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Abstract. The Session Initiation Protocol (SIP) is a signaling frame-
work that allows two or more parties to establish, alter, and terminate
various types of media sessions. The mechanism employed by the stan-
dard SIP is not e�ective in handling overload situations that occur when
the incoming �ow of requests overcomes the processing resources of the
server. In this paper we present a local overload control system based
on feedback control theory. The algorithm has been implemented in Ka-
mailio (OpenSER) and a performance comparison with Ohta and Oc-
cupancy (OCC) overload control algorithms has been performed. The
proposed control system e�ciently counteracts overload situations pro-
viding a goodput which is close to the optimal while maintaining low
call establishment delays and retransmission ratios. On the other hand,
Ohta and OCC algorithms provide higher call establishment delays and
retransmission ratio and lower goodputs.

1 Introduction

The Session Initiation Protocol (SIP) [1] is a signaling framework that allows
two or more parties to establish, alter, and terminate various types of media
sessions. Nowadays, SIP is the main signaling protocol for multimedia sessions
such as Voice over IP, instant messaging and video conferencing in the Internet
and IP telephony.

A key open issue of SIP is the proper handling of overload situations. Over-
load typically occurs when the incoming request rate to a SIP server exceeds its
processing capacity. Possible causes for overload include poor capacity planning,
component failures, avalanche restart, �ash crowds and denial of service attacks
[2]. It has been shown that the overload gets worse when SIP is used with UDP
due to the presence of a retransmissions mechanism which is employed to cope
with packet losses. During overload episodes retransmissions occur and the to-
tal incoming load increases, potentially leading the entire network to collapse
[2][3]. The 503 response code �Service Unavailable� is sent by the overloaded
SIP servers to the user agent (UA) to reject messages, thus preventing messages
retransmissions. Unfortunately, it is well-known that this mechanism is not able
to e�ectively mitigate overload situations [2][3].

With the purpose of addressing this issue, researchers have recently proposed
several overload control algorithms and the SIP Overload Control IETF work-
ing group has been established . Overload control algorithms can be designed



following three di�erent approaches (see [3] for a comparison): 1) local overload
control : the algorithm is executed locally on the SIP server and it does not
receive any feedback from other SIP servers; 2) hop-by-hop: the control loop is
closed between two connected SIP servers; 3) end-to-end : the overload algorithm
is executed at the UA and the control loop is closed between the UA and the
�nal SIP server, thus each server on the routing path can reject a message before
arriving to the destination.

In this paper we propose a local SIP overload controller by employing a
feedback control approach: the controller drives the queue length and the CPU
utilization to opportune targets to both avoid overload and ensure a target re-
sponse time.

The rest of the paper is organized as follows: in Section 2 a brief overview
of the SIP protocol is given along with the state of the art of overload control
methods proposed in the literature; Section 3 presents the proposed feedback
overload control algorithm; Section 4 shows the results of an experimental eval-
uation; Section 5 draws the conclusion of the paper.

2 SIP Overview and Related Work

SIP is a client-server message-based protocol for managing media sessions. Two
logical entities participate in SIP communications: SIP User Agents (UAs) and
SIP servers. SIP servers can be further classi�ed as: proxy servers, for session
routing, and registration servers, for UA registration.
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Fig. 1: Time sequence diagram of the establishment of a SIP call

Figure 1 shows the time sequence diagram of the establishment of a SIP call
session. An originating UA sends an INVITE request to a terminating UA via



a proxy server. The proxy server returns a provisional 100 Trying response to
con�rm. In the case the proxy is stateful, the terminating UA returns a 180

ringing response after con�rming that the parameters are appropriate. It also
sends a 200 OK message to answer the call. At that point, after receiving the 200
OK message, the originating UA sends an ACK response to the terminating UA
and the call is established. Finally, the BYE request is sent to close the session.

In the case the SIP messages are sent over a UDP socket, SIP employs a
retransmission mechanism to cope with packet losses. In particular, SIP uses the
Timer A to trigger an INVITE retransmission every time it expires [1]. The �rst
retransmission occurs when the initial default value of T1 = 500ms is reached.
After each retransmission Timer A is doubled. Retransmissions are stopped when
a provisional response is received or when the timeout value exceeds 32s. In case
of overload, SIP servers are mandated to send a 503 �Service Unavailable� that
avoids the start of retransmissions. The incoming message is said to be rejected.

