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Abstract— In recent years, issues regarding the behavior of
TCP in high-speed and long-distance networks have been ex-
tensively addressed in the networking research community,both
because TCP is the most widespread transport protocol in the
current Internet and because bandwidth-delay product continues
to grow. The well known problem of TCP in high bandwidth-
delay product networks is that the TCP Additive Increase
Multiplicative Decrease AIMD probing mechanism is too slow in
adapting the sending rate to the end-to-end available bandwidth.
To overcome this problem, many modifications have been pro-
posed such as FAST TCP [1], STCP [2], HSTCP [3], HTCP [4],
BIC TCP [5] and CUBIC TCP [6].
The goal of this work is to investigate, by using both analytical
models and simulation results, optimal sizing of the retrans-
mission and out-of-order TCP buffers in case of modified TCP
congestion control settings and to highlight differences between
NewReno TCP and SACK TCP packet loss recovery schemes in
terms of TCP internal buffers requirements. An important result
is that the SACK option turns out to be particularly effective in
reducing buffer requirements in the case of very high bandwidth-
delay product links.

I. I NTRODUCTION

In recent years, issues regarding the behavior of TCP in
high-speed and long-distance networks have been extensively
addressed in the networking research community, both because
TCP is the most widespread transport protocol in the current
Internet and because bandwidth-delay product continues to
grow. The well known problem of TCP in high bandwidth-
delay product networks is that the TCP Additive Increase
Multiplicative DecreaseAIMD probing mechanism is too
slow in adapting the sending rate to the end-to-end available
bandwidth.
To overcome this problem, many modifications have been
proposed such as FAST TCP [1], STCP [2], HSTCP [3], HTCP
[4], BIC TCP [5] and CUBIC TCP [6].
However, two key parameters are often omitted in the anal-
ysis of new congestion control proposals: they are the TCP
retransmission queue size at the sender and the receiver queue
that handles out-of-order packets. The first buffer is used by
TCP sender to save all the outstanding packets, whereas the
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second one is used by the receiver entity to backlog all out-
of-order received packets that cannot be withdrawn by the
receiver application. These two buffers assume a fundamental
role during the packet recovery phase that follows a “Fast
Retransmit” retransmission, because a wrong choice of these
buffer sizes can lead to remarkable underutilization of thelink
capacity.
The goal of this work is to investigate, by using both ana-
lytical models and simulation results, optimal sizing of the
retransmission and out-of-order buffers in case of modified
TCP congestion control settings and to highlight differences
between NewReno TCP and SACK TCP packet loss recovery
schemes in terms of TCP internal buffers requirements.
The rest of the paper is organized as follows. In Section II the
TCP congestion control and the NewReno and SACK packet
recovery mechanisms are described in detail. In Section III,
the analysis to derive the optimal TCP internal buffer sizesis
carried out, whereas in Section IV, simulative results obtained
with ns-2 simulator are reported to validate analytical results.
Finally, in Section V, the main conclusions are drawn.

II. BACKGROUND ON TCP

The basic TCP congestion control is essentially made of
a probing phase and a decreasing phase. The probing phase
of standard TCP consists of an exponential phase (i.e. the
“Slow Start” phase) and a linear increasing phase (i.e. the
“Congestion Avoidance” phase). The probing phase stops
when congestion is experienced in the form of timeout or
reception ofDupThresh duplicate acknowledgments (DU-
PACKs)1. The TCP dynamic behaviour in “steady state”
condition can be considered with good approximation a se-
quence of congestion avoidance phases followed by reception
of DupThresh DUPACKs. WhenDupThresh DUPACKs
are received, the TCP implements a multiplicative decrease
behavior. The generalization of the classic additive increase
multiplicative decrease TCP settings can be made as follows:

a) On ACK reception:

cwnd←− cwnd + a(cwnd) (1)

b) WhenDupThresh DUPACKs are received:

cwnd←− cwnd− b · cwnd (2)

1The default value ofDupThresh is 3.



wherea(cwnd) is 1/cwnd andb is 0.5 in the case of classic
TCP. The most of TCP congestion control modifications
proposed for high bandwidth-delay networks can be described
by modifying a and b. Some protocols (e.g. STCP) employ
constant values fora and b, whereas other protocols, such
as HSTCP and CUBIC, modify them dynamically. All these
protocols can independently use NewReno or SACK recovery
procedure independently of the congestion control algorithm.
NewReno TCP and SACK TCP differ in the recovery phase,
i.e. when the TCP recovers from packet losses. In particular,
NewReno TCP recovery phase is based only on the cumulative
ACK information whereas SACK TCP receiver exploits the
TCP Selective Acknowledge option to advertise the sender
about out-of-order received blocks. This information is em-
ployed by the sender to recover from multiple losses more
efficiently than NewReno TCP. In the following a detailed
description of NewReno and SACK loss recovery procedure
is reported.

