TCP internal buffers optimization for fast
long-distance links

A.Baiocchi, S. Mascold, F. Vacirca
*Infocom Department,
University of Roma “La Sapienza”,
Via Eudossiana 18, 00184 Rome, Italy.
TDEE Politecnico di Bari,
via Orabona 4, 70125 Bari, Italy.

Abstract— In recent years, issues regarding the behavior of second one is used by the receiver entity to backlog all out-
TCP in high-speed and long-distance networks have been ex-of-order received packets that cannot be withdrawn by the
tensively addressed in the networking research communityooth recejver application. These two buffers assume a fundaahent
because TCP is the most widespread transport protocol in the role during the packet recovery phase that follows a “Fast
current Internet and because bandwidth-delay product coninues e L. .
to grow. The well known problem of TCP in high bandwidth- Retran;mn retransmission, because a wrong c_h0|ce'otathes
delay product networks is that the TCP Additive Increase buffer sizes can lead to remarkable underutilization oflitie
Multiplicative Decrease AIMD probing mechanism is too slow in capacity.
adapting the sending rate to the end-to-end available bandidth. The goal of this work is to investigate, by using both ana-
To overcome this problem, many modifications have been pro- |ytical models and simulation results, optimal sizing oé th
g?éeggg“'[g]a:n';AgJBTlngg% [%]TCP [2], HSTCP [3], HTCP [4], retransmission and out-of-order buffers in case of modified
The goal of this work is to investigate, by using both analytal TCP congestion control settings and to highlight diffeesic
models and simulation results, optimal sizing of the retras- P€tween NewReno TCP and SACK TCP packet loss recovery
mission and out-of-order TCP buffers in case of modified TCP Schemes in terms of TCP internal buffers requirements.
congestion control settings and to highlight differences &étween The rest of the paper is organized as follows. In Sectiondl th
NewReno TCP and SACK TCP packet loss recovery schemes inTCP congestion control and the NewReno and SACK packet
terms of TCP internal buffers requirements. An important re sult recovery mechanisms are described in detail. In Sectign IlI
is that the SACK option turns out to be particularly effective in 0 analysis to derive the optimal TCP internal buffer sizes
(rjeecfzcmg buffer requirements in the case of very high bandwith- carried out, whereas in Section 1V, simulative results wistd

y product links.
with ns-2 simulator are reported to validate analyticalitess

Finally, in Section V, the main conclusions are drawn.
. INTRODUCTION

. _ _ _ Il. BACKGROUND ONTCP
In recent years, issues regarding the behavior of TCP inThe pasic TCP congestion control is essentially made of

high-speed and long-distance networks have been ext@nsivg nrohing phase and a decreasing phase. The probing phase
addressed in the networking research community, both I3ecay¢ siandard TCP consists of an exponential phase (i.e. the

TCP is the most widespread transport protocol in the curre’|y\y start” phase) and a linear increasing phase (i.e. the

Internet and because bandwidth-delay product continues« ngestion Avoidance” phase). The probing phase stops

grow. The well known problem of TCP in high bandwidthy,hen" congestion is experienced in the form of timeout or

delay product networks is that the TCP Additive '”Cfeasr‘”eception of DupThresh duplicate acknowledgments (DU-
Multiplicative DecreaseAIMD probing mechanism is too PACKs). The TCP dynamic behaviour in “steady state”
slow in adapting the sending rate to the end-to-end availaRlygition can be considered with good approximation a se-
bandwidth. _ o uence of congestion avoidance phases followed by receptio
To overcome this problem, many modifications have beeR ., 7p,,csh DUPACKs. When DupThresh DUPACKS
proposed such as FAST TCP [1], STCP [2], HSTCP [3], HTCRe received, the TCP implements a multiplicative decrease
[4], BIC TCP [5] and CUBIC TCP [6]. behavior. The generalization of the classic additive iasee

However, two key parameters are often omitted in the anghy,iplicative decrease TCP settings can be made as fallows
ysis of new congestion control proposals: they are the TCPa) On ACK reception:

retransmission queue size at the sender and the receivee que
that handles out-of-order packets. The first buffer is usgd b cwnd «— cwnd + a(cwnd) (1)
TCP sender to save all the outstanding packets, whereas ths) When DupThresh DUPACKS are received:

This work is supported by the ltalian Ministry for Univessit cund «— cwnd — b - cwnd (2)
and Research (MIUR) under the PRIN project FAMOUS
(http://www.tnt.dist.unige.it/famous/) 1The default value ofDupThresh is 3.

