
 1

Modeling the Internet Congestion Control Using a Smith

Controller with Input Shaping*

Saverio Mascolo
Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari, 70125 Bari, Italy. Email: mascolo@poliba.it

(*)Paper No: CR 2179: Enhanced version of the paper published at the IFAC ’03 Workshop on Time-delay Systems and
recommended for inclusion in Control Engineering Practice.
Abstract

The Internet has shown a great capability of endless
growing without incurring congestion collapse. The key of
this success lies on its TCP/IP congestion control
algorithm. In this paper we use control theoretic analysis to
model the Internet flow and congestion control as a time
delay system. We show that the self-clocking principle,
which is known to be a key component of any stable
congestion Internet control algorithm, corresponds to
implement a simple proportional controller (P) plus a Smith
predictor (SP), which overcomes feedback delays that are
due to propagation times. Different variants of TCP
congestion control algorithms, such as classic TCP Reno or
the recent Westwood TCP, can be modeled in a unified
framework by proper input shaping of the P+SP controller
structure. Finally, we show that controllers that do not
implement the Smith predictor, such as proportional (P)
controllers or proportional+ derivative+ integral (PID)
controllers, provide an unacceptable sluggish system
because they do not implement dead-time compensation.

1. Introduction and related works

The stability of the Internet and in particular the
prevention of congestion requires that flows use some form
of end-to-end congestion control to adapt the input rate to
the available bandwidth [1-3],[7-10]. In fact, after the
introduction of the Transmission Control Protocol/Internet
protocol (TCP/IP), the network was suffering from
congestion collapse until congestion control was introduced
into the TCP stack in the late 1980s by Van Jacobson [1].

TCP has two feedback mechanisms to tackle congestion:
the flow control and the congestion control. The TCP flow
control aims at avoiding the overflow of the receiver’s
buffer and is based on explicit feedback. In particular, the
TCP receiver sends to the source the Receiver’s Advertised
Window, which is the buffer available at the receiver. The
TCP congestion control aims at avoiding the flooding of
the network and is based on implicit feedback such as
timeouts, duplicate acknowledgments (DUPACKs), round
trip time measurements. In this case the source infers the
network capacity using an additive–increase/ multiplicative
- decrease (AIMD) probing mechanism [11]. The increase
phase aims at increasing the flow input rate until the
network available capacity is hit and a congestion episode

happens. The sender becomes aware of congestion via the
reception of duplicate acknowledgments (DUPACKs) or
the expiration of a timeout. Then it reacts to light
congestion (i.e. 3 DUPACKs) by halving the congestion
window (fast recovery) and sending again the missing
packet (fast retransmit), and to heavy congestion (i.e.
timeout) by reducing the congestion window to one. Both
the flow and congestion control implements the self-
clocking principle, that is, when a packet exits a new one
enters the network. The described mechanisms form the
core of the classic Internet congestion control algorithm
known as Tahoe/Reno TCP [1,7,10]. It is interesting to
notice that these mechanisms still form the main
ingredients of all enhanced and successful TCP congestion
control algorithms that have been proposed in the literature.

Research on TCP congestion control is still active in
order to improve its efficiency and fairness, especially in
new environments such as the wireless Internet [12] or the
high-speed Internet [24-26], [32-34]. We briefly summarize
the most significant modifications that have been proposed
up to now [30].

The New Reno feature is an enhancement of Reno that
has been proposed to avoid multiple window reductions in
a window of data [13]. TCP Vegas estimates the expected
connection rate as cwnd/RTTm and the actual connection
rate as cwnd/RTT; when the difference between the
expected and the actual rate is less than a threshold α>0,
the cwnd is additively increased. When the difference is
greater than a threshold β>α then the cwnd is additively
decreased. When the difference is between α and β, cwnd is
maintained constant [14]. Vegas TCP provides the basic
ideas behind the new Fast TCP congestion control
algorithm, which has been recently proposed by researchers
at Caltech [32]. In authors’ words, “Fast TCP is a sort of
high-speed version of Vegas”. At the time of this paper
Fast TCP is still in a trial phase and authors do not have
released any kernel code or ns-2 implementation. Being
based on RTT measurements to infer congestion, it could
inherit all drawbacks of Vegas, mainly the incapacity to
grab bandwidth when coexisting with Reno traffic or in the
presence of reverse traffic [33]. TCP Westwood uses an
end-to-end estimation of the available bandwidth to
adaptively set the control windows after congestion
[15,16,33]. Both Vegas and Westwood preserve the
standard multiplicative decrease behavior after a timeout.

 2

TCP Santa Cruz proposes to use estimate of delay along the
forward path rather than round trip delay and to reach a
target operating point for the number of packets in the
bottleneck of the connection [17]. The concept of
generalized advertised window has been proposed in [6] to
provide an explicit indication of the network congestion
status.

