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Abstract 

The Internet has shown a great capability of endless 
growing without incurring congestion collapse. The key of 
this success lies on its TCP/IP congestion control 
algorithm. In this paper we use control theoretic analysis to 
model the Internet flow and congestion control as a time 
delay system. We show that the self-clocking principle, 
which is known to be a key component of any stable 
congestion Internet control algorithm, corresponds to 
implement a simple proportional controller (P) plus a Smith 
predictor (SP), which overcomes feedback delays that are 
due to propagation times. Different variants of TCP 
congestion control algorithms, such as classic TCP Reno or 
the recent Westwood TCP, can be modeled in a unified 
framework by proper input shaping of the P+SP controller 
structure. Finally, we show that controllers that do not 
implement the Smith predictor, such as proportional (P) 
controllers or proportional+ derivative+ integral (PID) 
controllers, provide an unacceptable sluggish system 
because they do not implement dead-time compensation. 

 
1. Introduction and related works 

The stability of the Internet and in particular the 
prevention of congestion requires that flows use some form 
of end-to-end congestion control to adapt the input rate to 
the available bandwidth [1-3],[7-10]. In fact, after the 
introduction of the Transmission Control Protocol/Internet 
protocol (TCP/IP), the network was suffering from 
congestion collapse until congestion control was introduced 
into the TCP stack in the late 1980s by Van Jacobson [1].  

TCP has two feedback mechanisms to tackle congestion: 
the flow control and the congestion control. The TCP flow 
control aims at avoiding the overflow of the receiver’s 
buffer and is based on explicit feedback. In particular, the 
TCP receiver sends to the source the Receiver’s Advertised 
Window, which is the buffer available at the receiver. The 
TCP congestion control aims at avoiding the flooding of 
the network and is based on implicit feedback such as 
timeouts, duplicate acknowledgments (DUPACKs), round 
trip time measurements. In this case the source infers the 
network capacity using an additive–increase/ multiplicative 
- decrease (AIMD) probing mechanism [11]. The increase 
phase aims at increasing the flow input rate until the 
network available capacity is hit and a congestion episode 

happens. The sender becomes aware of congestion via the 
reception of duplicate acknowledgments (DUPACKs) or 
the expiration of a timeout. Then it reacts to light 
congestion (i.e. 3 DUPACKs) by halving the congestion 
window (fast recovery) and sending again the missing 
packet (fast retransmit), and to heavy congestion (i.e. 
timeout) by reducing the congestion window to one. Both 
the flow and congestion control implements the self-
clocking principle, that is, when a packet exits a new one 
enters the network. The described mechanisms form the 
core of the classic Internet congestion control algorithm 
known as Tahoe/Reno TCP [1,7,10]. It is interesting to 
notice that these mechanisms still form the main 
ingredients of all enhanced and successful TCP congestion 
control algorithms that have been proposed in the literature.  

Research on TCP congestion control is still active in 
order to improve its efficiency and fairness, especially in 
new environments such as the wireless Internet [12] or the 
high-speed Internet [24-26], [32-34]. We briefly summarize 
the most significant modifications that have been proposed 
up to now [30].  

The New Reno feature is an enhancement of Reno that 
has been proposed to avoid multiple window reductions in 
a window of data [13]. TCP Vegas estimates the expected 
connection rate as cwnd/RTTm and the actual connection 
rate as cwnd/RTT; when the difference  between the 
expected and the actual rate is less than a threshold α>0, 
the cwnd is additively increased. When the difference  is 
greater than a threshold β>α then the cwnd is additively 
decreased. When the difference is between α and β, cwnd is 
maintained constant [14]. Vegas TCP provides the basic 
ideas behind the new Fast TCP congestion control 
algorithm, which has been recently proposed by researchers 
at Caltech [32]. In authors’ words, “Fast TCP is a sort of 
high-speed version of Vegas”. At the time of this paper 
Fast TCP is still in a trial phase and authors do not have 
released any kernel code or ns-2 implementation. Being 
based on RTT measurements to infer congestion, it could 
inherit all drawbacks of Vegas, mainly the incapacity to 
grab bandwidth when coexisting with Reno traffic or in the 
presence of reverse traffic [33]. TCP Westwood uses an 
end-to-end estimation of the available bandwidth to 
adaptively set the control windows after congestion 
[15,16,33]. Both Vegas and Westwood preserve the 
standard multiplicative decrease behavior after a timeout. 
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TCP Santa Cruz proposes to use estimate of delay along the 
forward path rather than round trip delay and to reach a 
target operating point for the number of packets in the 
bottleneck of the connection [17]. The concept of 
generalized advertised window has been proposed in [6] to 
provide an explicit indication of the network congestion 
status. 