Packet 2 Lost Packet 9 Lost
) .

wherea(cwnd) is 1/cwnd andb is 0.5 in the case of classic ‘ ‘
TCP. The most of TCP congestion control modifications | "Q\\&‘%
o

{8
proposed for high bandwidth-delay networks can be desdribe i 0 ’i\\

\\m

A

by modifying a and b. Some protocols (e.g. STCP) employ /¢ "fé””’ //\

constant values for and b, whereas other protocols, such "&”\ / /

as HSTCP and CUBIC, modify them dynamically. All these ’Q’ ‘/ ‘/
protocols can independently use NewReno or SACK recover 0 W
procedure independently of the congestion control algovit | cwno-upackes 1 23 4%)) N
NewReno TCP and SACK TCP differ in the recovery phase,; Fompcet2o1s | e ! |
i.e. when the TCP recovers from packet losses. In particular Packet 2 Retransission Packét 9 Retransrission Fast Recovery &

NewReno TCP recovery phase is based only on the cumulative _
ACK information whereas SACK TCP receiver exploits the Fig. 1. NewReno Fast Retransmit and Fast Recovery example.
TCP Selective Acknowledge option to advertise the sender
about out-of-order received blocks. This information is-em
ployed by the sender to recover from multiple losses moeglowed to retransmit packet 9. In the meanwhile, the sender
efficiently than NewReno TCP. In the following a detaile¢an transmits a new packet every received ACK. It is impdrtan
description of NewReno and SACK loss recovery procedute pinpoint the role of the sender and the receiver buffeirdyr
is reported. “Fast Recovery” and “Fast Retransmit”. The sender has to
store all the packets that have not been acknowledged by a
A. NewReno TCP cumulative ACK in the retransmission buffer and the receive
After that DupT hresh Duplicate ACKs DupThresh+1 has to store in the out-of-order buffer all the packet adive
identical ACKs requesting for the same packet sequenwget in-sequence. In the exemple of Figure 1, for instanae, th
number) are received and that the congestion windowd sender has to store in the retransmission buffer all the gtack
is halved andssthresh is set tocwnd, the requested packetfrom sequence number 2 to 20. From the instant it retransmits
is retransmitted. This phase is named “Fast RetransmiterAf packet 9 and the reception of ACK for packet 9, it has to
the “Fast Retransmit” retransmission the TCP protocol mntestore packets from sequence number 9 to 25. The same can
in a new phase named “Fast Recovery”. This phase lasts i# argued for the out-of-order buffer in the receiver entity
the ACK for the highest transmitted packet at the beginninghere the receiver entity has to store all the packets tha ha
of this phase (stored in theecover variable) is received. been received out-of-order before moving them in-sequémce
During this phase, for each additional duplicate ACKhe the socket buffer where the application can pick them up.
congestion window is incremented by one packet, to reflect
the departure from the network of an additional segment. B. SACK TCP

new segment is transmitted if it is allowed by the congestion i the introduction of the Selective Acknowledge infor-

window and' the receiver advertlsepl window. When an ACK,ation in the TCP packet header options [9], the TCP sender
acknowledging new packets, but with sequence number lowerintormed by the receiver about non contiguous blocks of
thanrecover (partial ACK), the first unacknowledged packey,ia that have been received and it can perform an accurate
Is retransmitted, the congestion window is dgflated by theconstruction of the outstanding packets and use it far los
amount of packet acknowledged by the partial ACK. Thg, yet retransmission. [9] specifies the format of the SACK
window deflation attempts to keep the congestion windoyion to include in the TCP packet header. Every block is
at the level of the number of outstanding packets when thggineq by two variable that track the left and the right edge
Fast Recovery” phase ends. When an ACK acknowledging a i piock of data queued at the receiver. A maximum of
packet greater or equal tacover is received, the congestiony \qn_contiguous blocks can be included in the TCP header
window is set to the value ofsthresh and TCP exits from g yiiqng that becomes 3 when the TimeStamp option is used.
the "Fast Recovery” phase and enters again the "Congestigiaqyer [9] defines how and when the SACK information
avom!:emce procedur"e. Figure 1 deplt_:ts a "Fast Retransmyfj o< are filled by the receiver entity. The SACK options
and “Fast Recovery” example. In this case the congestigi, g pe included in all the ACKs that do not acknowledge