Several local overload control algorithms have been proposed so far. The �rst
local overload control mechanism speci�cally designed for SIP was proposed by
Ohta [4]: the algorithm decides to either reject or accept a new SIP session
based on the queue length. Another well-known example of local control is Local
Occupancy (OCC), in the version described in [3]. It is based on CPU utilization:
when it becomes higher than the desired target value, the algorithm reacts by
rejecting a fraction of INVITE s according to a simple control law. Authors
proved that a distributed version of the same control mechanism, though more
complex, can achieve better performance.

Distributed overload control algorithms have attracted a great deal of at-
tention due to the promise of achieving better performance. The �rst paper
exploring the hop-by-hop approach was [5]. Authors group overload into two
categories: (i) server to server overload and (ii) client to server overload. In [5]
only the �rst case was considered and three hop-by-hop window-based feedback
algorithms were proposed. The idea is that the sender server employs a feedback
information which is sent by downstream servers to dynamically set the trans-
mission window size to counteract overload. The window adjustment is made
according to three di�erent policies. The three algorithms were compared to two
rate-based algorithms, showing better results. A hop-by-hop strategy is followed
in [6], where several algorithms are developed. Metrics such as queue delay, CPU
utilization and fraction of successful calls are employed to throttle the tra�c in
the upstream servers. However, techniques in [5] require the communication of
a feedback information between servers. A di�erent approach is proposed in
[7] which employs a feedback-based approach to regulate retransmissions ratio
when overload episodes occur. Authors distinguish between redundant and non-
redundant retransmitted messages, i.e. due to overload delay or due to message
loss recovery: a PI controller is employed at the upstream server to regulate the
retransmissions rate in order to track the desired value of redundant messages
rate, thus preventing overload over the downstream server without requiring ex-
plicit feedback. In [8] authors proposed an overload mechanism combining local
and remote control, the former based on the appropriate queuing structure and



bu�er management of the SIP proxy, the latter based on a prediction technique
in the remote control loop according to a NLMS algorithm.

An end-to-end overload control proposal was made in [9] which does not
require any modi�cation of the SIP protocol. The author adapted to the SIP
networks context an algorithm employed for multi-hop radio networks making
use of a backpressure-based technique. Finally, it is worth to mention that the
performance of the proposed controllers in [4,5,3,7,9] were evaluated by means
of discrete events simulators, and an experimental evaluation is not provided.

3 The Proposed Control System

In this Section we propose a local overload control algorithm based on a feedback
control approach. We adopt a local control approach since it does not require
any modi�cation in SIP protocol and it can be rapidly deployed in SIP proxies.
Moreover, local control should be always implemented in a large SIP network in
order to protect the servers in the case the distributed controllers do not work
properly.

Without loss of generality, in this paper we focus only on INVITE trans-
actions since they are the most CPU-expensive messages to be handled by a
SIP proxy [10]. Furthermore, we make the modelling assumption, which is ex-
perimentally validated , that the cost for forwarding one INVITE message is
unitary, while rejecting one INVITE has a cost 1

β (β>1) which is a fraction of

the forward cost. Let ρ(t) denote the incoming load of INVITE messages mea-
sured in cps (calls per second) and C(t) ∈ [0, 1] the instantaneous CPU load. As
ρ(t) increases, C(t) will increase until the point it reaches its maximum value
1 and overload occurs. We denote with ρM the maximum o�ered load the SIP
proxy can manage without su�ering overload, and we de�ne the normalized in-
coming INVITEs rate r(t) = ρ(t)/ρM . Finally, the normalized goodput g(t) is
the rate of successfully established calls divided by ρM . From now on, we will
consider only the normalized load r(t) and goodput g(t).