A. NewReno TCP

After that DupThresh Duplicate ACKs (DupThresh + 1
identical ACKs requesting for the same packet sequence
number) are received and that the congestion windowcwnd
is halved andssthresh is set tocwnd, the requested packet
is retransmitted. This phase is named “Fast Retransmit”. After
the “Fast Retransmit” retransmission the TCP protocol enters
in a new phase named “Fast Recovery”. This phase lasts till
the ACK for the highest transmitted packet at the beginning
of this phase (stored in therecover variable) is received.
During this phase, for each additional duplicate ACK2, the
congestion window is incremented by one packet, to reflect
the departure from the network of an additional segment. A
new segment is transmitted if it is allowed by the congestion
window and the receiver advertised window. When an ACK
acknowledging new packets, but with sequence number lower
thanrecover (partial ACK), the first unacknowledged packet
is retransmitted, the congestion window is deflated by the
amount of packet acknowledged by the partial ACK. The
window deflation attempts to keep the congestion window
at the level of the number of outstanding packets when the
“Fast Recovery” phase ends. When an ACK acknowledging a
packet greater or equal torecover is received, the congestion
window is set to the value ofssthresh and TCP exits from
the “Fast Recovery” phase and enters again the “Congestion
avoidance” procedure. Figure 1 depicts a “Fast Retransmit”
and “Fast Recovery” example. In this case the congestion
window is 14 packets and packets 2 and 9 are lost. After
4 ACKs requesting packet 2 (DupThresh = 3 DUPACKs),
the sender retransmits packet 2, halves the congestion window
to 7 and inflates it by one every received duplicate ACK.
After 8 DUPACKs, the congestion window has grown to 15
packets and the sender is allowed to transmit a new packet
every received ACK. When the retransmission of packet 2
is received by the sink, it generates a new ACK requesting
for packet 9 and on the reception of this ACK, the sender is

2The congestion window is inflated byDupThresh, taking into account
that DupThresh + 1 ACKs are received and henceDupThresh more
packets that have left the network.
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Fig. 1. NewReno Fast Retransmit and Fast Recovery example.

allowed to retransmit packet 9. In the meanwhile, the sender
can transmits a new packet every received ACK. It is important
to pinpoint the role of the sender and the receiver buffer during
“Fast Recovery” and “Fast Retransmit”. The sender has to
store all the packets that have not been acknowledged by a
cumulative ACK in the retransmission buffer and the receiver
has to store in the out-of-order buffer all the packet arrived
not in-sequence. In the exemple of Figure 1, for instance, the
sender has to store in the retransmission buffer all the packet
from sequence number 2 to 20. From the instant it retransmits
packet 9 and the reception of ACK for packet 9, it has to
store packets from sequence number 9 to 25. The same can
be argued for the out-of-order buffer in the receiver entity,
where the receiver entity has to store all the packets that have
been received out-of-order before moving them in-sequenceto
the socket buffer where the application can pick them up.

B. SACK TCP

With the introduction of the Selective Acknowledge infor-
mation in the TCP packet header options [9], the TCP sender
is informed by the receiver about non contiguous blocks of
data that have been received and it can perform an accurate
reconstruction of the outstanding packets and use it for lost
packet retransmission. [9] specifies the format of the SACK
option to include in the TCP packet header. Every block is
defined by two variable that track the left and the right edge
of the block of data queued at the receiver. A maximum of
4 non-contiguous blocks can be included in the TCP header
options that becomes 3 when the TimeStamp option is used.
Moreover [9] defines how and when the SACK information
blocks are filled by the receiver entity. The SACK options
should be included in all the ACKs that do not acknowledge
for the sequence number of the highest received packet. The
first SACK block in the TCP option must refer to block of data
containing the segment that triggered the transmission of the
ACK. The receiver should include the maximum number of
blocks that fit into the TCP header option. These raccomanda-
tions are very important because they imply that an ACK with
SACK option should be generated every time there is a hole in
the sequence number space of packets in the receiver queue,
and that the SACK information should be always referred to
the most recent received packets.
[10] instead specifies the operations that the sender entity
should perform on reception of a SACK block. After the