window s 14 packets and packets 2 and 9 are lost. Aftgf \he sequence number of the highest received packet. The
4 ACKs requesting packet ZXupThresh = 3 DUPACKS), firot SACK block in the TCP option must refer to block of data
the sender retransmits packet 2, halves the congestiorowin

i : : , ontaining the segment that triggered the transmissiomef t

to 7 and inflates it by one every received duplicate ACKyci The receiver should include the maximum number of
Aiter 8 DUPACKS, the cqngesnon window ha_s grown to 1E)Iocks that fit into the TCP header option. These raccomanda-
packets and the sender is allowed to transmit a new pacyghs are very important because they imply that an ACK with
cvery r_ecelved ACK: When the retransmission of packet. ACK option should be generated every time there is a hole in
is received by the sink, it generates a new ACK requestings sequence number space of packets in the receiver queue,
for packet 9 and on the reception of this ACK, the sender i%,q {hat the SACK information should be always referred to

2The congestion window is inflated bPupThresh, taking into account the ”.“’St recent re_c_elved packets._ .
that DupThresh + 1 ACKs are received and hencBupThresh more [10] instead specifies the_OPeranonS that the sender entity
packets that have left the network. should perform on reception of a SACK block. After the

Packet 2 Lost Packet 9 Lost Pack?t 2 Retransmission
X X '
i

reception of DupThresh duplicate ACKs, the sender re-
transmits the requested packet and starts a “Loss Recovery”

Packet 9 Retransmission
phase. In this phase, the sender entity maintains the filgpw ; 'ib‘ﬁ’\\w ““
variables:Recovery Point is the highest sequence number of ~ /; "ss““’%’ \ \

the transmitted packetslighACK is the sequence number /® b’“’“‘ \
of the highest packet cumulatively acknowledgédgh Data "Q’%Q ,

is the highest sequence number of the transmitted packets; "Q "

HighRzt is the highest sequence number of retransmitted ' s’

packets,Pipe is an estimate of the number of outstanding | cwwo-iapackess 1 444 A48 B a0k 1)
packets. During the “Loss Recovery” phase, on every ACK ! Fompaket2to1s 1 111110 1111 Loss Recovery Enc

,,,,,,,,,,,,,,,,,,,, e

reception, the sender has to update the information of the

outstanding packets (fronllighACK to HighData) in a ACK2SACK3! | 111 111 |ACK2,SACKIO-15,SACK3-8

ACK2,SACK3-4 1 11 ! 1 | ' ACK2,SACK10-14,SACK3-8
complex data structure (scoreboard) and has to update the ACK2,SACK3"5 | | | | | |ACK2SACK10-13SACK3-8
estimate of thePipe variable. The computation aPipe is N ACKOOACKET | ACKE SACKIO-TLEACKD 6
made analyzing all the informations of the non SACKed ACK2,SACK3-8 ACK2,SACKLO0SACKS-8

packets in the scoreboard: the varialftépe is incremented
by one for every packet below théigh Rxt variable and for
every packet that it is not marked as lost. A packet is marked

as lost whenDupT hresh packets with a greater sequence)
number have been selective acknowledged. are some packets marked as lost in the scoreboard structure.

On the reception oDupThresh duplicate ACKs,cwnd and No packets in the scpreboard are marked as lost (rule (1))
ssthresh are set as in the NewReno protocol, the request@it the TCP sender is allowed to send a new packet (rule
packet is retransmitted, thRecovery Point variable is set to (2))- After the reception of the next duplicate ACK, packet
HighData and Pipe is updated. The protocol enters the “Los$ IS marked as lost because 3 SACK blocks acknowledged
Recovery” phase. During this phase, for each received ACKY packets with sequence number greater than 9 and hence
the sender has to update tiépe variable. If the congestion the sender is allowed to retransmit packet 9 respe_ctmg rule
window is greater than thEipe variable, the sender is allowed(1). The “Loss Recovery” phase ends when the first ACK
to transmit a packet. The decision of the packet to transnfifdt cumulatively acknowledges packet W8etovery Point)

has to respect the following rules: is received.

i) It has to be the packet with the smallest sequence I11. ANALYTICAL MODEL
number that it is not acknowledged selectively and that
it is not already retransmitted (sequence number high&i
than High Rxt), that has been marked as lost.

i) If no packet respects the previous rule, a new packet c

Fig. 2. TCP SACK Fast Retransmit and Loss Recovery example.

