
Congestion Control for Real-time Communications:
a comparison between NADA and GCC

Gaetano Carlucci, Luca De Cicco, Member, IEEE, Cesar Ilharco, and Saverio Mascolo, Senior Member, IEEE

Abstract— Congestion control for Web real-time communica-
tion (WebRTC) is a hot topic currently addressed at the IETF.
Differently from congestion control for TCP, congestion control
for WebRTC not only aims at containing packet losses, but
also aims at minimizing queuing delays to provide interactivity.
In this paper we describe two algorithms under discussion at
IETF: Network Assisted Dynamic Adaptation (NADA) proposed
by Cisco Systems and Google Congestion Control (GCC) pro-
posed by Google. A performance comparison in a simulation
environment is carried out. Results show that GCC exhibits slow
convergence whereas NADA exhibits a remarkable oscillating
behavior.

Index Terms— low-delay communication, congestion control

I. INTRODUCTION AND RELATED WORK

Congestion control is a required functionality for all
applications generating flows over the Internet to both avoid
network congestion collapse and provide the user with an
acceptable perceived quality. Real-time multimedia traffic,
such as the one generated by video-conferencing applica-
tions, differs significantly from bulk data traffic both in terms
of requirements and employed protocols for delivery. On
one hand, bulk data traffic is insensitive to packet delivery
delay and it essentially requires minimization of the flow
completion time [10]. On the other hand, real-time flows
are highly affected by connection latency that should be
kept as low as possible to provide users with an interactive
communication experience.

Bulk data flows use the Transmission Control Protocol
(TCP), which implements reliability through retransmissions
at the cost of delayed delivery of packets, whereas real-time
flows employ the User Datagram Protocol (UDP), which
does not implement retransmissions. However, since the UDP
does not provide a congestion control algorithm, real-time
multimedia applications have to implement this feature at
the application layer.

The novelty in the control of real-time flows stems from
the fact that, besides congestion avoidance, it is required
to also control network queue lengths in order to contain
delays. Connection delay is made of two components. A
constant propagation delay, and a queueing delay which
depends on the queue lengths. Since connection latency has
to be minimized, such algorithms employ delay measure-
ments to detect and react to congestion by changing the
sending rate according to the designed control law. Several

G. Carlucci, L. De Cicco, and S. Mascolo are with the Diparti-
mento di Ingegneria Elettrica e dell’Informazione at Politecnico di Bari,
Via Orabona 4, 70125, Bari, Italy Emails: gaetano.carlucci@poliba.it,
luca.decicco@poliba.it, mascolo@poliba.it. C. Ilharco was at Google Inc.
when this work was done. Email: cesar.ilharco@gmail.com.

control approaches have been proposed to design efficient
congestion control algorithms for real-time multimedia flows.
The first proposed delay-based control algorithms employed
the measured Round Trip Time (RTT), i.e. the delay from
the sender to the destination and then back to the sender, to
infer congestion. In this case the knowledge of the end-to-end
RTT characteristics is required to establish delay thresholds
used to infer congestion. Algorithms using such an approach
are, f.i., TCP Vegas [1] and TCP FAST [23]. It has been
shown that, when the RTT is used as a congestion metric, a
low channel utilization may be obtained in the presence of
reverse traffic, which inflates queues in the backward path, or
when competing with loss-based flows [11]. Another class of
algorithms advocates the use of one-way delay measurements
to rule out the sensitivity to the reverse path congestion.
Examples are LEDBAT (over UDP) [21] and TCP Santa
Cruz [17]. It has been shown that such algorithms may be
affected by the so called latecomer effect: when two flows
share the same bottleneck the second flow may starve the first
one [6]. Recently the idea of employing the RTT gradient, i.e.
the variation of RTT samples, has been proposed to overcome
the aforementioned latecomer effect with some promising
results [12].

Several papers have proposed mathematical models to
describe and analyze the dynamics of congestion control
algorithms [15], [14], [22], [8], [3]. Issues studied in the
literature comprise robust stability of congestion control
algorithms in the case of time-varying delays in the control
loop [2], [9], fairness properties of AIMD congestion control
algorithms [22], interaction of end-to-end congestion control
algorithms with Active Queue Management schemes [13],
[16].

In this paper we compare two congestion control algo-
rithms designed for real-time multimedia flows and proposed
for standardization within the IETF working group (WG)
RTP Media Congestion Avoidance Techniques1 (RMCAT):
the Network Assisted Dynamic Adaptation (NADA) [24],
which employs one-way delay measurements to infer con-
gestion, and the Google Congestion Control (GCC), which
employs one-way delay gradients. The paper provides a
performance comparison between the two congestion control
algorithms in several scenarios.