Recently, non linear stochastic differential equations have
been proposed to model the TCP dynamics [16], [18-20]. In
these models, the dynamics of the expected value of the
cwnd is mainly expressed as a function of the packet drop
probability through a non-linear differential equation.
These models, and their linearized ones, have been used to
predict the long-term TCP throughput and to design control
laws for throttling the packet drop probability of routers
implementing Active Queue Management [19]. In
particular, the mentioned nonlinear stochastic differential
model of the TCP window has been linearized around the
equilibrium to derive a transfer function from the packet
drop probability to the bottleneck queue length. The
linearized model has been employed to design a control law
for the packet drop rate aiming at stabilize the queue
average length [19]. It is not clear how effective is the
model to deal with real-time dynamics of TCP and in
presence of multi-bottleneck topologies.

In this paper we propose a general control theoretic
framework to model the TCP flow and congestion control
along with its variants such as Reno and Westwood. We
derive the following main results: (1) different TCP control
algorithms can be modeled using the same control
structure, which is a proportional controller plus a Smith
predictor for dead-time compensation; (2) the Smith
predictor plays the fundamental role of overcoming delays
in the feedback loop in order to provide a stable and fast
control; (3) the Smith predictor provides the control
theoretic explanation of the self-clocking principle; (4)
different control algorithms such as Reno, Westwood and
so on can be explained in terms of different settings of the
controller reference input signal.

The work is organized as follows: Section 2 outlines the
TCP flow and congestion control algorithm; Section 3
models the dynamic behavior of a generic TCP flow;
Section 4 models the TCP flow and congestion control
using transfer functions and a proportional controller plus a
Smith predictor; Section 5 shows that the Smith predictor
enforces the self-clocking principle and provides stability;
Section 6 models the TCP Reno and Westwood control
algorithms by proper shaping of the set point; Section 7
shows that other simpler controllers, such as proportional-
integral-derivative (PID), cannot be used in the Internet
because they would provide too sluggish behavior; thus, the
classic TCP remains the starting point to be considered
when designing any new control algorithm; finally Section
8 draws the conclusions.

2. The TCP/IP flow and congestion control

A TCP connection is a virtual pipe between the send
socket buffer and the receive socket buffer (see Fig. 1). The
TCP has two feedback mechanisms to tackle congestion:
the flow control mechanism that prevents the sender from
overflowing the receiver’s buffer, and the congestion
control mechanism that prevents the sender from
overloading the network.

Fig. 1. Schematic of a TCP connection

2.1 The flow control algorithm
The TCP flow control is based on explicit feedback. In
particular, the TCP receiver sends to the source the
Receiver’s Advertised Window, which is the buffer
available at the receiver. Let MaxRcvBuffer be the size of
the receiver buffer in bytes, LastByteRcvd the last byte
received and NextByteRead the next byte to be read. On the
receive side TCP must keep

LastByteRcvd−NextByteRead≤MaxRcvBuffer

to avoid overflow. Therefore, receiver advertises a window
size (AdWnd) of

AdWnd=MaxRcvBuffer−(LastByteRcvd−NextByteRead)

which represents the amount of free space remaining in the
receiver buffer. The TCP on the send side computes an
Effective Window W

W=AdWnd−(LastByteSent−LastByteAcked) (1)

which limits how much outstanding packets it can send
[10].

2.1 The congestion control algorithm
Considering that the network is a “black box” that does not
supply any explicit feedback to the source, the issue here is
to look for "some measurement" of the network capacity
that must be inferred at the end nodes using implicit

Send Socket
Buffer

TCP/IP

Application
Data

TCP/IP

Application
Data

Advertised
Window

Receiver Socket
Buffer

INTERNET

 3

feedback received from the networks such as timeout and
acknowledgments. Today TCP estimates the best effort
capacity of the network using a variable called congestion
window (cwnd). In particular, the TCP learns the
appropriate value of the cwnd by using an additive-
increase/multiplicative-decrease (AIMD) paradigm. The
increasing process goes through two phases: the slow start
and the congestion avoidance . During the slow start phase
the cwnd is exponentially increased until the slow start
threshold (ssthresh) value is reached. This phase is
intended to quickly grab available bandwidth. After the
ssthresh value is reached, the cwnd is linearly increased to
gently probe for extra available bandwidth. This phase is
called congestion avoidance. At some point the TCP
connection starts to lose packets. After a timeout cwnd is
drastically reduced to one and the slow start, congestion
avoidance cycle repeats. After 3 DUPACKs cwnd is
reduced by half and the congestion avoidance phase is
entered [7,10].
To implement both flow and congestion control, the TCP
sender computes the minimum of the congestion window
and the advertised window and computes the Effective
Window W as follows

W=MIN(Cwin,AdvWin)−OutstandingPackets (2)

where

OutstandingPackets=LastByteSent −LastByteAcked

represent the in flight packets [10].

3. Modeling a generic TCP flow
In his milestone paper, Van Jacobson (1988) clearly states
that: “A packet network is to a very good approximation a
linear system made of gains, delays and integrators”[1]. In
this paper we propose a detailed model of a TCP/IP
connection using (a) integrators to model network and
receiver buffers and (b) delays to model propagation times.

A data network is a set of store-and-forward nodes
connected by communication links. A generic TCP flow
goes through a communication path made of a series of
buffers and communication links.