The goal of this section is to investigate the effect of
frerent increment and decrement factors used by cormesti
control algorithms and congestion control parameters in a
be sent if the advertised window allows this %n'ngle connection scenario.. qu sake of simplicity, we @bars

: single bottleneck scenario in the case of constaahd b

liiy If no packet respects cases (1) and (2) it is possible lues such as in the case of STCP congestion control. The
retransmit a packet with the smallest sequence num%%r ’

that is not acknowledged selectively and that is n nsidered network S(_atting Is shpwn in Figure 3, thrds
already retransmitted, i.e. a packet not marked as I%e bottleneck buffer siz€; is the link service rate (in units of
that respects the san{e .cénditions of case (1) Oﬁéckets/s)wa is the propagation delay from the TCP sender
] p e S to the bottleneck bufferl’;, is the propagation delay from
Figure 2 depicts an example of "Fast Retransmit” and “Losfie bottleneck buffer to the TCP receivér and then back
Recovery” when the SACK is implemented. As in Figurey the senderRTT,, is Ty, + Ty, and RTT is the sum of
1, two packets in the same window are lost (packets 2 apgrT, and the queuing delay in the bottleneck buffer (we are

9) and before the reception of 3 duplicate ACks,nd is jgnoring the packet transmission timgC).
14 packets. TCP sender receives four cumulative ACKs that

request for packet 2. After those ACKs, the TCP sender B

retransmits packet 2, halves the congestion window, se&ts th Thw /\C

RecoveryPoint to 15 and enters the “Loss Recovery” phase. N/

Every received duplicate ACK the sender estimate the number, R
of outstanding packets and updates the scoreboard. When Ts

the number of outstanding packets (estimated by the pipe
variable) is equal to the congestion window, it can restart
the transmission process. In this example, it happens that
after the reception of the 8th duplicate ACK it is allowed

to send a packet because the congestion window is 7 andtandard TCP congestion control algorithm is made of a
the estimated number of outstanding packe®&pe) is 6. probing phase that increases the input rate up to fill the
The decision of the packet to send is performed accordibgffer and hit network capacity. At that point packets start
to the rules described previously. The sender checks ilethé¢o be lost and the receiver sends duplicate acknowledgments

Fig. 3. Schematic of a TCP connection.

After the reception of DupThresh DUPACKS, the sender and before the retransmission of theh lost packet (or before
infers network congestion and multiplicatively reduceg ththe reception of the ACK acknowledging tlie — 1)-th lost
congestion window by. Let ¢, be the time when the packetpacket), the number of unacknowledged packets is:

P being lost is transmitted; the time when the packet P is 1
dropped at the bottleneck arig the time whenDupT'hresh U, = W (t2)+n-(C - RTT,, + B — bW (t2))—(n—1)- (— + 1>
DUPACKS for the packet P are received by the sender. The a 3)

congestion window at time is From the previous discussion, the following observatiom ca

W(ty) =C-RTT,,+B+1 be derived:
; : o i) To avoid losses during the “Fast Recovery” phase the
At t, the congestion window is increased to number of outstanding packets should be less than the

maximum number of packets that fits into the pipe:

. . — <
During the interval fromt; to to, C-(ta—t1) = C-Typ+ B+ (1 =b)W(t2) < B+ CRT Ty =
DupThresh ACKs are received andC - Ty, + B) - (1 + a) (1-b) < 1 ~ L
new packets are transmitted. Af the congestion window is: ~14a+1/(CRTT,,+B) 1l+a

Wi(ty) =W(ti+Ts+ B/C) = W(to) +a- (CRTT,, + B) ii) In order to provide full link utilization, the buffer de-
pletion time B/C must be greater or equal to the stop