II. ALGORITHMS

This Section briefly describes the algorithms involved in
our study. Section II-A describes Network-Assisted Dynamic

1http://datatracker.ietf.org/wg/rmcat/



Buffer RTP packets

Target Rate
Calculator

Sending Rate
Calculator

Encoder

video source

Feedback

Receiver

Encoder Rate
Calculator

Sender

RTCP packets

xn, RRn

Ri Ro
Network

Rsend

buffer length bl

Fig. 1: Network-Assisted Dynamic Adaptation architecture

Adaptation (NADA) algorithm, whereas section II-B revises
Google Congestion Control (GCC) which is used in Google
Chrome browsers to implement congestion control function-
alities in the WebRTC stack and in Google Hangouts.

A. Network Assisted Dynamic Adaptation (NADA) [24]
Figure 1 shows the architecture employed by NADA.

The sender sends media content in RTP (Real-Time Pro-
tocol) [20] packets over UDP. The receiver computes an
aggregated congestion signal xn which is sent to the sender
in RTCP (RTP Control Protocol) [20] packets. Based on xn,
the sender adapts its sending rate to match the available
bandwidth. The following description is based on the NADA
draft [24].
The receiver-side controller: The receiver computes a
congestion signal xn(ti) every time ti a RTP packet is
received. The aggregated congestion signal xn(ti) is made
of two terms:

xn(ti) = d̃(ti) +Dloss · ploss(ti) (1)

d̃(ti) is computed as described in the following: 1) when
the i-th packet is received the one-way delay is measured
as d(ti) = ti − Ti, where Ti is the time at which the i-
th packet has been sent and ti is the time at which it has
been received; 2) the queuing delay dq(ti) is then computed
by subtracting from d(ti) the baseline delay dmin(ti) which
is the minimum delay measured in the session; 3) dq(ti) is
first filtered with a median filter (window size 5) and then by
using an exponential smoothing dq(ti) = (1− α) · dq(ti) +
α · dq(ti−1) with α = 0.9; 4) d̄q(ti) is fed to the non-linear
function shown in Figure 2 which returns the value of d̃(ti);
when dq(ti) is outside the range [0, 400]ms d̃(ti) = 0.
ploss is the fraction of packet loss measured in a time

window of 500ms; Dloss is the equivalent delay penalty for
a loss which is set to 1 second. Finally, the receiver computes
the average received rate R(ti) in the last time window of
500ms. It reports to the sender the value of xn(ti) and R(ti)
every ∆ =100ms in RTCP packets.
The sender-side controller: The controller is clocked to the
time tk a feedback packet is received. It operates in two
modes: 1) accelerated ramp up or 2) gradual rate update.

Accelerated ramp up: the sender operates in this mode
when the received aggregated congestion signal xn is less
than 10ms. The target rate is multiplicatively increased
according to:

Rn(tk) = (1 + γ(tk))Rn(tk−1) (2)

where Rr(tk) is the average received rate computed by the
receiver and γ(tk) = min(0.2, Q/(RTT (tk) + ∆) where
Q = 50ms (Figure 2).

d̄q[ms]

d̃
[m
s]

Q̄

d̃
=
d̄ q

d̃ = Q̄ (Qmax−d̄q)4

(Qmax−Q̄)4

Fig. 2: Non-linear function mapping d̄q to d̃

Gradual rate update: the target rate changes according to:

Rn(tk) = Rn(tk−1) · (1−K1xo(tk)−K2xd(tk)) (3)

where K1and K2 are two positive constants [24] and xo is
the distance of xn from a reference value xref :

xo(tk) = xn(tk)− Rmax

Rn(tk)
xref (4)

and xd accounts for xn variations:

xd(tk) = xn(tk)− xn(tk−1) (5)

xo(tk) depends on the maximum flow rate Rmax and on
the reference congestion signal xref = 20ms. Finally the
target rate must be contained in the range [Rmin, Rmax]
based on the video encoder constraints (see Section III).
Encoder Rate Control: the target rate Rn(tk) requested by
the controller may deviate from the rate Ro(tk) produced by
the video encoder. NADA employs a rate shaping buffer to
absorb the mismatch between Ro(tk) and Rn(tk). In order
to keep the buffer as empty as possible so that delayed
transmission of packets is avoided, the instantaneous buffer
length bl(tk) is sent back to the Encoder Rate Calculator
and to the Sender Rate Calculator with two purposes : 1)
to deplete the rate shaping buffer faster by increasing the
sending rate Rsend = Rn + βbl(tk); 2) to limit incoming
packets of the rate shaping buffer by reducing the video
encoder target rate Ri(tk) = Rn(tk)− βbl(tk), (β = 0.1).