Recently, non linear stochastic differential equations have 
been proposed to model the TCP dynamics [16], [18-20]. In 
these models, the dynamics of the expected value of the 
cwnd is mainly expressed as a function of the packet drop 
probability through a non-linear differential equation. 
These models, and their linearized ones, have been used to 
predict the long-term TCP throughput and to design control 
laws for throttling the packet drop probability of routers 
implementing Active Queue Management [19]. In 
particular, the mentioned nonlinear stochastic differential 
model of the TCP window has been linearized around the 
equilibrium to derive a transfer function from the packet 
drop probability to the bottleneck queue length. The 
linearized model has been employed to design a control law 
for the packet drop rate aiming at stabilize the queue 
average length [19]. It is not clear how effective is the 
model to deal with real-time dynamics of TCP and in 
presence of multi-bottleneck topologies. 

In this paper we propose a general control theoretic 
framework to model the TCP flow and congestion control 
along with its variants such as Reno and Westwood. We 
derive the following main results: (1) different TCP control 
algorithms can be modeled using the same control 
structure, which is a proportional controller plus a Smith 
predictor for dead-time compensation; (2) the Smith 
predictor plays the fundamental role of overcoming delays 
in the feedback loop in order to provide a stable and fast 
control; (3) the Smith predictor provides the control 
theoretic explanation of the self-clocking principle; (4) 
different control algorithms such as Reno, Westwood and 
so on can be explained in terms of different settings of the 
controller reference input signal. 

The work is organized as follows: Section 2 outlines the 
TCP flow and congestion control algorithm; Section 3 
models the dynamic behavior of a generic TCP flow; 
Section 4 models the TCP flow and congestion control 
using transfer functions and a proportional controller plus a 
Smith predictor; Section 5 shows that the Smith predictor 
enforces the self-clocking principle and provides stability; 
Section 6 models the TCP Reno and Westwood control 
algorithms by proper shaping of the set point; Section 7 
shows that other simpler controllers, such as proportional-
integral-derivative (PID), cannot be used in the Internet 
because they would provide too sluggish behavior; thus, the 
classic TCP remains the starting point to be considered 
when designing any new control algorithm; finally Section 
8 draws the conclusions. 

2. The TCP/IP flow and congestion control  

A TCP connection is a virtual pipe between the send 
socket buffer and the receive socket buffer (see Fig. 1). The 
TCP has two feedback mechanisms to tackle congestion: 
the flow control mechanism that prevents the sender from 
overflowing the receiver’s buffer, and the congestion 
control mechanism that prevents the sender from 
overloading the network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Schematic of a TCP connection 

2.1 The flow control algorithm 
The TCP flow control is based on explicit feedback. In 
particular, the TCP receiver sends to the source the 
Receiver’s Advertised Window, which is the buffer 
available at the receiver. Let MaxRcvBuffer be the size of 
the receiver buffer in bytes, LastByteRcvd the last byte 
received and NextByteRead the next byte to be read. On the 
receive side TCP must keep 

LastByteRcvd−NextByteRead≤MaxRcvBuffer 

to avoid overflow. Therefore, receiver advertises a window 
size (AdWnd) of 

AdWnd=MaxRcvBuffer−(LastByteRcvd−NextByteRead) 

which represents the amount of free space remaining in the 
receiver buffer. The TCP on the send side computes an 
Effective Window W  

W=AdWnd−(LastByteSent−LastByteAcked) (1) 

which limits how much outstanding packets it can send 
[10].  