W(t1) = W(to + Tyw) = W(to) + aCTyy,

After the reception ofDupT hresh DUPACKS at timet, the interval b - W (t2)/C:
packet P is retransmitted. TCP enters the recovery phase, th
. . : X B _ bW (ta)
congestion window is reduced to: ol > o=
W(t3) = W(tz) - (1 —b) B(CRTTy + B+ 1+ a- (CRTT,, + B))
and the sender stops until it gets acknowledgments ft(¢-) C
packets. Since the link service rateds the sender will stop Assuming that the number of lost packet is small with
for the intervalb - W (t2)/C. The number of lost packets respect toCRTT,, + B (i.e. a < 1), it turns out:
between, andt, (excluding the packet P) is the difference be- B
tween the value of the congestion window before the receptio b< CRIT. T B
of the DupT hresh DUPACKS and the congestion window at m
to, i.e.: iii) The retransmission buffer and the out-of-order buféer
the receiver should be big enough to store the maximum
W(tz) = W(to) = a- (CRTT,, + B) number of unacknowledged packets. Supposing that

is an increasing function wite, the maximum num-
ber of unacknowledged packets is reached before the
reception of the recovery ACK. This implies that the
max value ofU,, occurs whem = a - (CRTT,, + B),

i.e. before the reception of the ACK acknowledging the
last lost packet occurred betweeg andts. Therefore

it holds:

If this number is greater than or equal to 1, the lost packets
need to be retransmitted during the fast recovery phass; thi
phase finishes when all lost packets are eventually recdvere
NewReno and SACK differ in the way the lost packets in the
same window are recovered.

A. NewReno

During the fast recovery the sender is allowed to inflate
the congestion window is order not to stop the transmissions Where @ is the size of the retransmission and out-of-
of new packets while TCP is retransmitting the lost packets. order buffers and the right hand side can be evaluated
On average, every round trip time, i.BT'T},, + max(0, B — by lettingn = a(CRTT,, + B) in Eq. (3).
bW (t2))/C, (i) the trqnsmitter gentﬁ-RTTm+B—bW(t2) B. SACK TCP
new packets and (ii) it receives the ACK for a new re-]
transmitted packet allowing the highest acknowledged giack After the reception ofDupT'hresh DUPACKs the SACK
to be increased of /a + 1 packets. LetU, (for n > 0) TCP enters in a loss recovery phase. In this phase TCP
be the number of unacknowledged packets when it SACK is able to retransmit all the packets in a single round
packet is retransmitted (the-th packet being the first lost trip_time. After the reception ofDupThresh DUPACKSs,
packet P that triggered the entire recovery procedure), i®ACK TCP retransmits packet P and before the reception
the difference between the highest sequence number of fethe acknowledge for packet P, the transmitter receives
transmitted packets and the highest sequence number of ithdhe SACK block options all the information about the

acknowledged packétsWhen P is retransmitted a3, U is: @ - (CRTT,, + B) packet losses occurred between and
to. With this information the sender is able to retransmit all

Uop = W (ta) the lost packets. In this case the number of unacknowledged

packets before P is retransmitted is
SWe are considering TCP segment sequence number instead te§ by
sequence number. Up = W(ta)

Q > Uu(cRTT, +B)

and before the reception of the ACK acknowledging packet P:
Uy =W(t2) + B+ CRTT,, — bW (t2) — a(CRTT,, + B)

because the sender will receife+ C RT'T,,, duplicate ACKs,
but it will not be able to transmit a packet féiV (t2) ACKs
because the congestion window has been closed. In this round
trip time the sender is able to transmilt- C RT'T,,—bW (t2)—
a - (CRTT,, + B) new packets, since for the firgfl (¢5)
duplicate ACKs the congestion window does not allow to send
new packets, and - (CRTT,, + B) duplicate ACKs with
SACK information will trigger the retransmissions of patke
lost after P. After the reception of the ACK acknowledging
P, the number of unacknowledged packets will decrease to
(1 —b)W(t2) and TCP will exit from the “Loss Recovery”
phase.

In the SACK TCP case, points i) and ii) for NewReno case
hold, whereas point iii) should be modified as follows:

Q>U, = (CRTT,,+B)2—b—ab)+1—b

IV. RESULTS

In the previous section, we derived the sizes of the TCP
internal buffers that are necessary to store the number of
unacknowledged packet$ during the recovery phase. These
values depend on: (a) the recovery procedure (NewReno or
SACK style), (b) the link parameters and (c) theand b
settings.

