100 150 200 2500 30050

100

100

300

150

500

200 250 300

100
300
500

m
s rtt

0 50 100 150 200 250 300
0

50

100

% fl

0 50 100

γ γγ γ

150 200 250 300
−2

0

2

m
s

m
s

0

50

100

%

−2

0

2

m
s

(a) Tq = 700ms (b) Tq = 150ms

Time(s)

0 50 100 150 200 250 300

0 50 100 150 200 250 300
Time(s)

fl

rtt

GCC rate GCC rate

m(ti)m(ti)

As b dde As b dde

Fig. 5: GCC dynamics in isolation in the case of a bottleneck
bandwidth b = 1000kbps

Since we are interested in finding the maximum of m(t), we
consider the exponential increase phase of r(t) that is valid
when fl(t) < 0.02 according to (9). Let t0 = 0 denote the
time instant for which r(t0) = b, i.e. the instant after which
the queue starts to build up, and let us analyze the dynamics
of m(t) for t > t0. Under these assumptions it turns out that
r(t) = r(t0) exp(t/τ) = b · exp(t/τ) and m(t) = r(t)/b− 1
giving:

m(t) = exp(t/τ)− 1. (11)

Eq. (11) is a monotonically increasing function until the point
q(t) = qM , i.e. when the queue is full and packets start
to get dropped. After that point the rate starts to decrease
according to the exponential decrease phase described in (9).
Thus, the maximum value of m(t) is equal to m(tM ) where
tM is the time instant at which the queue becomes full, i.e.
q(tM ) = qM . By considering (7) and integrating between t0
and tM we obtain:

q(tM ) = qM =

ˆ tM

t0

(r(ξ)−b)dξ = bτ(exp(tM/τ)−1)−btM .
(12)

By computing the second order McLaurin expansion for
the exponential and substituting it in (12) we obtain the
following approximation:

tM '
√

2qM
τb

.

Thus, the maximum queuing delay is:

mM = m(tM ) ' 1

τ

(√
2τqM
b

+
qM
b

)
=

√
2
T q
τ

+
T q
τ
.

(13)
The proposition is proved by observing that if the condition
(5) holds, it turns out that mM < γ.

Fig. 5 compares the GCC rate, the RTT, and the losses
in the case of a single GCC flow accessing a 1Mbps
bottleneck with the default static value of γ used in the
Google Chromium browser. Fig. 5(a) shows the case of a
drop-tail queue with a maximum queuing time T q = 700ms.
Every time the sending rate reaches the link capacity b, the
one way delay variation m(t) gets above the threshold γ
triggering the finite state machine (Fig. 3) in decrease state.
In Fig. 5(a) the white dots mark the time instants where

the rate Ar computed by the delay-based controller is less
than the rate As computed by the loss-based controller which
we define as “delay-based decrease events” according to
(2). It is clear that, following a delay-based decrease event,
both the queuing delay and m(t) quickly decrease to zero.
Fig. 5(a) also shows that the controller is able to avoid packet
losses, i.e. fl(t) = 0 throughout the whole duration of the
experiment.

On the other hand, Fig. 5(b) shows that when T q = 150ms
the delay-based controller run at the receiver is disabled and
it is not able to avoid losses and control the queuing delay.
This is due to the fact that |m(t)| < γ for the whole duration
of the experiment, i.e. the value of γ is too large for T q =
150ms.

B. The case of a concurrent TCP flow

In this section we consider the case of a GCC flow with
a concurrent TCP flow and we show that a static setting of
the threshold γ may lead to the starvation of the GCC flow.

In this scenario, the queuing delay variation can be ex-
pressed as the sum of two components:

m(t) = mGCC(t) +mTCP (t) =
rGCC(t) + rTCP (t)

b
− 1

(14)
where mGCC(t) and mTCP (t) are the queuing delay varia-
tions of the GCC and the TCP flow respectively and rGCC(t)
and rTCP (t) are the sending rates of the GCC and TCP flow
respectively.