The number of packets of the considered TCP flow that
are stored at the generic i-th buffer along the
communication path is given by the following dynamic
equation:

∫ ∞− −−= t dioibiutix ττττ)]()()([)((3)

where ui(t)≥0 models the data arrival rate, bi(t)≥0 models
the data depletion rate, i.e. the used bandwidth, and oi(t)≥0
models the overflow data rate, i.e. the data that are lost
when the buffer is full and the input rate exceeds the output
rate.

The dynamic equation of the generic communication link
(i-1) connecting the (i-1)-th buffer to the next (i)-th buffer
is a pure delay. In particular, letting bi-1(t) be the link input
rate at the (i-1)-th buffer and ui(t) be the link output rate at
the next (i)-th buffer, it results:

)1(1)(−−−= iTtibtiu (4)

where Ti-1 is the link propagation time.
Starting from the basic equations (3) and (4), we propose

to model a generic TCP flow over an IP network as it is
shown in Fig. 2. In particular, Fig. 2 shows a functional
block diagram made of:

1) The TCP connection receiver buffer of length xr(t),
which is modeled using an integrator with Laplace
transfer function 1/s. The receiver buffer receives the
inputs ur(t), br(t), or(t), which represent the input rate,
the depletion rate and the overflow data rate,
respectively;

2) The n-th buffer that the TCP connection goes through
before reaching the receiver buffer, which is modeled
using an integrator with output xn(t). The n-th buffer
receives the inputs un(t), bn(t), on(t), which, again,
represent the input rate, the depletion rate and the
overflow data rate, respectively. It is important to
notice that the depletion rate bn(t) reaches the next
buffer (n+1), which is the receiver buffer, after the
propagation time Tn, i.e. ur(t)= bn(t-Tn). Moreover, it
should be noted that the input rate un(t) is equal to the
depletion rate bn-1(t) at the previous (n-1)-th buffer,
i.e. bn-1(t-Tn-1)= un(t), where Tn-1 is the propagation
time from the (n-1)-th buffer to the n-th buffer.
Depletion rates are unpredictable because they model
the best effort bandwidth available for a TCP
connection when going over statistically multiplexed
IP network.

The series of buffers shown in Fig. 2 can be recursively
augmented both in the left direction, to model up to the first
buffer node encountered by the TCP connection, and in the
right direction to model buffers n+j, with j=2,p
encountered by ACK packets when going back from the
receiver to the sender.

By considering a closed surface that contains the TCP
path going from the first to the last buffer modeled by a set
of integrators indexed from 1 to n+p=m, where the m-th
integrator models the last buffer encountered by the TCP
along the connection round trip, we can invoke the flow
conservation principle for the unique input rate, which is
the TCP input rate u1(t), and the output rates that are: (a)
bm(t), which models the bandwidth used by the TCP
connection, i.e. the best-effort bandwidth as viewed by the
considered TCP flow through the ACK stream; and (b) the

 4

Fig. 2 Dynamic block diagram of a generic TCP/IP flow

overflow rates oi(t), for i=1,m, which represent packets that
are lost at each buffer along the path connection.

In equations, we can write the number x(t) of packets
belonging to the considered TCP flow and stored into the
network by adding packets stored at each buffer along the
path:

∑
=

=
m

i
tixtx

1
)()((5)

Substituting (3) in (5) and considering the (4) it turns out

() ττττττ d
m

i
iTibib

t m

i
iombutx]

1

1
)()(

1
)()()(1[)(∑∫ ∑

−

=
−−−

∞− =
−−=

that can be rewritten as

ττττττ d
m

i

t

Tt
ibd

t m

i
iombutx

i

∑ ∫∫ ∑
−

= −
−

∞− =
−−=

1

1
)(

1
)]()()(1[)((6)

Eq. (6) states that the network storage is equal to the
integral of the TCP input rate u1(t) minus the output rate
bm(t) leaving the last buffer of the path, minus the sum of
the overflow rates oi(t), minus the sum of packets that are in
flight over each link i.

Since the TCP implements an end-to-end congestion
control that does not receive any explicit feedback from the
network, it is not possible for the controller to know terms
in (6). Thus, we consider the sum of the in flight packets
plus the stored packets, which we call the total network
storage tx :

ττττττ d
t m

i
iombud

m

i

t

Tt
ibtxttx

i

∫ ∑∑ ∫
∞− =

−−=
−

= −
+=

1
)]()()(1[

1

1
)()()(

and the sum of overflow rates to :

∑
=

=
m

i

)t(io)t(to

1

Thus, we can write

∫
∞−

ττ−τ−τ=
t

d)](to)(mb)(u[)t(tx 1 (7)

By considering that the TCP establishes a “circular flow”,
i.e. that the data input rate comes back to the sender as an
ACK rate, it can be said that bm(t) models the rate of ACK
packets. Thus we can write:

)()(1)(ttoTtutmb −−= (8)

which says, in mathematical words, that the ACK rate is
equal to the input rate, delayed by the round trip time,
minus the loss rate. By substituting (8) in (7) it turns out:

∫∫
−

ττ=

∞−

τ−τ−τ=
t

Tt

d)(u

t

d)]T(u)(u[)t(tx 111 (9)

Equation (9) states that the network total storage is equal
to the integral of the input during the last round trip time T.