2.1 The congestion control algorithm 
Considering that the network is a “black box” that does not 
supply any explicit feedback to the source, the issue here is 
to look for "some measurement" of the network capacity 
that must be inferred at the end nodes using implicit 
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feedback received from the networks such as timeout and 
acknowledgments. Today TCP estimates the best effort 
capacity of the network using a variable called congestion 
window (cwnd). In particular, the TCP learns the 
appropriate value of the cwnd by using an additive-
increase/multiplicative-decrease (AIMD) paradigm. The 
increasing process goes through two phases: the slow start  
and the congestion avoidance . During the slow start phase 
the cwnd is exponentially increased until the slow start 
threshold (ssthresh) value is reached. This phase is 
intended to quickly grab available bandwidth. After the 
ssthresh value is reached, the cwnd is linearly increased to 
gently probe for extra available bandwidth. This phase is 
called congestion avoidance. At some point the TCP 
connection starts to lose packets. After a timeout cwnd is 
drastically reduced to one and the slow start, congestion 
avoidance cycle repeats. After 3 DUPACKs cwnd is 
reduced by half and the congestion avoidance phase is 
entered [7,10]. 
To implement both flow and congestion control, the TCP 
sender computes the minimum of the congestion window 
and the advertised window and computes the Effective 
Window W as follows   

W=MIN(Cwin,AdvWin)−OutstandingPackets  (2) 

where  

OutstandingPackets=LastByteSent −LastByteAcked 

represent the in flight packets [10]. 
 

3. Modeling a generic TCP flow 
In his milestone paper, Van Jacobson (1988) clearly states 
that: “A packet network is to a very good approximation a 
linear system made of gains, delays and integrators”[1]. In 
this paper we propose a detailed model of a TCP/IP 
connection using (a)  integrators to model network and 
receiver buffers and (b) delays to model propagation times.  

A data network is a set of store-and-forward nodes 
connected by communication links. A generic TCP flow 
goes through a communication path made of a series of 
buffers and communication links. 

The number of packets of the considered TCP flow that 
are stored at the generic i-th buffer along the 
communication path is given by the following dynamic 
equation: 

∫ ∞− −−= t dioibiutix ττττ )]()()([)(  (3) 

where ui(t)≥0 models the data arrival rate, bi(t)≥0 models 
the data depletion rate, i.e. the used bandwidth, and oi(t)≥0 
models the overflow data rate, i.e. the data that are lost 
when the buffer is full and the input rate exceeds the output 
rate.  

The dynamic equation of the generic communication link 
(i-1) connecting the (i-1)-th buffer to the next (i)-th buffer 
is a pure delay. In particular, letting bi-1(t) be the link input 
rate at the (i-1)-th buffer and ui(t) be the link output rate at 
the next (i)-th buffer, it results: 

)1(1)( −−−= iTtibtiu   (4) 

where Ti-1 is the link propagation time. 
Starting from the basic equations (3) and (4), we propose 

to model a generic TCP flow over an IP network as it is 
shown in Fig. 2. In particular, Fig. 2 shows a functional 
block diagram made of: 
 

1) The TCP connection receiver buffer of length xr(t), 
which is modeled using an integrator with Laplace 
transfer function 1/s. The receiver buffer receives the 
inputs ur(t), br(t), or(t), which represent the input rate, 
the depletion rate and the overflow data rate, 
respectively; 

2) The n-th buffer that the TCP connection goes through 
before reaching the receiver buffer, which is modeled 
using an integrator with output xn(t). The n-th buffer 
receives the inputs un(t), bn(t), on(t), which, again, 
represent the input rate, the depletion rate and the 
overflow data rate, respectively. It is important to 
notice that the depletion rate bn(t) reaches the next 
buffer (n+1), which is the receiver buffer, after the 
propagation time Tn, i.e. ur(t)= bn(t-Tn). Moreover, it 
should be noted that the input rate un(t) is equal to the 
depletion rate bn-1(t) at the previous (n-1)-th buffer, 
i.e. bn-1(t-Tn-1)= un(t), where Tn-1 is the propagation 
time from the (n-1)-th buffer to the n-th buffer. 
Depletion rates are unpredictable because they model 
the best effort bandwidth available for a TCP 
connection when going over statistically multiplexed 
IP network. 