Let us now consider the overall model composed of a generic rate-based local
overload controller and the proposed CPU model. The controller computes the
fraction α(t) of incoming INVITE rate r(t) to be rejected. The CPU load can
be modelled as follows:

C(t) = (1− α(t))r(t) + 1

β
α(t)r(t) + d(t) (1)

where the �rst term is the load due to the accepted rate, the second is due
to rejected rate, and the third models the CPU load due to other processes in
execution.

The overall control system is made of two control loops aiming at control-
ling both the queue length q(t) of incoming INVITE messages and the CPU
utilization C(t).

We start by assuming that the SIP proxy server is able to store incoming
messages in a queue that will be drained by an asynchronous worker thread.
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Fig. 2: The proposed control architecture

The amount of messages drained and the reject ratio are the output of the two
controllers. Figure 2 depicts the proposed control architecture consisting of two
feedback loops: the goal of the �rst controller, depicted in the box at the left
in Figure 2, is to steer the queue level q(t) to a target qT (t); the other aims at
steering the CPU load C(t) to the desired target CT .

Let us now focus on the �rst controller: the goal of this control loop is to
compute the queue draining rate u(t), i.e. the rate of INVITE s to be processed
by the CPU, so that the queuing time of incoming INVITE messages is lower
than the �rst retransmission timeout T1 = 500ms. The queue is modelled by the
integrator which is drained at the rate u(t) decided by the controller and �lled
at the incoming rate r(t).

It is possible to steer the queuing delay Tq(t) to a set-point T q, the desired
queuing delay, at steady state by considering a variable set-point for the queue
control loop. We are able to indirectly control Tq(t) by using a set-point qT (t) =
T q r̃(t) where r̃(t) is a low-pass �ltered version of the measured instantaneous
INVITE s incoming rate r̃(t). We have set T q = 50ms which is 10 times lower
than the �rst retransmission timer T1 to avoid retransmissions. We employ a
�rst order low-pass �lter (LPF) with a time constant τ = 0.4 s to �lter out the
high frequency components of the incoming rate r(t) .

We employ a proportional-integrative controller so that q(t) can track qT (t)
with zero steady state error [11]:

u(t) = Kpqeq(t) +Kiq

ˆ t

0

eq(τ)dτ (2)

where eq(t) = qT (t)− q(t) is the error and Kpq and Kiq denote the proportional
and integral gains of the controller respectively.

The second control loop computes the fraction of messages to reject α(t),
using 503 messages, in order to steer the CPU usage C(t) to the desired value
CT . The queue draining rate u(t) can be considered as a disturbance acting on
such control loop.

Let us now focus on the proposed controller: it computes the reject ratio
α(t) based on the error ec(t) = C̃(t) − CT , where CT is the set-point and

C̃(t) is the CPU load C(t) passed through a �rst order low-pass �lter with
time constant τc = 0.1 s, to �lter out the high frequency components of C(t).



Again, we employ a proportional-integrative controller, whose equation is given
by α(t) = Kpcec(t) +Kic

´ t
0
ec(τ)dτ.

4 Performance Evaluation

The proposed overload control system has been implemented in a module of the
open source Kamailio SIP proxy1 with the purpose of carrying out the controller
optimization and a comparison with Ohta and OCC overload controllers. This
section is organized as follows: Section 4.1describes the experimental testbed em-
ployed in the performance evaluation; in Section 4.2 the implementation details
of the considered overload controllers are provided; in Section4.3 a comparison
of the proposed control system with Ohta and OCC algorithm is provided.

4.1 Experimental scenario and metrics
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SIP proxy
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Fig. 3: The testbed employed for the experimental evaluation

Figure 3 shows the testbed employed for the experimental evaluation. Two
Linux PCs are connected over a 1000 BaseT Ethernet LAN. We adopted a point-
to-point topology by using SIPp2 to generate the INVITE stream at a con�g-
urable rate. SIPp was also used to emulate the upstream SIP server behavior.
The SIPp client and server ran over the faster PC, a Intel Pentium 4 with 3.60
GHz clock speed and 2 GB of RAM. The modi�ed Kamailio SIP server, con-
�gured in the transaction-stateless mode with no authentication, ran as proxy
server over the slower PC, a Intel Pentium III with CPU clock speed of 1 GHz
and 756 MB of RAM. The SIP server PC employs Ubuntu Server 11.10.