reception of DupThresh duplicate ACKs, the sender re-
transmits the requested packet and starts a “Loss Recovery”
phase. In this phase, the sender entity maintains the following
variables:RecoveryPoint is the highest sequence number of
the transmitted packets;HighACK is the sequence number
of the highest packet cumulatively acknowledged,HighData
is the highest sequence number of the transmitted packets;
HighRxt is the highest sequence number of retransmitted
packets,Pipe is an estimate of the number of outstanding
packets. During the “Loss Recovery” phase, on every ACK
reception, the sender has to update the information of the
outstanding packets (fromHighACK to HighData) in a
complex data structure (scoreboard) and has to update the
estimate of thePipe variable. The computation ofPipe is
made analyzing all the informations of the non SACKed
packets in the scoreboard: the variablePipe is incremented
by one for every packet below theHighRxt variable and for
every packet that it is not marked as lost. A packet is marked
as lost whenDupThresh packets with a greater sequence
number have been selective acknowledged.
On the reception ofDupThresh duplicate ACKs,cwnd and
ssthresh are set as in the NewReno protocol, the requested
packet is retransmitted, theRecoveryPoint variable is set to
HighData andPipe is updated. The protocol enters the “Loss
Recovery” phase. During this phase, for each received ACKs
the sender has to update thePipe variable. If the congestion
window is greater than thePipe variable, the sender is allowed
to transmit a packet. The decision of the packet to transmit
has to respect the following rules:

i) It has to be the packet with the smallest sequence
number that it is not acknowledged selectively and that
it is not already retransmitted (sequence number higher
thanHighRxt), that has been marked as lost.

ii) If no packet respects the previous rule, a new packet can
be sent if the advertised window allows this.

iii) If no packet respects cases (1) and (2) it is possible to
retransmit a packet with the smallest sequence number
that is not acknowledged selectively and that is not
already retransmitted, i.e. a packet not marked as lost
that respects the same conditions of case (1).

Figure 2 depicts an example of “Fast Retransmit” and “Loss
Recovery” when the SACK is implemented. As in Figure
1, two packets in the same window are lost (packets 2 and
9) and before the reception of 3 duplicate ACKs,cwnd is
14 packets. TCP sender receives four cumulative ACKs that
request for packet 2. After those ACKs, the TCP sender
retransmits packet 2, halves the congestion window, sets the
RecoveryPoint to 15 and enters the “Loss Recovery” phase.
Every received duplicate ACK the sender estimate the number
of outstanding packets and updates the scoreboard. When
the number of outstanding packets (estimated by the pipe
variable) is equal to the congestion window, it can restart
the transmission process. In this example, it happens that
after the reception of the 8th duplicate ACK it is allowed
to send a packet because the congestion window is 7 and
the estimated number of outstanding packets (Pipe) is 6.
The decision of the packet to send is performed according
to the rules described previously. The sender checks if there

Packet 2 Lost Packet 9 Lost

From packet 2 to 15

CWND=14packets

ACK2,SACK3−8
ACK2,SACK3−7

ACK2,SACK3−6
ACK2,SACK3−5

ACK2,SACK3−4
ACK2,SACK3

ACK2

ACK2,SACK10,SACK3−8

ACK2,SACK10−12,SACK3−8
ACK2,SACK10−13,SACK3−8

ACK2,SACK10−14,SACK3−8
ACK2,SACK10−15,SACK3−8

Loss Recovery End

Packet 9 Retransmission
Packet 2 Retransmission

ACK2,SACK10−11,SACK3−8

Fig. 2. TCP SACK Fast Retransmit and Loss Recovery example.

are some packets marked as lost in the scoreboard structure.
No packets in the scoreboard are marked as lost (rule (1))
but the TCP sender is allowed to send a new packet (rule
(2)). After the reception of the next duplicate ACK, packet
9 is marked as lost because 3 SACK blocks acknowledged
for packets with sequence number greater than 9 and hence
the sender is allowed to retransmit packet 9 respecting rule
(1). The “Loss Recovery” phase ends when the first ACK
that cumulatively acknowledges packet 15 (RecoveryPoint)
is received.