The series of buffers shown in Fig. 2 can be recursively 
augmented both in the left direction, to model up to the first 
buffer node encountered by the TCP connection, and in the 
right direction to model buffers n+j, with j=2,p 
encountered by ACK packets when going back from the 
receiver to the sender. 

By considering a closed surface that contains the TCP 
path going from the first to the last buffer modeled by a set 
of integrators indexed from 1 to n+p=m, where the m-th 
integrator models the last buffer encountered by the TCP 
along the connection round trip, we can invoke the flow 
conservation principle for the unique input rate, which is 
the TCP input rate u1(t), and the output rates that are: (a) 
bm(t), which models the bandwidth used by the TCP 
connection, i.e. the best-effort bandwidth as viewed by the 
considered TCP flow through the ACK stream; and (b) the  

 

 



 4

 
 
 
 
 
 
 
 

 
 

Fig. 2 Dynamic block diagram of a generic TCP/IP flow 
 

overflow rates oi(t), for i=1,m, which represent packets that 
are lost at each buffer along the path connection.  

In equations, we can write the number x(t) of packets 
belonging to the considered TCP flow and stored into the 
network by adding packets stored at each buffer along the 
path: 

∑
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1
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Substituting (3) in (5) and considering the (4) it turns out  
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Eq. (6) states that the network storage is equal to the 
integral of the TCP input rate u1(t) minus the output rate 
bm(t) leaving the last buffer of the path, minus the sum of 
the overflow rates oi(t), minus the sum of packets that are in 
flight over each link i. 

Since the TCP implements an end-to-end congestion 
control that does not receive any explicit feedback from the 
network, it is not possible for the controller to know terms 
in (6). Thus, we consider the sum of the in flight packets 
plus the stored packets, which we call the total network 
storage tx : 
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and the sum of overflow rates to : 
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Thus, we can write 

∫
∞−

ττ−τ−τ=
t

d)](to)(mb)(u[)t(tx 1  (7) 

By considering that the TCP establishes a “circular flow”, 
i.e. that the data input rate comes back to the sender as an 
ACK rate, it can be said that bm(t) models the rate of ACK 
packets. Thus we can write: 

)()(1)( ttoTtutmb −−=  (8) 

which says, in mathematical words, that the ACK rate is 
equal to the input rate, delayed by the round trip time, 
minus the loss rate. By substituting (8) in (7) it turns out: 

∫∫
−

ττ=

∞−

τ−τ−τ=
t

Tt
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t

d)]T(u)(u[)t(tx 111  (9) 

Equation (9) states that the network total storage is equal 
to the integral of the input during the last round trip time T. 

 

4.  Modeling the TCP flow and congestion control 

This section aims at showing that the closed loop control 
system depicted in Fig. 3 implements both the TCP flow 
and congestion control. In details, the following variables 
and blocks are shown: 

 
(1) The receiver queue length xr and the receiver capacity 

r1 provide the term r1−xr (i.e. the Advertised Window), 
which reaches the sender after the propagation time Tfb 
that is modelled in the Laplace domain by the transfer 

function fbsT
e
− ; 

(2) The set point r2(t) represents a threshold for the total 
network storage, which is modeled by the queue xt(t); 

(3) The minimum block takes the minimum between the 
Advertised Window and )(2 tr ; 

 
 

ur(t)= bn(t-Tn) 
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Fig. 3: Functional block diagram of the TCP flow and congestion control 
 

 
(4) Delays T1i and Tir model the time delay from the sender 

to the generic node i and from the node i to the 
receiver, respectively; the forward delay from the 
sender to the receiver is Tfw= T1i + Tir;  

(5) The controller transfer function  

)1(1
)(

sTe
s
k

k
sG

−−+
= , (10)  

which contains the proportional gain k and the Smith 

predictor ssTe /)1( −− , where T is the round trip 
time sum of the forward delay Tfw and the backward 
delay Tfb. Notice that the role of the Smith predictor is 
to overcome the delay T, which is inside the feedback 
loop and is harmful for the stability of the closed-loop 
control system (Mascolo, 1999).  