,,,,,,,

Goodput (Mbit/s)

_. a=0.01, b=0.125, B=0.05D3:RTTm

_o a@=0.01, b=0.125, B=0.1ECERTTm H
_, a=0.01, b=0.125, B=0.5[CIRTT
. @=0.005, b=0.2, B=0.05[CIRTT 1
__ a=0.005, b=0.2, B=O‘1ECERTTm
e a=0.005, b=0.2, B=OA5ECERTTm

15 2 25 3 35 4 45 5 55
TCP internal buffers size (packets) x 10°

0.5 1

(a) NewReno recovery

B et e e

\ . a=0.01, b=0.125, B=0.05CIRTT

o a=0.01, b=0.125, B=0.1CCIRTT

\ _,_ a=0.01, b=0.125, B=0.5[C[RTT,
m

: & 2=0.005, b=0.2, B=0.05[CIRTT _

. _,_ a=0.005,b=0.2, B=0.1(LIRTT _

. @=0.005, b=0.2, B=0.5[CIRTT _

T T
9000 10000 13000

TCP internal buffers size (packets)

.
7000 15000

(b) SACK recovery

Fig. 4. Goodput withC=200Mbit/s, RT"T;,=300ms and packet size of 1500

a=0.01, b=0.125 a=0.005, b=0.2
NewReno | SACK | NewReno| SACK
B =0.05-CRTTy,, 251330 9838 120460 9445
B=0.1-CRTTm 275310 10306 131700 9895
B=0.5-CRTTm 506525 14054 239590 13493
TABLE |

TCPINTERNAL BUFFER SIZE REQUIREMENTS

(2
Table | reports the values of the buffer size predicted by the
model, whereas Figure 4 depicts simulation results of gabdp (3]
for one NewReno TCP connection (a) and one SACK TCP
connection (b) with modified values af and b for different 4]
values of the internal buffers’ size. As far as regards TCR;
NewReno, the model prediction is very accurate. Moreover it
is possible to notice that the goodput strongly depends en th
internal buffers. As for SACK TCP, it is possible to observe]
that the use of the SACK option greatly reduces buffer sizgr
requirements. Moreover the impact of the buffer size has a
small impact on the goodput performance. g]
The proposed simple analytical model nicely predicts thé
minimum internal buffers size that is required to achieve
maximum link utilization [8f. 9]

V. CONCLUSIONS [10]

REFERENCES
[1] Cheng Jin, David X. Wei and Steven H. Low, “FAST TCP: matien,

architecture, algorithms, performance,” Proc. of INFOCQ0804, March
2004, Hong Kong, China.

4The achievable throughput is affected by the bottlenecfebsize as well.

bytes in the case of NewReno (a) and SACK (b) recovery praeedu

Tom Kelly, “Scalable TCP: Improving Performance in Hggeed Wide
Area Networks,” Proc of PFLDnet 2003, February 2003, Geneva
Switzerland.

Sally Floyd, “HighSpeed TCP for Large Congestion WindgWwRFC
3649, Experimental, December 2003.

R.N.Shorten, D.J.Leith, “H-TCP: TCP for high-speed dong-distance
networks” Proc. PFLDnet, Argonne, 2004.

L. Xu, K. Harfoush, I. Rhee, “Binary Increase CongestiGontrol for
Fast, Long Distance Networks,” Proc. of INFOCOM 2004, Ma2€iv4,
Hong Kong, China.

I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” Proc. of PFLDnet 2005, February 2005, Lyon, Feanc

S. Mascolo, G. Racanelli, “Testing TCP Westwood+ oveariBatlantic
links at 10 Gigabit/Second Rate,” in proc. of PFLDnet 200§pm,
February 2005.

S. Mascolo, F. Vacirca, “Congestion Control and Sizinguker Buffers
in the Internet,” in proc. of Control on Decision Conferen&gvilla,
Spain, December 2005.

M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP SeleetiAc-
knowledgement Options,” RFC 2018, October 1996.

E. Blanton, M.Allman, K. Fall, L. Wang, “A Conservativ8elective
Acknowledgment (SACK)-based Loss Recovery Algorithm p&@PT
FRC 2018, April 2003.