III. A NALYTICAL MODEL

The goal of this section is to investigate the effect of
different increment and decrement factors used by congestion
control algorithms and congestion control parameters in a
single connection scenario. For sake of simplicity, we consider
a single bottleneck scenario in the case of constanta and b
values such as in the case of STCP congestion control. The
considered network setting is shown in Figure 3, whereB is
the bottleneck buffer size,C is the link service rate (in units of
packets/s),Tfw is the propagation delay from the TCP sender
S to the bottleneck buffer,Tfb is the propagation delay from
the bottleneck buffer to the TCP receiverR and then back
to the sender.RTTm is Tfb + Tfw, andRTT is the sum of
RTTm and the queuing delay in the bottleneck buffer (we are
ignoring the packet transmission time1/C).

Tfw

Tfb

S R

C
B

Fig. 3. Schematic of a TCP connection.

Standard TCP congestion control algorithm is made of a
probing phase that increases the input rate up to fill the
buffer and hit network capacity. At that point packets start
to be lost and the receiver sends duplicate acknowledgments.



After the reception ofDupThresh DUPACKs, the sender
infers network congestion and multiplicatively reduces the
congestion window byb. Let t0 be the time when the packet
P being lost is transmitted,t1 the time when the packet P is
dropped at the bottleneck andt2 the time whenDupThresh
DUPACKs for the packet P are received by the sender. The
congestion window at timet0 is

W (t0) = C ·RTTm + B + 1

At t1 the congestion window is increased to

W (t1) = W (t0 + Tfw) = W (t0) + aCTfw

During the interval fromt1 to t2, C ·(t2− t1) = C ·Tfb +B +
DupThresh ACKs are received and(C · Tfb + B) · (1 + a)
new packets are transmitted. Att2 the congestion window is:

W (t2) = W (t1 + Tfb + B/C) = W (t0) + a · (CRTTm + B)

After the reception ofDupThresh DUPACKs at timet+2 , the
packet P is retransmitted. TCP enters the recovery phase, the
congestion window is reduced to:

W (t+2 ) = W (t2) · (1 − b)

and the sender stops until it gets acknowledgments forb·W (t2)
packets. Since the link service rate isC, the sender will stop
for the interval b · W (t2)/C. The number of lost packets
betweent0 andt2 (excluding the packet P) is the difference be-
tween the value of the congestion window before the reception
of theDupThresh DUPACKS and the congestion window at
t0, i.e.:

W (t2)−W (t0) = a · (CRTTm + B)

If this number is greater than or equal to 1, the lost packets
need to be retransmitted during the fast recovery phase; this
phase finishes when all lost packets are eventually recovered.
NewReno and SACK differ in the way the lost packets in the
same window are recovered.

A. NewReno

During the fast recovery the sender is allowed to inflate
the congestion window is order not to stop the transmissions
of new packets while TCP is retransmitting the lost packets.
On average, every round trip time, i.e.RTTm + max(0, B −
bW (t2))/C, (i) the transmitter sendsC ·RTTm +B−bW (t2)
new packets and (ii) it receives the ACK for a new re-
transmitted packet allowing the highest acknowledged packet
to be increased of1/a + 1 packets. LetUn (for n ≥ 0)
be the number of unacknowledged packets when then-th
packet is retransmitted (the0-th packet being the first lost
packet P that triggered the entire recovery procedure), i.e.
the difference between the highest sequence number of the
transmitted packets and the highest sequence number of the
acknowledged packets3. When P is retransmitted att2, U is:

U0 = W (t2)

3We are considering TCP segment sequence number instead of bytes
sequence number.

and before the retransmission of then-th lost packet (or before
the reception of the ACK acknowledging the(n − 1)-th lost
packet), the number of unacknowledged packets is:

Un = W (t2)+n·(C ·RTTm + B − bW (t2))−(n−1)·

(

1

a
+ 1

)