Notice that the buffer xt in Fig. 3 can model both the total 
network storage of packets but also it can model the generic 
buffer xi  that is the bottleneck of the TCP connection at 
time t; moreover, a moving bottleneck is easily captured by 
the model through delays T1i and Tir where i is the generic 
moving bottleneck. 

In order to show that the block diagram in Fig. 3 models 
the TCP/IP flow and congestion control, first we will 
assume that the bottleneck is at the receiver and then that 
the bottleneck is inside the network. 

 
4.1 The TCP Flow Control 

By assuming that the bottleneck is at the receiver, it 
results: min(Adwnd,r2(t)) = Adwnd, ur(t) = u1(t-Tfw) and 
ot(t)=0. In other words, the connection is constrained by the 
receiver, and the input rate reaches the receiver after the 
forward delay without network queuing, i.e. bt(t)=u1(t-T1i). 
Under these conditions, Fig. 3 can be transformed into Fig. 

4 that models the TCP flow control. The following 
propositions can be shown. 

 
Proposition 1 : The Smith controller (10) implements the 

TCP flow control equation (1). 
Proof: To find the input rate u1(t) computed by the TCP 

sender we use standard Laplace techniques, that is, we 
compute the Laplace transform of the input rate: 
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By transforming back to time domain it results: 
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By considering that  
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=
−∫ ττ d

T
Tt

u )(1 Outstanding packets 

Equation (11) gives the classic window-based flow 
control equation (1), where ktuW /)(1= . By considering 
that TWtu /)(1 =  relates the rate and the window of a 
window-based control, it results 1/k=T. 

Notice that the outstanding packets automatically take 
into account the round trip time T that in general can be 
time varying due queuing delays. In the case of flow 
control T is, to a very good approximation, constant since 
there is no congestion inside the network which implies 
that network queuing delay is zero and round trip time is 
pure propagation delay.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Functional block diagram of the TCP flow control 
 

Proposition 2: The TCP flow control equation (11) 
guarantees that the receiver queue is always bounded by the 
receiver capacity 1r , i.e.: 

1)( rtrx <  for any t 
Proof: The queue length can be computed by exploiting 

the superposition property of linear systems. In particular, it 
is easy to compute the input-output transfer function from 
R1(s) to the receiver queue length Xr(s) that is:  

 

sTe
sk

k
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rX −
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and the transfer function from Br(s) and Or(s) to Xr(s) that 
is: 
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By assuming )(11)(1 trtr ⋅= , where 1r  is the receiver buffer 

capacity and 1(t) is the step function that models a 

connection starting at t=0, there results: 
s
r

sR 1)(1 = . By 

exploiting the superposition property of linear systems and 
by transforming back to time domain there results: 
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which satisfies the condition 
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since or(t), br(t) are always non negative. This concludes 

the proof.  
 
Lemma 1: Proposition 2 guarantees or(t)=0 for any t.  

Proof: Proposition 2 proves that the receiver queue 
length is always upper bounded by the receiver queue 
capacity, which implies that receiver overflow is always 
avoided, i.e. or(t)=0 for any t. 

 

4.2 The TCP Congestion Control 
By assuming that bottleneck is localized inside the 

network, there results min(Adwnd,r2(t))= r2(t) and we can 
ignore the outer feedback loop. Therefore, Fig. 3 can be 
transformed into the equivalent one shown in Fig. 5, which 
models the TCP congestion control.  