4. Modeling the TCP flow and congestion control

This section aims at showing that the closed loop control
system depicted in Fig. 3 implements both the TCP flow
and congestion control. In details, the following variables
and blocks are shown:

(1) The receiver queue length xr and the receiver capacity

r1 provide the term r1−xr (i.e. the Advertised Window),
which reaches the sender after the propagation time Tfb
that is modelled in the Laplace domain by the transfer

function fbsT
e
− ;

(2) The set point r2(t) represents a threshold for the total
network storage, which is modeled by the queue xt(t);

(3) The minimum block takes the minimum between the
Advertised Window and)(2 tr ;

ur(t)= bn(t-Tn)

br(t)

−

xr(t)

s

1
–

s

1

xn(t)

bn(t)

−

on(t)

un(t)

or(t)
−

nTse ⋅−

−
s

1

xn-1(t)

bn-1(t)

−

on-1(t)

un-1(t)

1−⋅− nTse

 5

Fig. 3: Functional block diagram of the TCP flow and congestion control

(4) Delays T1i and Tir model the time delay from the sender

to the generic node i and from the node i to the
receiver, respectively; the forward delay from the
sender to the receiver is Tfw= T1i + Tir;

(5) The controller transfer function

)1(1
)(

sTe
s
k

k
sG

−−+
= , (10)

which contains the proportional gain k and the Smith

predictor ssTe /)1(−− , where T is the round trip
time sum of the forward delay Tfw and the backward
delay Tfb. Notice that the role of the Smith predictor is
to overcome the delay T, which is inside the feedback
loop and is harmful for the stability of the closed-loop
control system (Mascolo, 1999).

Notice that the buffer xt in Fig. 3 can model both the total
network storage of packets but also it can model the generic
buffer xi that is the bottleneck of the TCP connection at
time t; moreover, a moving bottleneck is easily captured by
the model through delays T1i and Tir where i is the generic
moving bottleneck.

In order to show that the block diagram in Fig. 3 models
the TCP/IP flow and congestion control, first we will
assume that the bottleneck is at the receiver and then that
the bottleneck is inside the network.

4.1 The TCP Flow Control

By assuming that the bottleneck is at the receiver, it
results: min(Adwnd,r2(t)) = Adwnd, ur(t) = u1(t-Tfw) and
ot(t)=0. In other words, the connection is constrained by the
receiver, and the input rate reaches the receiver after the
forward delay without network queuing, i.e. bt(t)=u1(t-T1i).
Under these conditions, Fig. 3 can be transformed into Fig.

4 that models the TCP flow control. The following
propositions can be shown.

Proposition 1 : The Smith controller (10) implements the

TCP flow control equation (1).
Proof: To find the input rate u1(t) computed by the TCP

sender we use standard Laplace techniques, that is, we
compute the Laplace transform of the input rate:

[]












 −−+

−−=

s

sTe
k

ksT
esrXsRsU fb

1
1

)()(1)(1

that can be written as

[] fbsT
erXRk

s

sTe
kUU

−
−+












 −−
−= 1

1
11

By transforming back to time domain it results:

ττ d
t

Tt
ufbTtrxfbTtr

k
tu

∫ −
−−−−=)(1)()(1

)(1 (11)

By considering that

=−−−)()(1 fbTTrxfbTTr Advertised window

and that

br(t)
ur(t)

−

AdWnd

r2(t)=cwnd

xr(t)

s
1

–

r1

−

s

1u1(t)

xt(t)

bt(t)
−

s

Tse ⋅−−1

k

ot(t)

Min(,)
iTse 1⋅−

−
or(t)

−

Network bottleneck
or

network total storage
Smith predictor

Receiver buffer

irTse ⋅−

fbTs
e

⋅−

 6

=
−∫ ττ d

T
Tt

u)(1 Outstanding packets

Equation (11) gives the classic window-based flow
control equation (1), where ktuW /)(1= . By considering
that TWtu /)(1 = relates the rate and the window of a
window-based control, it results 1/k=T.

Notice that the outstanding packets automatically take
into account the round trip time T that in general can be
time varying due queuing delays. In the case of flow
control T is, to a very good approximation, constant since
there is no congestion inside the network which implies
that network queuing delay is zero and round trip time is
pure propagation delay.