(3)
From the previous discussion, the following observation can

be derived:
i) To avoid losses during the “Fast Recovery” phase the

number of outstanding packets should be less than the
maximum number of packets that fits into the pipe:

(1 − b)W (t2) ≤ B + CRTTm ⇒

(1− b) ≤
1

1 + a + 1/(CRTTm + B)
≈

1

1 + a

ii) In order to provide full link utilization, the buffer de-
pletion timeB/C must be greater or equal to the stop
interval b ·W (t2)/C:

B

C
≥

bW (t2)

C
=

=
b(CRTTm + B + 1 + a · (CRTTm + B))

C

Assuming that the number of lost packet is small with
respect toCRTTm + B (i.e. a≪ 1), it turns out:

b ≤
B

CRTTm + B

iii) The retransmission buffer and the out-of-order bufferat
the receiver should be big enough to store the maximum
number of unacknowledged packets. Supposing thatUn

is an increasing function withn, the maximum num-
ber of unacknowledged packets is reached before the
reception of the recovery ACK. This implies that the
max value ofUn occurs whenn = a · (CRTTm + B),
i.e. before the reception of the ACK acknowledging the
last lost packet occurred betweent0 and t2. Therefore
it holds:

Q ≥ Ua(CRTTm+B)

where Q is the size of the retransmission and out-of-
order buffers and the right hand side can be evaluated
by letting n = a(CRTTm + B) in Eq. (3).

B. SACK TCP

After the reception ofDupThresh DUPACKs the SACK
TCP enters in a loss recovery phase. In this phase TCP
SACK is able to retransmit all the packets in a single round
trip time. After the reception ofDupThresh DUPACKs,
SACK TCP retransmits packet P and before the reception
of the acknowledge for packet P, the transmitter receives
in the SACK block options all the information about the
a · (CRTTm + B) packet losses occurred betweent0 and
t2. With this information the sender is able to retransmit all
the lost packets. In this case the number of unacknowledged
packets before P is retransmitted is

U0 = W (t2)



and before the reception of the ACK acknowledging packet P:

U1 = W (t2) + B + CRTTm − bW (t2)− a(CRTTm + B)

because the sender will receiveB+CRTTm duplicate ACKs,
but it will not be able to transmit a packet forbW (t2) ACKs
because the congestion window has been closed. In this round
trip time the sender is able to transmitB+CRTTm−bW (t2)−
a · (CRTTm + B) new packets, since for the firstbW (t2)
duplicate ACKs the congestion window does not allow to send
new packets, anda · (CRTTm + B) duplicate ACKs with
SACK information will trigger the retransmissions of packets
lost after P. After the reception of the ACK acknowledging
P, the number of unacknowledged packets will decrease to
(1 − b)W (t2) and TCP will exit from the “Loss Recovery”
phase.

In the SACK TCP case, points i) and ii) for NewReno case
hold, whereas point iii) should be modified as follows:

Q ≥ U1 = (CRTTm + B)(2 − b− ab) + 1− b

IV. RESULTS

In the previous section, we derived the sizes of the TCP
internal buffers that are necessary to store the number of
unacknowledged packetsU during the recovery phase. These
values depend on: (a) the recovery procedure (NewReno or
SACK style), (b) the link parameters and (c) thea and b
settings.

a=0.01, b=0.125 a=0.005, b=0.2
NewReno SACK NewReno SACK

B = 0.05 · CRTTm 251330 9838 120460 9445
B = 0.1 · CRTTm 275310 10306 131700 9895
B = 0.5 · CRTTm 506525 14054 239590 13493

TABLE I

TCP INTERNAL BUFFER SIZE REQUIREMENTS.

Table I reports the values of the buffer size predicted by the
model, whereas Figure 4 depicts simulation results of goodput
for one NewReno TCP connection (a) and one SACK TCP
connection (b) with modified values ofa and b for different
values of the internal buffers’ size. As far as regards TCP
NewReno, the model prediction is very accurate. Moreover it
is possible to notice that the goodput strongly depends on the
internal buffers. As for SACK TCP, it is possible to observe
that the use of the SACK option greatly reduces buffer size
requirements. Moreover the impact of the buffer size has a
small impact on the goodput performance.
The proposed simple analytical model nicely predicts the
minimum internal buffers size that is required to achieve
maximum link utilization [8]4.

V. CONCLUSIONS
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