 
Proposition 3 : The Smith controller (10) implements the 

TCP congestion control equation (2). 
Proof: By assuming that the bottleneck is inside the 

network, there results: min(Adwnd,r2(t))= r2(t). From Fig. 
5, the output of the Smith predictor in the Laplace domain 
is:  

s

sTe
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By transforming back to time domain it results: 
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Therefore the output of the controller is: 
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Fig. 5 Functional block diagram of the TCP congestion control 
 
 

gpacketsoutstandintr
k

tu
−= )(2

)(1   (13)  

 
Equation (13) gives the classic window-based congestion 

control equation (2), where ktuW /)(1= , and r2(t)=cwnd. 
This concludes the proof. 

 
Remark 1: It should be noted that (12) and (13) are the 

rate-besed and window-based versions of the same control 
equation. 

 
Proposition 4:  The TCP congestion control equation (13) 

guarantees a total network storage xt that is always bounded 
by the threshold 0)(2 >tr , i.e.:  

 
)(2)( trttx ≤  for any t 

Proof: From (9), the total network storage is:   

)()(1)( tq
t

Tt

duttx =
−

= ∫ ττ  

Since u1(t) and q(t) are always non negative, and r2(t) is 
strictly positive, from the control law: 
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






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T

Tt
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it turns out )()()(2 ttxtqtr =≥ , which concludes the proof. 
 
Lemma 2: If a TCP flow finds in each buffer it goes 
through a space of ci packets, where ci> r2(t) for any t and i, 
then the Proposition 4 guarantees ot(t)=0 for any t. 

 
Proof: The proof follows from Proposition 4, which proves 
that )(2)( trttx ≤ , and assumptions of Lemma 2. 
 
5. The self-clocking principle  

Based on the theoretical control framework outlined in the 
previous section, we are now ready to show that the self-
clocking principle can be theoretically explained using the 
Smith predictor. It is largely known that the self-clocking 
principle is a key feature of the TCP congestion and flow 
control [1]. This has been recently recognized also in the 
context of Transport Friendly Rate Control (TFRC) 
algorithms [21], where it has been shown that algorithms 
that do not employ the self-clocking principle may exhibit a 
huge settling time, that is, they may require many RTTs to 
adapt the input rate to the bandwidth available in the 
network. As a consequence, to overcome the disastrous 
effects due to the violation of the self-clocking principle, 
the original TFRC has been enhanced with the self-
clocking mechanism. In this section we show that the self-
clocking can be mathematically interpreted as the effect of 
the Smith predictor branch. 
 

Proposition 5. The Smith predictor branch ( ) se sT /1 −−  
enforces the self-clocking principle. 
 
Proof: By transforming back to time domain the quantity 

)()( sUsq s= ( ) se sT /1 −−  it results 
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where q(t) represents the data that have been sent since the 
last round trip time T up to now, i.e. the outstanding 
packets. When the time t advances of ∆, i.e. at time t+∆, 
the amount of data  
 

ττ duq
Tt
Tt sacked ∫

∆+−
−= )(  

 
are acknowledged so that the control equation (3) or (5) can 
send this amount of data in the time interval [t, t+∆], that 
is, the self-clocking principle is enforced. 
 
6. Modeling Reno or Westwood TCP by input 
shaping 

In this section we show that the dynamic model depicted 
in Fig. 5 is able to model successful variants of TCP 
congestion control, such as for example Tahoe/Reno [1] or 
the recent Westwood TCP [15]. Other TCP variants, such 
as Vegas or Santa Cruz, could also be modeled in the same 
unified framework. 

We have seen that the congestion control algorithm aims 
at estimating the available bandwidth using a probing 
mechanism. The classic TCP probing mechanism, which is 
currently used in all successful variants of the TCP such as 
Tahoe/Reno, New Reno or Westwood, comprises two 
mechanisms: the slow-start phase, which exponentially 
increase the congestion window up to the ssthresh, and the 
congestion avoidance phase which linearly increase the 
cwnd when cwnd≥ ssthresh. Now we show that both these 
mechanisms can be modeled in the control theoretical 
framework reported in Fig. 5 by properly shaping the 
controller input r2(t)=cwnd. 