In the following we show that the maximum queuing delay
variation mTCP,M due to a TCP flow can be much larger
than that of a GCC flow. In particular, by using similar
arguments employed to derive (13) we obtain:

mTCP,M =
max(q̇(t))

b
=

max(rTCP (t))− b
b

. (15)

A well-known approximation of the TCP throughput is
r(t) = w(t)/RTT (t) [6], where w(t) is the congestion
window of the TCP flow and RTT (t) is the round trip time.
The maximum value that the congestion window can assume
is the queue size plus the inflight bytes b ·RTTmin [9], i.e.
max(w(t)) = qM +b ·RTTmin, whereas the minimum value
of RTT (t) is the round trip propagation RTTmin. It turns
out that max(rTCP (t)) = qM/RTTmin+ b which yields to:

mTCP,M =
qM

RTTmin · b
=

T q
RTTmin

, (16)

The ratio between mTCP,M and mGCC,M is given by:

mTCP,M

mGCC,M
=

T q

RTTmin√
2
T q

τ +
T q

τ

(17)

as a function of the queuing time T q for RTTmin and
τ , i.e. the time constant of the GCC flow exponential
increase phase. It is clear that when T q increases the ratio
monotonically increases. Since in this case m(t) contains the
component mTCP (t) due to the TCP flow, if mTCP (t) �



TABLE I: Experimental testbed parameters

Parameter Values
T̄q - Max queuing time (ms) 150, 350, 700
RTTm (ms) 50

b - Capacity (Mbps) Single flow 0.5, 1.0, 1.5, 2.0
Concurrent TCP 1.0, 2.0, 3.0

mGCC(t) the GCC flow will decrease Ar not due to the
self-inflicted delay, but due to the TCP flow. This explains
why, with a static threshold γ, with larger queue sizes the
TCP flow starves the GCC flow.

Fig. 7(b-left) shows the dynamics of the GCC flow when a
TCP flow joins into the bottleneck. When the TCP flow starts
at t = 80s, m(t) starts to oscillate over the threshold γ having
the effect of generating a large number of overuse signals.
Consequently, the remote rate controller FSM is driven to
the decrease mode reducing the value of Ar according to the
finite state machine in Fig. 3. The REMB messages carrying
Ar, that are periodically sent by the receiver-based controller
to the sender, make the delay-based congestion controller to
prevail over the loss-based controller.

V. THE DESIGN OF THE ADAPTIVE THRESHOLD

In this Section we propose a control law to dynamically
set the threshold γ used by the overuse detector (see Fig. 1).

Eq. (14) show that the dynamics of m(ti) is due to both
the GCC flow and the TCP flow. Thus, the basic idea is to
have a dynamic threshold γ(ti) that tracks the queuing delay
variation that is caused by both the GCC flow and the TCP
flow.

We propose the following adaptive threshold:

γ(ti) = γ(ti−1) + ∆T ·K(ti)(|m(ti)| − γ(ti−1)) (18)

where ∆T = ti − ti−1, i.e. the time elapsed between the
reception of two consecutive frames, and the gain K(t) is
defined as follows:

K(ti) =

{
Kd |m(ti)| < γ(ti−1)

Ku otherwise

with Kd < Ku. By using (18), the delay-based controller at
the receiver compares the one way delay variation m(ti) with
a threshold γ(ti) that is a low-pass filtered version of |m(ti)|.
In particular, when m(ti) overshoots γ(ti) the delay-based
controller reduces m and the threshold γ follows m with a
slower time constant so that m keeps below γ and does not
trigger several delay-based decrease events. This keeps until
m again overshoots γ and the delay-based algorithm again
reduces m. It is worth noting that when γ > m, γ follows
m with a shorter time constant so that fewer decrease events
are required to make m < γ.

VI. EXPERIMENTAL RESULTS

Table I summarizes the bottleneck parameters employed
in the experimental evaluation. For each combination of
the parameter in Table I, we have run three experiments
and compared the metrics defined in Section III between
GCC and AT-GCC by averaging over the three experimental

0

20

40

1

3

5
GCC AT−GCC GCC AT−GCC GCC AT−GCC

GCC AT−GCC GCC AT−GCC GCC AT−GCC

GCC AT−GCC GCC AT−GCC GCC AT−GCC

Tq=150ms Tq=350ms Tq=700ms

10

30

50

500 1000 1500 2000link capacity (kbps)

almost
lossless

x2 less
queuing

queuing
> x2 less

L
o

s
s
e

s
 (

%
)

Q
u

e
u

in
g

 (
m

s
)

n d
d

Fig. 6: A single GCC or AT-GCC flow over a bottleneck of
constant capacity b ∈ {500, 1000, 1500, 2000}kbps

results. The proposed controller (18) has been tuned by using
Ku = 0.021 and Kd = 0.0006.