Fig. 4: Functional block diagram of the TCP flow control

Proposition 2: The TCP flow control equation (11)
guarantees that the receiver queue is always bounded by the
receiver capacity 1r , i.e.:

1)(rtrx < for any t
Proof: The queue length can be computed by exploiting

the superposition property of linear systems. In particular, it
is easy to compute the input-output transfer function from
R1(s) to the receiver queue length Xr(s) that is:

sTe
sk

k
R

rX −
+

=
1

and the transfer function from Br(s) and Or(s) to Xr(s) that
is:

ks

sTe

s

sTe

s
sTe

kss

k

srBrO
rX

+

−
−

−
+−=−

+
+−=

+
1

)(

1

By assuming)(11)(1 trtr ⋅= , where 1r is the receiver buffer

capacity and 1(t) is the step function that models a

connection starting at t=0, there results:
s
r

sR 1)(1 = . By

exploiting the superposition property of linear systems and
by transforming back to time domain there results:

∫
−

+−

−








+
+−−







 −

+
−=

−

t

Tt

drorb

e
ks

rOrB
LsTe

ks

k

s

r
Ltrx

sT

τττ)]()([

111)(

which satisfies the condition

1)(1)(11
11)(rTtTtkersTe

ks
k

s
r

Ltrx <−⋅


 −−−⋅=






 −

+
−≤

since or(t), br(t) are always non negative. This concludes

the proof.

Lemma 1: Proposition 2 guarantees or(t)=0 for any t.

Proof: Proposition 2 proves that the receiver queue
length is always upper bounded by the receiver queue
capacity, which implies that receiver overflow is always
avoided, i.e. or(t)=0 for any t.

4.2 The TCP Congestion Control
By assuming that bottleneck is localized inside the

network, there results min(Adwnd,r2(t))= r2(t) and we can
ignore the outer feedback loop. Therefore, Fig. 3 can be
transformed into the equivalent one shown in Fig. 5, which
models the TCP congestion control.

Proposition 3 : The Smith controller (10) implements the

TCP congestion control equation (2).
Proof: By assuming that the bottleneck is inside the

network, there results: min(Adwnd,r2(t))= r2(t). From Fig.
5, the output of the Smith predictor in the Laplace domain
is:

s

sTe
sUsQ

−−= 1
)(1)(

By transforming back to time domain it results:

=
−

= ∫ ττ d
T

Tt
utq)(1)(outstandingpackets

Therefore the output of the controller is:

()gpacketsoutstandintrktu −=)(2)(1 (12)

that can be rewritten as

AdWnd

xr(t)
fwTs

e
⋅−k

ur(t)

br(t)

s

1
–

r1

−

u1(t)

s

Tse ⋅−−1

−

or(t)
−

Smith predictor

fbTs
e

⋅−

 7

Fig. 5 Functional block diagram of the TCP congestion control

gpacketsoutstandintr
k

tu
−=)(2

)(1 (13)

Equation (13) gives the classic window-based congestion

control equation (2), where ktuW /)(1= , and r2(t)=cwnd.
This concludes the proof.

Remark 1: It should be noted that (12) and (13) are the

rate-besed and window-based versions of the same control
equation.

Proposition 4: The TCP congestion control equation (13)

guarantees a total network storage xt that is always bounded
by the threshold 0)(2 >tr , i.e.:

)(2)(trttx ≤ for any t

Proof: From (9), the total network storage is:

)()(1)(tq
t

Tt

duttx =
−

= ∫ ττ

Since u1(t) and q(t) are always non negative, and r2(t) is
strictly positive, from the control law:









−

−= ∫ ττ d
T

Tt
utrktu)(1)(2)(1

it turns out)()()(2 ttxtqtr =≥ , which concludes the proof.

Lemma 2: If a TCP flow finds in each buffer it goes
through a space of ci packets, where ci> r2(t) for any t and i,
then the Proposition 4 guarantees ot(t)=0 for any t.

Proof: The proof follows from Proposition 4, which proves
that)(2)(trttx ≤ , and assumptions of Lemma 2.

5. The self-clocking principle

Based on the theoretical control framework outlined in the
previous section, we are now ready to show that the self-
clocking principle can be theoretically explained using the
Smith predictor. It is largely known that the self-clocking
principle is a key feature of the TCP congestion and flow
control [1]. This has been recently recognized also in the
context of Transport Friendly Rate Control (TFRC)
algorithms [21], where it has been shown that algorithms
that do not employ the self-clocking principle may exhibit a
huge settling time, that is, they may require many RTTs to
adapt the input rate to the bandwidth available in the
network. As a consequence, to overcome the disastrous
effects due to the violation of the self-clocking principle,
the original TFRC has been enhanced with the self-
clocking mechanism. In this section we show that the self-
clocking can be mathematically interpreted as the effect of
the Smith predictor branch.

Proposition 5. The Smith predictor branch () se sT /1 −−
enforces the self-clocking principle.

Proof: By transforming back to time domain the quantity

)()(sUsq s= () se sT /1 −− it results

ττττττ dududutq
t

Tt s
Tt

s
t

s ∫∫∫ −
−

=−=)()()()(
00

,

ur(t)
br(t)

−

r2(t)
xr(t)

s
1

–

s

1u1(t)

xt(t)

bt(t)
−

s

Tse ⋅−−1

k

ot(t)

iTse 1⋅−

−
or(t)

−

Network bottleneck
or

Network storage
Smith predictor

Receiver buffer

irTse ⋅−

bm(t)
fbTs

e
⋅−

 8

where q(t) represents the data that have been sent since the
last round trip time T up to now, i.e. the outstanding
packets. When the time t advances of ∆, i.e. at time t+∆,
the amount of data

ττ duq
Tt
Tt sacked ∫

∆+−
−=)(

are acknowledged so that the control equation (3) or (5) can
send this amount of data in the time interval [t, t+∆], that
is, the self-clocking principle is enforced.