 
6.1 The Reno Algorithm 
The TCP Reno slow-start phase can be modeled by 

setting the reference input r2(t) as follows: 

ssthreshtr      while      ortr
T

t

<⋅= )(22)(2   
 
where the initial window r0 is generally equal to 1 or 2 

[19]. TCP Reno enters the congestion avoidance phase 
when r2(t)=ssthresh at )0(2log1 rssthrehTt −= . This phase 
can be modelled by setting the reference input r2(t) as 
follows: 

 

ssthreshtr      when      
T

tt
ssthreshtr ≥

−
+= )(2

1)(2  

 
The TCP probing phase ends when 3 DUPACKSs are 

received or a timeouts happens, which indicate that the 
network capacity has been hit. In these cases the cwnd  
behavior can be modeled using the following settings for 
r2(t): 

 
After a timeout at tk 

     0r,
tr

ssthresh )
2

)(2max(=   

    0)(2 rtr =  

ssthreshtr     if        
T

ktt
ssthreshtr

ssthreshtr      if                   rtr
T

ktt

≥
−

+=

<⋅=

−

)(2)(2

)(220)(2  

 
After 3 DUPACKs at tk 

     0r,
tr

ssthresh )
2

)(2max(=  

          )(2 T

tt
ssthreshtr k−

+=  

 
 6.2 The Westwood algorithm 
TCP Westwood employs the same probing mechanism of 
Reno. It differs from Reno because of the behavior after 
congestion. In fact, Westwood sets the cwnd and ssthresh 
using an end-to-end estimate of the network bandwidth 
bm(tk) available at time of congestion. In particular, the 
Westwood TCP window behavior after congestion can be 
modeled as follows: 
 
After a timeout at tk 

 

    minRTT)kt(bssthresh ⋅=  
    rtr 0)(2 =  

ssthreshtr     if        
T

ktt
ssthreshtr

ssthreshtr      if                  ortr
T

ktt

≥
−
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<⋅=

−

)(2)(2

)(22)(2  

 

After 3 DUPACKs at tk 

 

    minRTT)kt(bssthresh ⋅=  

          
T

ktt
ssthreshtr

−
+=)(2  

 
 

7.  Why a PID controller is not efficient to control 
the Internet 

We have seen that the Internet flow and congestion 
control problem reduces to the issue of controlling an 
integral mode with a time-delay in cascade. It can be said 
that, in general, congestion control in data networks 
consists of controlling a time-delay system.  

The proportional-integral-derivative (PID) controller is by 
far the most common control algorithm and performs 
satisfactorily well in many practical cases [23]. 
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In this section we show that a standard PID cannot 
satisfactorily control a data network such as the Internet 
since in order to provide stability for the closed-loop 
system it is necessary to use a low gain that turns out an 
unacceptable sluggish system.  

To start the discussion we consider the simple 
proportional controller k shown in Fig. 6. In order to 
study the stability of this system, we invoke the Nyquist 
stability criterion. To the purpose, the polar diagram of 

the open loop-transfer function sTe
s

k −  is depicted in 

Fig. 7, which also shows the vertical asymptote of 
abscise − kT  and the circle with unity magnitude. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: A data flow controlled by a proportional controller 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 The Nyquist plot of the open loop-transfer function 

 
 
For the Nyquist stability criterion, the polar plot must not 
encircle the point 1− . The crossover frequency 0ω  
(frequency for  which the magnitude of the loop 
frequency response is unity) is obtained from the equality  
 

10

0
=− Tje

j

k ω
ω

,  

 
which turns out k=0ω .  