We have adopted the goodput as the main metric to evaluate and compare the
performance of the three algorithms. We also considered 1) the retransmissions
ratio de�ned as the ratio between the number of retransmissions and the total
received calls and 2) the response time, i.e. the time required to establish a call.

For each ri ∈ Ri = {0.53, 0.79, ..., 2.61} we ranm = 5 experiments, whose du-
ration was 120s, and we measured the obtained goodput gk(ri) for k = 1, . . . ,m.

1 http://www.kamailio.org/
2 http://sipp.sourceforge.net/



We then evaluated the g(ri) as the average of the goodputs gk(ri). Finally, in
the case of the proposed control system and OCC, we have carried out the ex-
periments considering the CPU target equal to 0.8 and 0.9.

4.2 Implementation details

Kamailio is an open source SIP proxy server written in C language for Unix-like
operating systems. It is distributed under the GPL license and it is widely em-
ployed both for scienti�c and commercial purposes. Kamailio employs an archi-
tecture which is made of a core, which provides basic SIP server functionalities,
and several pluggable modules, extending the core. The Kamailio core does not
implement a queuing structure, since it processes the incoming messages syn-
chronously with their arrival. Since both Ohta and the proposed control system
require the incoming messages to be enqueued before being processed, we imple-
mented in the core a queue where the INVITE messages are stored3. The three
overload controllers were implemented in a Kamailio module called ratelimit.

In the following we provide a description of the considered algorithms and their
implementation details.

The proposed control system Both the PI controllers were discretized and
provided with an anti-wind up scheme to cope with saturation of the actuation
variables. A timer function ensures a sampling time of Tc = 20ms, while another
timer samples the CPU load every Tm = 10ms. The maximum queue length was
set to 800 calls. The parameters of the controllers described in Section 3.2 have
been optimized by means of the iterative algorithm Extremum Seeking [12] with
the aim of maximizing the obtained goodput. The optimal parameters obtained
were Kpq = 20 , Kiq = 130 Kpc = 5 , Kic = 5.

Ohta Ohta's algorithm is a simple queue-based bang-bang controller that dif-
ferentiates between two di�erent states of the server: normal and congestion.
During normal state the server forwards all the received messages. When the
queue length exceeds a high watermark value (hi_wm) the server enters into con-
gestion state: in this state it rejects all the requests. The normal state is entered
again when the queue length becomes less than the watermark value (lo_wm).
Since it is based on a queuing structure as our algorithm, Ohta was implemented
in a similar way in the �ratelimit� module. Queue bu�er size was set to 1000,
lo_wm and hi_wm to 400 and 800 respectively as suggested in [3].

OCC The algorithm dynamically adjusts the probability f of accepting an
incoming INVITE request based on measurements of the CPU load to drive it
to a target utilization ρtarg.If the CPU utilization ρ is larger than the target
value ρtarg, the load is reduced by rejecting a higher percentage of incoming
requests. The control law is a discrete time nonlinear controller described by the
following equation:

3 The other messages are forwarded as usual.



fk+1 =


fmin φkfk < fmin

1 φkfk > 1

φkfk otherwise

where fk is the acceptance ratio, φk = min(
ρtarg

ρ , φmax). fmin avoids to have
zero minimal acceptance ratio, whereas φmax > 1 is the maximum multiplicative
increase factor. The CPU occupancy is measured every measurement interval Tm
, whereas the algorithm actuation variable is update every control interval Tc.

OCC was implemented in the ratelimit module without using a queuing
structure, since messages are forwarded synchronously with their arrival. We
employed a control interval Tc = 1sec, a measurement interval Tm = 0.1sec,
fmin = 0.02, and φmax = 5 as suggested in [3].

4.3 Comparison with Ohta and OCC
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Fig. 4: Goodput comparison

In this section we compare the proposed control system, named PI in the
following, with Ohta and OCC algorithms.

Figure 4, Figure 5 (a), and Figure 5 (b) show respectively the goodput curves,
the retransmission ratio, and the response timeW for each of the considered SIP



overload controllers. Figure 4 shows that the proposed control system achieves
signi�cantly better performance in terms of goodput, retransmissions ratio, and
response time.