6. Modeling Reno or Westwood TCP by input
shaping

In this section we show that the dynamic model depicted
in Fig. 5 is able to model successful variants of TCP
congestion control, such as for example Tahoe/Reno [1] or
the recent Westwood TCP [15]. Other TCP variants, such
as Vegas or Santa Cruz, could also be modeled in the same
unified framework.

We have seen that the congestion control algorithm aims
at estimating the available bandwidth using a probing
mechanism. The classic TCP probing mechanism, which is
currently used in all successful variants of the TCP such as
Tahoe/Reno, New Reno or Westwood, comprises two
mechanisms: the slow-start phase, which exponentially
increase the congestion window up to the ssthresh, and the
congestion avoidance phase which linearly increase the
cwnd when cwnd≥ ssthresh. Now we show that both these
mechanisms can be modeled in the control theoretical
framework reported in Fig. 5 by properly shaping the
controller input r2(t)=cwnd.

6.1 The Reno Algorithm
The TCP Reno slow-start phase can be modeled by

setting the reference input r2(t) as follows:

ssthreshtr while ortr
T

t

<⋅=)(22)(2

where the initial window r0 is generally equal to 1 or 2

[19]. TCP Reno enters the congestion avoidance phase
when r2(t)=ssthresh at)0(2log1 rssthrehTt −= . This phase
can be modelled by setting the reference input r2(t) as
follows:

ssthreshtr when
T

tt
ssthreshtr ≥

−
+=)(2

1)(2

The TCP probing phase ends when 3 DUPACKSs are

received or a timeouts happens, which indicate that the
network capacity has been hit. In these cases the cwnd
behavior can be modeled using the following settings for
r2(t):

After a timeout at tk

 0r,
tr

ssthresh)
2

)(2max(=

 0)(2 rtr =

ssthreshtr if
T

ktt
ssthreshtr

ssthreshtr if rtr
T

ktt

≥
−

+=

<⋅=

−

)(2)(2

)(220)(2

After 3 DUPACKs at tk

 0r,
tr

ssthresh)
2

)(2max(=

)(2 T

tt
ssthreshtr k−

+=

 6.2 The Westwood algorithm
TCP Westwood employs the same probing mechanism of
Reno. It differs from Reno because of the behavior after
congestion. In fact, Westwood sets the cwnd and ssthresh
using an end-to-end estimate of the network bandwidth
bm(tk) available at time of congestion. In particular, the
Westwood TCP window behavior after congestion can be
modeled as follows:

After a timeout at tk

 minRTT)kt(bssthresh ⋅=
 rtr 0)(2 =

ssthreshtr if
T

ktt
ssthreshtr

ssthreshtr if ortr
T

ktt

≥
−

+=

<⋅=

−

)(2)(2

)(22)(2

After 3 DUPACKs at tk

 minRTT)kt(bssthresh ⋅=

T

ktt
ssthreshtr

−
+=)(2

7. Why a PID controller is not efficient to control
the Internet

We have seen that the Internet flow and congestion
control problem reduces to the issue of controlling an
integral mode with a time-delay in cascade. It can be said
that, in general, congestion control in data networks
consists of controlling a time-delay system.

The proportional-integral-derivative (PID) controller is by
far the most common control algorithm and performs
satisfactorily well in many practical cases [23].

 9

In this section we show that a standard PID cannot
satisfactorily control a data network such as the Internet
since in order to provide stability for the closed-loop
system it is necessary to use a low gain that turns out an
unacceptable sluggish system.

To start the discussion we consider the simple
proportional controller k shown in Fig. 6. In order to
study the stability of this system, we invoke the Nyquist
stability criterion. To the purpose, the polar diagram of

the open loop-transfer function sTe
s

k − is depicted in

Fig. 7, which also shows the vertical asymptote of
abscise − kT and the circle with unity magnitude.

Fig. 6: A data flow controlled by a proportional controller

Fig. 7 The Nyquist plot of the open loop-transfer function

For the Nyquist stability criterion, the polar plot must not
encircle the point 1− . The crossover frequency 0ω
(frequency for which the magnitude of the loop
frequency response is unity) is obtained from the equality

10

0
=− Tje

j

k ω
ω

,

which turns out k=0ω .