The closed-loop system is stable if the phase margin 
 

kTTFM −=−−= 2/02/ πωππ   
 
is positive, which turns out the stability condition: 
 
 Tukk 2/π=<  (14)  
 

where ku is the ultimate gain. 
The stability condition (14) states that the gain k must be 
lower and lower with increasing round trip time T. As a 
consequence, the proportional controller provides a too 
sluggish closed-loop behaviour in the case of data 
networks which are characterized by large propagation 
delays, such as in the case of high-speed networks, wide 
area networks or satellite connections. 
The use of a PD controller does not help much to 
improve the promptness of the controller [23]. In fact, 
when using using a PD, the open-loop transfer function 

becomes sTe
s

Dsk −+ )1( τ
. The crossover frequency is 

now 0
2

1 )(1/ ωτω >−= Dkk . Thus, even though the 
derivative action adds the positive contribute 

)( 1 Darctg τω  to the phase margin, it must be considered 

that at the new cross-over frequency 1ω  the negative 
contribute to the phase margin due to the time delay is 
now augmented of T)01( ωω − . Thus, in the presence of 
large delay T, the lead action of a PD controller may not 
be useful or may be even pejorative of the stability 
margin because it may happen that 

DarctgT τωωω 1)01( >− . 
Finally, the integral action of the standard PID controller 
is surely not recommended for the system we are 
considering because it would reduce the phase margin of 

2/π  at any frequency thus making the system stability 
even more critical.  
To get a further insight we compare the proportional 
controller with a proportional controller plus a Smith 
predictor using computer simulations. We consider a 
connection with T=1000 units of time. From (14), the 
ultimate gain is ku=0.001571. Following the Ziegler-
Nichols rules, we choose the proportional gain 
k=ku/2=0.000785. We have also tried the Ziegler-Nichols 
rules for tuning a PI and a PID controller but in this case 
we have found that they do not provide a stable system, 
which confirms that it is not easy or efficient to control  a 
system with large delays using a PI or a PID controller. 
We set the reference signal r(t)=10000⋅1(t), which 
corresponds to setting a queue threshold of 10000 
packets at the initial time t=0. We assume an available 
bandwidth of 4 pkts/unit of time. This pattern is very 
appropriate to test the promptness of the congestion 
control algorithm in matching the time-varying available 
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bandwidth. Fig. 8 shows the input rate dynamics obtained 
using a proportional controller (P) and a proportional 
controller plus a Smith predictor (P+SP) both with 
k=0.000785. It shows that the input rate obtained using 
the Smith predictor is much faster in reaching the steady 
state value of 4 pkts/unit of time. Moreover the Smith 
predictor provides a much smaller band of oscillation for 
the input rate. Fig. 9 shoes that the Smith predictor 
provides a much more smaller queue length that is a very 
important feature for networks since it means much 
smaller queuing delays. 
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Fig. 8: Input rate using a P or P+SP controller 
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Fig. 9: Queue length using a P or a P+SP controller 

 
 

It is worth noting that another important advantage of the 
Smith predictor controller is that system dynamics can be 
made faster by increasing the proportional gain k without 
risking instability. 
To conclude, we look at results of this section from the 
perspective provided by the Proposition 5. In particular, 
we observe that a controller without a Smith predictor, 
such as a PID, does not implement the self-clocking 
principle. Therefore, as it has been also noted in [21], it 

may exhibit a huge settling time, that is, it may require 
many RTTs to adapt the input rate to the bandwidth 
available in the network. 
 
8. Conclusions  
In this paper the TCP congestion and flow control have 
been modeled as a time-delay system controlled using 
dead-time compensation. We have shown that a 
proportional controller plus a Smith predictor provides an 
exact model of the Internet flow and congestion control. 
In particular we have shown: (1) enforcing the self-
clocking principle corresponds to implement the Smith 
predictor; (2) the Smith predictor controller guarantees 
stability and provides efficient congestion control; (3) 
different TCP congestion control algorithms, such as the 
classic TCP Reno or the recent Westwood TCP, can be 
modeled by shaping the reference input. Finally we have 
shown that controllers that do not implement the Smith 
predictor, such as PID controllers, provides an 
unacceptable sluggish systems because they do not 
implement the self-clocking principle.  
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