In particular, the proposed control system achieves a normalized goodput
equal to 0.4 when r = 2, whereas OCC and Ohta are overloaded. When OCC is
used with CPU load target equal to 0.9 the goodput degrades signi�cantly for
input rates greater than 1.3, due to its low responsiveness. OCC 80% betters
handle overload wrt OCC 90%, and it is able to support input rates up to
1.7. For what concerns the Ohta algorithm, Figure 4 shows that as soon as
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Fig. 5: Retransmission ratio and response time comparison



the input rate gets greater than 1, the goodput su�ers a signi�cant step-like
drop, indicating that the algorithm is not being able to properly handle overload
episodes. Moreover, measurements obtained for input rates which are higher than
the server maximum processing capacity are not statistically relevant since the
overload situation was so heavy that only the initial calls were accepted by the
SIPp server.

Figure 5 (a) shows that the proposed control system maintains the retrans-
mission ratio below 0.1 for a normalized rate equal to 2, i.e. it prevents the
uncontrolled increase of retransmissions which is a symptom of an overload sit-
uation. On the other hand, OCC and Ohta are not able to handle overload
correctly and retransmissions are not controlled for large values of r. Let us con-
sider the Figure 5 (b) which shows the response time. The proposed algorithm
maintains a response time which matches the target value Tq = 0.05s for every
input load: this con�rms that the �rst control loop tracks the reference signal
qT (t). On the other hand, OCC exhibits very high average response time.
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Fig. 6: Ohta (r = 1.1) and OCC (r = 1.57) dynamic behaviour

Figure 7, Figure 8, and Figure 6 show the dynamic behaviour of the con-
sidered algorithms. Figure 7 (b) con�rms that the queue control loop of the
proposed control system tracks the reference signal qT (t), thus indirectly track-
ing the target queuing time T q = 0.05s. Moreover, Figure 7 (a) shows that the
CPU control loop quickly steers the CPU load C(t) to the target CT e�ectively
avoiding overload. Figure 8 shows the estimated arrival rates, drawn with solid
lines, for several input rates, drawn with dashed lines. It is important to notice
that the estimated arrival rate r̃ is the sum of the incoming rate and the retrans-
mission rate. The �gure shows that retransmissions are very low for rates less
than r = 2.01, whereas for r ≥ 2.01 larger retransmission rates occur. However,



0 20 40 60 80 100 120
0

0.2
0.4
0.6
0.8

1

Time (s)

0 20 40
Time (s)

60 80 100 120
0

0.2
0.4
0.6
0.8

1

1 − α

C CT

(a) Accept ratio 1− α and CPU load C

0 20 40 60 80 100 120
0

0.02
0.04
0.06
0.08

0.1

Time (s)

0 20 40 60
Time (s)

80 100 120
0

0.2
0.4
0.6
0.8

1
q/qM qT /qM

Tq Tq

(b) Queuing time Tq and normalized queue
length q/qM

Fig. 7: The proposed control system dynamic behaviour (r = 1.57)
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the �gure shows that these retransmissions are e�ectively controlled and they
are rejected at steady state.

Figure 6 (b) shows the dynamics of OCC for a normalized input rate r = 1.57:
the �gure shows that the accept ratio dynamics for OCC is slow and, as a
consequence,during the �rst 25s the CPU is overloaded (C(t) = 1). Finally,
Figure 6 (a) shows the dynamics of Ohta obtained when r = 1.1. The queue
length exhibits remarkable oscillations and the overload is not avoided.

5 Conclusions

We have proposed a SIP overload control algorithm controlling both the queue
length and the CPU load of a SIP proxy. We have implemented the proposed
overload control system in Kamailio, an open source SIP proxy, and carried
out a performance evaluation and a comparison with OCC and Ohta, two local
overload control algorithms. The results have shown that the proposed control
system signi�cantly outperforms OCC and Ohta providing higher goodput and
exhibiting low retransmissions ratio and response time. The proposed control
system handles overload up to a maximum normalized input load equal to 2.3,
OCC supports input rates lower than 1.7, whereas Ohta fails to properly handle
overload.
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