The closed-loop system is stable if the phase margin

kTTFM −=−−= 2/02/ πωππ

is positive, which turns out the stability condition:

 Tukk 2/π=< (14)

where ku is the ultimate gain.
The stability condition (14) states that the gain k must be
lower and lower with increasing round trip time T. As a
consequence, the proportional controller provides a too
sluggish closed-loop behaviour in the case of data
networks which are characterized by large propagation
delays, such as in the case of high-speed networks, wide
area networks or satellite connections.
The use of a PD controller does not help much to
improve the promptness of the controller [23]. In fact,
when using using a PD, the open-loop transfer function

becomes sTe
s

Dsk −+)1(τ
. The crossover frequency is

now 0
2

1)(1/ ωτω >−= Dkk . Thus, even though the
derivative action adds the positive contribute

)(1 Darctg τω to the phase margin, it must be considered

that at the new cross-over frequency 1ω the negative
contribute to the phase margin due to the time delay is
now augmented of T)01(ωω − . Thus, in the presence of
large delay T, the lead action of a PD controller may not
be useful or may be even pejorative of the stability
margin because it may happen that

DarctgT τωωω 1)01(>− .
Finally, the integral action of the standard PID controller
is surely not recommended for the system we are
considering because it would reduce the phase margin of

2/π at any frequency thus making the system stability
even more critical.
To get a further insight we compare the proportional
controller with a proportional controller plus a Smith
predictor using computer simulations. We consider a
connection with T=1000 units of time. From (14), the
ultimate gain is ku=0.001571. Following the Ziegler-
Nichols rules, we choose the proportional gain
k=ku/2=0.000785. We have also tried the Ziegler-Nichols
rules for tuning a PI and a PID controller but in this case
we have found that they do not provide a stable system,
which confirms that it is not easy or efficient to control a
system with large delays using a PI or a PID controller.
We set the reference signal r(t)=10000⋅1(t), which
corresponds to setting a queue threshold of 10000
packets at the initial time t=0. We assume an available
bandwidth of 4 pkts/unit of time. This pattern is very
appropriate to test the promptness of the congestion
control algorithm in matching the time-varying available

–
bn(t)

xn(t)
s
1

fwTs
e

⋅−

us(t)
k

fbTs
e

⋅−

un(t)

on(t)
−

r2

−

-1
-kT

 10

bandwidth. Fig. 8 shows the input rate dynamics obtained
using a proportional controller (P) and a proportional
controller plus a Smith predictor (P+SP) both with
k=0.000785. It shows that the input rate obtained using
the Smith predictor is much faster in reaching the steady
state value of 4 pkts/unit of time. Moreover the Smith
predictor provides a much smaller band of oscillation for
the input rate. Fig. 9 shoes that the Smith predictor
provides a much more smaller queue length that is a very
important feature for networks since it means much
smaller queuing delays.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

3

4

5

6

7

8

t ime

in
p

u
t

ra
te

 [
p

k
ts

/s
]

P
P+SP

Fig. 8: Input rate using a P or P+SP controller

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

t ime

q
u

e
u

e
 l

e
n

g
th

 [
p

k
ts

]

P

P+SP

Fig. 9: Queue length using a P or a P+SP controller

It is worth noting that another important advantage of the
Smith predictor controller is that system dynamics can be
made faster by increasing the proportional gain k without
risking instability.
To conclude, we look at results of this section from the
perspective provided by the Proposition 5. In particular,
we observe that a controller without a Smith predictor,
such as a PID, does not implement the self-clocking
principle. Therefore, as it has been also noted in [21], it

may exhibit a huge settling time, that is, it may require
many RTTs to adapt the input rate to the bandwidth
available in the network.

8. Conclusions
In this paper the TCP congestion and flow control have
been modeled as a time-delay system controlled using
dead-time compensation. We have shown that a
proportional controller plus a Smith predictor provides an
exact model of the Internet flow and congestion control.
In particular we have shown: (1) enforcing the self-
clocking principle corresponds to implement the Smith
predictor; (2) the Smith predictor controller guarantees
stability and provides efficient congestion control; (3)
different TCP congestion control algorithms, such as the
classic TCP Reno or the recent Westwood TCP, can be
modeled by shaping the reference input. Finally we have
shown that controllers that do not implement the Smith
predictor, such as PID controllers, provides an
unacceptable sluggish systems because they do not
implement the self-clocking principle.

References

[1] V. Jacobson, “Congestion Avoidance and Control,”
ACM Computer Communications Review, 18(4):
314 - 329, August 1988.

[2] S. Mascolo, “Congestion control in high-speed
communication networks using the Smith
principle”, Automatica, vol. 35, no. 12, dec. 1999.

[3] S. Mascolo,"Smith's Principle for Congestion
Control in High Speed Data Networks", IEEE
Trans. on Automatic Control, vol. 45, no. 2, Feb
2000, pp. 358−364.

[4] O. Smith, “A Controller to Overcome Dead Time”,
ISA J., vol.6, no.2, pp.28-33, 1959.

[5] K. J. mostrA &&& , B. Wittenmark, Computer controlled
systems, Prentice Hall, Englewood Cliffs, N. J.,
1997.

[6] M. Gerla and R. Locigno and S. Mascolo and R.
Weng, “Generalized Window Advertising for TCP
Congestion Control”, European Transactions on
Telecommunications, no. 6, Nov/Dec. 2002.

[7] M. Allman, V. Paxson, W. R. Stevens, “TCP
congestion control,” RFC 2581, April 1999.