A. A single GCC or AT-GCC flow

In the following we compare the proposed AT-GCC algo-
rithm with the GCC algorithm when they access a bottleneck
in isolation. Fig. 6 shows the results: each bar represents
the metrics obtained for a certain link capacity and the bars
are grouped for the maximum queuing time. Let us analyze
the performance of the GCC algorithm in the case of T̄q =
150ms: since the number of delay-based decrease events ndd
is almost zero for b > 0.5Mbps, it results that the delay-based
receiver controller is inhibited if b ∈ {1, 1.5, 2}Mbps. The
reason is that the static value of γ turns out to be too large in
the case of a small queue (see Section IV-A). On the other
hand, when the proposed controller is used (18) the delay-
based controller is always kept active and ndd is roughly
equal to 20 for each considered value of b. As a consequence,
when AT-GCC is used the loss percentage is halved and
the queuing time is reduced by a factor greater than 2. In
the case of T̄q = 350ms AT-GCC still outperforms GCC in
terms of queuing time and loss percentage for b > 500kbps
even though GCC exhibits better results wrt the case of
T̄q = 150ms. This is due to the fact that, when T̄q is larger,
the receiver controller can detect variations of m(ti) (see
(13)). Finally, in the case of T̄q = 700ms, both the algorithms
produce no losses even though AT-GCC is able to reduce
the queuing time for b > 500kbps due to its faster reaction
at the onset of an increase of m(ti). The average channel
utilization is higher than 90% and it is not shown due to
space limitation. Finally, it is interesting to notice that the
proposed adaptive threshold mechanism (18) stabilizes ndd
to roughly 20 in every considered case.

B. One AT-GCC or one GCC flow in the presence of a
concurrent TCP flow

We now consider the case of one AT-GCC or one GCC
flow when sharing the bottleneck link with one TCP flow.
Fig. 7(a) shows the results grouped using the same criterion
of Fig. 6. Let us consider a buffer corresponding to a



(a) Channel utilization, ndd, and loss percentage in the
case of b ∈ {1, 2, 3}Mbps and T q ∈ {150, 350, 700}ms

0 050 50100 100150 150200 200250 250300 300350 350400 400

1000 1000

2000 2000

k
b

p
s

k
b

p
s

0 5050 100100 150150 200200 250250 300300 350350 400400

100

500
300
500

γγ γγ

−2

0

2

rtt

−2

0

2

rtt

fl fl

50 100 150 200 250 300 350 400

500

m
s

50 100 150 200 250 300 350 400

50

100

%

0

0 50 100 150 200 250 300 350 400
Time(s)

m
s

0 50 100 150 200 250 300 350 400
100
300
500

m
s

Time(s)

m
s

50 100 150 200 250 300 350 400

50

100

0 50 100 150 200 250 300 350 400

m
s

0

0 50 100 150 200 250 300 350 400

%

m(t )i m(t )i

GCC AT-GCCbTCP dde bTCP dde

(b) Dynamics of GCC (left) and AT-GCC (right) when coexisting with a TCP flow in the
case of T̄ q = 350ms and b = 1000kbps

Fig. 7: One AT-GCC or one GCC flow with a concurrent TCP flow over a bottleneck of constant capacity

maximum queuing delay of T̄q = 150ms in the case of
GCC: in this situation the bandwidth share obtained by GCC
is higher than that of the TCP flow. This is due the fact
that, with such a small queue, it results that |m(ti)| =
|mGCC(ti) +mTCP (ti)| < γ even in the presence of TCP.
This is confirmed by the fact that the measured number of
delay-based decrease events ndd is zero. Since the receiver-
side controller is inhibited, the GCC flow is driven only
by the loss-based controller (1) and it results to be more
aggressive than the TCP. On the other hand, when the
proposed adaptive threshold (18) is used, the delay-based
receiver controller is kept active and we have measured
ndd ' 25 regardless of the value of b. Moreover, the
proposed controller makes the AT-GCC sending rate less
aggressive so that the bottleneck is fairly shared with TCP.

At T q = 350ms the AT-GCC continues to fairly share
the bandwidth with the TCP flow. However, the GCC flow
is starved by the concurrent TCP flow when the bottleneck
capacity b is less than 3000kbps, confirming the analysis
given in Section VI-B; when b = 3000kbps, |m(ti)| < γ
and as a result no overuse signals will be generating having
the effect of disabling the receiver-side controller.

Finally, at T̄q = 700ms the AT-GCC flow continues to
reasonably share the bandwidth with the TCP flow while the
GCC flows is starved for each value of the link capacity
considered, as a consequence of (17). Similarly to the
previous case, we notice that the proposed controller (18)
stabilizes ndd to roughly 25 in every considered case.

Fig. 7(b) shows the dynamics of one GCC or one AT-GCC
flow under the same the bottleneck conditions in the presence
of a concurrent TCP flow. The behavior of GCC has been
already explained in Section VI-B. Let us consider the case
of AT-GCC: as soon as the TCP flow joins the bottleneck,
an increase of m(ti) is detected. This causes the generation
of an overuse signal and, as a consequence, a delay-decrease
event which reduces the GCC sending rate. Then, due to
the control law (18) the threshold γ(ti) is increased, in this
case proportionally to mTCP (ti), avoiding the generation of
many consecutive overuse signals which in the case of GCC
cause the starvation of the GCC flow. This makes AT-GCC to
operate more often in loss based mode as it can be inferred by

looking at the fraction loss fl(tk) shown in Fig. 7(b-right).

VII. CONCLUSIONS

In this paper we have proposed a mathematical analysis
of the Google Congestion Control (GCC) algorithm for
real time-flows which proves that it is necessary to use an
adaptive threshold γ at the delay-based controller running at
the receiver. Starting from this analysis we have proposed
a control algorithm to dynamically set the threshold γ. The
proposed controller, named AT-GCC, has been implemented
in the Chromium browser and experimentally compared with
GCC. The results show that AT-GCC is able to fairly share
the bottleneck with a TCP concurrent flow regardless of the
size of the bottleneck queue. Moreover, in the case of a
single flow accessing a bottleneck, AT-GCC is able reduce
the queuing delay up to a factor of 1/2 wrt the queuing
obtained with GCC. In future works we will simplify the
overall congestion control algorithm to make it completely
mathematically tractable.

REFERENCES

[1] L. De Cicco, G. Carlucci, and S. Mascolo. Experimental Investigation
of the Google Congestion Control for Real-Time Flows. In Proc of
ACM SIGCOMM 2013 Workshop on Future Human-Centric Multime-
dia Networking (FhMN 2013), Hong Kong, P.R. China, Aug. 2013.

[2] L. De Cicco, G. Carlucci, and S. Mascolo. Understanding the Dynamic
Behaviour of the Google Congestion Control for RTCWeb. In Proc.
of Packet Video Workshop 2013, San Jose, CA, USA, Dec. 2013.

[3] L. De Cicco and S. Mascolo. A Mathematical Model of the Skype
VoIP Congestion Control Algorithm. IEEE Trans. on Automatic
Control, 55(3):790–795, Mar. 2010.

[4] N. Dukkipati and N. McKeown. Why flow-completion time is the
right metric for congestion control. ACM SIGCOMM Computer
Communication Review, 36(1):59–62, 2006.

[5] J. Durbin and S. J. Koopman. Time series analysis by state space
methods. Oxford University Press, 2012.

[6] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A control theoretic
analysis of RED. In Proc. of IEEE INFOCOM ’01, volume 3, pages
1510–1519, 2001.

[7] R. Jesup. Congestion Control Requirements for RMCAT. IETF Draft,
2013.

[8] H. Lundin, S. Holmer, and H. Alvestrand. Google Congestion Control
Algorithm for Real-Time Communication on the World Wide Web.
IETF Draft, Jan. 2013.

[9] S. Mascolo. Modeling the Internet congestion control using a
Smith controller with input shaping. Control engineering practice,
14(4):425–435, 2006.

[10] Z. Xiaoqing and R. Pan. NADA: A Unified Congestion Control
Scheme for Low-Latency Interactive Video. In In Proc. of Packet
Video Workshop 2013, San Jose, CA, USA, Dec. 2013.

[11] Y. Xu, C. Yu, J. Li, and Y. Liu. Video Telephony for End-Consumers:
Measurement Study of Google+, iChat, and Skype. IEEE/ACM
Transactions on Networking, 22(3):826–839, June 2014.