[8] D. Clark, “The design philosophy of the DARPA
Internet protocols,” In Proceedings of Sigcomm’ 88
in ACM Computer Communication Review, vol.
18, no. 4, pp. 106 - 114, 1988.

[9] Floyd, S.; Fall, K., “Promoting the use of end-to-
end congestion control in the Internet”, IEEE/ACM
Transactions on Networking, Aug. 1999, vol.7,
(no.4): 458-72.].

[10] L. L. Peterson, B. S. Davie, Computer Networks,
Morgan Kaufmann, San Francisco, CA, 2000.

[11] Dah-Ming Chiu;Jain, R., “Analysis of the increase
and decrease algorithms for congestion avoidance in

 11

computer networks”, Computer Networks and
ISDN Systems, June 1989, vol.17, (no.1), p. 1-14.

[12] T.V. Lakshman and U. Madhow, “The Performance
of TCP/IP for Networks with High Bandwidth-
Delay Products and Random Loss”, IEEE/ACM
Transactions on Networking, 5(3), June 1997.

[13] S. Floyd, T. Henderson, “ NewReno Modification to
TCP's Fast Recovery”, RFC 2582, April 1999.

[14] Brakmo L. S., O’Malley S. W., and Peterson L. L.,
“TCP Vegas: End-to-end congestion avoidance on a
global Internet,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 13, no.8, pp. 1465-
1480, 1995.

[15] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, R.
Wang, “TCP Westwood: End-to-End Bandwidth
Estimation for Efficient Transport over Wired and
Wireless Networks”, ACM Mobicom 2001, July,
Rome, Italy and Wireless Networks, vol. 8, no. 5,
Sept. 2002.

[16] L.A. Grieco, S. Mascolo, “TCP Westwood and Easy
RED to Improve Fairness in High-Speed
Networks”, Proc. of the VII International Workshop
on Protocols For High-Speed Networks
(PfHSN'2002), April, 2002 Berlin, Germany.
Lecture Notes on Computer Science (Lcns),
Springer Verlag.

[17] C. Parsa, J.J. Garcia-Luna-Aceves, “Improving TCP
Congestion Control over internets with
heterogeneous Transmission media”, Proc. IEEE
Int. Conf. On Network protocols, Toronto, Oct. 31-
Nov. 3,1999.

[18] F. P. Kelly, “Mathematical Modeling of the
Internet,” Proc. 4th International Congress on
Industrial and Applied Mathematics, July 1999.

[19] C. V. Hollot, V.Misra, Donald F. Towsley, and
Wei-Bo Gong. Analysis and design of controllers
for AQM Routers supporting TCP flows. IEEE
Trans. Automatic Control, 47(6):945–959, June
2002.

[20] S. H. Low, "A duality model of TCP flow control",
Proc. of ITC Specialist Seminar on IP Traffic
Measurements, Modeling and Management, Sept.
2000.

[21] D. Bansal and H. Balakrishnan and S. Floyd and S.
Shenker, “Dynamic Behavior of Slowly-Responsive
Congestion Control Algorithms”, Proc. of Sigcomm
2001.

[22] M. Allman, S. Floyd, C. Partridge, “Increasing initial
TCP’s initial window,” RFC 2414, Sept. 1998.

[23] K. Ästrom and T. Hägglund, PID Controllers:
Theory, Design, and Tuning, ISA, 1995.

[24] V. Jacobson, R. Braden, D. Borman, “ TCP Extensions
for High Performance ”, RFC 1323, May 1992.

[25] Hoe, J., C., “Improving the Start-up Behavior of a
Congestion Control Scheme for TCP,” Proc. of ACM
Sigcomm'96, pp. 270-280.

[26] Villamizar, C. and Song C. (1995), “High
Performance TCP in ANSNET”, ACM Computer
Communication Review, vol. 24, no. 5, pp. 45-60.

[27] S. Keshav, “A Control-theoretic Approach to Flow
Control,” Proc. ACM Sigcomm 1991, September
1991.

[28] S. Mascolo, ”Modeling and Stability Analysis of the
Internet Congestion Control”, Technical Report no.
S17/03 DEE Politecnico di Bari

[29] S. Mascolo, “The TCP/IP Flow and Congestion
Control, Part I: a Dynamic Model”, Submitted to
CDC 2003.

[30] S.H. Low, F. Paganini, and J. C. Doyle, “Internet
congestion control,” IEEE Contr. Syst. Mag., vol.
22, pp.28-43, Jan. 2002.

[31] P. Karn and C. Partridge, "Improving round-trip
time estimates in reliable transport protocols", ACM
Transaction on Computer Systems , vol. 9, no. 4, pp.
364-373, November 1991.

[32] Fast TCP at http://netlab.caltech.edu/FAST/
[33] L. A. Grieco, S. Mascolo, “Performance Evaluation

and Comparison of Westwood+, New Reno, and
Vegas TCP Congestion Control”, ACM Computer
Communication Review, vol. 34, no. 2, April 2004.

[34] S. Floyd, “HighSpeed TCP for Large Congestion
Windows”, IETF Internet Draft draft-ietf-tsvwg-
highspeed-00.txt, work in progress, July 2003.