B. Google Congestion Control (GCC) [4]

Figure 3 shows the architecture of the end-to-end Google
Congestion Control (GCC) algorithm [4]. Similarly to
NADA, the GCC sender employs a UDP socket to send
RTP packets and receive RTCP feedback reports from the
receiver. The sender employs two controllers: 1) a delay-
based controller, that computes a rate Ar with the aim of
keeping the queuing delay small; 2) a loss-based controller,
that computes a target sending bitrate As that cannot exceed
Ar. The receiver sends RTCP feedback packets to the sender.
The receiver-side controller: the receiver acts every time ti
a packet is received. It computes the one-way delay variation
dm(ti) = ti−ti−1−(Ti−Ti−1), where Ti is the timestamp at
which the i-th packet has been sent and ti is the timestamp at
which it has been received. Moreover it computes the fraction
of lost packets fl(ti) as described in the RTP RFC [20]. It
sends to the sender the value of dm(ti), fl(ti), and R(tk)
which is the average received rate in the last 500ms.



Loss−based
congestion
controller

Min

Sender

video source

ATFDetector
OverUse

Delay−based controller

Remote Rate 
 Controller

RTCP packets

Feedback

Receiver

Encoder RTP packets

dm, fl

dm

fl

m

Network
Ar

A

s

As

Fig. 3: Google Congestion Control architecture

The sender-side controller: the sender side acts every time
tk a RTCP report message arrives at the sender. It employs
two controllers: 1) a delay-based controller and 2) a loss-
based controller.

The loss-based controller: Based on fl(tk), it computes
the rate As(tk) according to the following equation:

As(tk) =


As(tk−1) · (1− 0.5fl(tk)) fl(tk) > 0.1

1.05 ·As(tk−1) fl(tk) < 0.02

As(tk−1) otherwise
(6)

The rationale of (6) is simple: 1) when the fraction of lost
packets is considered small (0.02 ≤ fl(tk) ≤ 0.1), As is kept
constant, 2) if a high fraction lost is estimated (fl(tk) > 0.1)
the rate is multiplicatively decreased 3) when the fraction
lost is considered negligible (fl(tk) < 0.02), the rate is
multiplicatively increased.

The delay-based controller: this controller is made of the
three components shown in Figure 3. The value of the mea-
sured one-way delay variation dm(tk) is fed to the arrival-
time filter (ATF) which estimates the one-way queuing delay
m(tk). The one-way delay variation d(tk) is modeled as
the sum of three components [4]: 1) the transmission time
variation, 2) the one-way queuing time variation m(tk),
and 3) the network jitter n(tk). The following mathematical
model of the one way delay variation is assumed [4]:

d(tk) =
∆L(tk)

C(tk)
+m(tk) + n(tk) (7)

where ∆L(tk) = L(tk)− L(tk−1), L(tk) is the k-th packet
size, C(tk) is an estimate of the bottleneck link capacity,
and n(tk) is the network jitter modeled as a Gaussian noise.
A Kalman filter is used to extract m(tk) from the measured
one way delay variation.

Then, the over-use detector compares the estimated one-
way queuing delay variation m(tk) with an adaptive thresh-
old γ(tk) proposed in [5], since it has been shown that
with a static threshold [7] the algorithm has fairness issues.
In particular when m(tk) gets above γ(tk), the network is
considered congested and the overuse signal is generated;
on the other hand, if m(tk) decreases below −γ(tk), the
network is considered underused and the underuse signal
is generated; when m(tk) falls back in [−γ(tk), γ(tk)] a
normal signal is produced.

Finally, the signal s is fed to the remote rate controller
which drives the finite state machine (FSM) shown in Fig-
ure 4 whose goal is to empty the queues along the end-to-end
path. Ar is increased (Increase state), decreased (Decrease

overuse

normal/underuse

overuse

Hold

underuseoveruse

Decr.

normal

normal

Incr.

underuse

Ar(tk) = αR(tk) Ar(tk) = Ar(tk−1) Ar(tk) = ηAr(tk−1)

Fig. 4: GCC Remote rate controller

state) or kept constant (Hold state) depending on its state. In
particular Ar is set according to the equations shown in the
states of Figure 4, where η ∈ [1.005, 1.3], α ∈ [0.8, 0.95],
and R(tk) is the receiving rate measured in the last 500ms
by the receiver. It is worth noticing that Ar cannot exceed
1.5R(tk).

After As and Ar are computed, the target bitrate A it is
set as A← min(As, Ar) to avoid that As exceeds the value
of Ar. As in the case of NADA, the target bitrate A must
be contained in the range [Rmin, Rmax] based on the video
encoder constraints (see Section III).

III. TESTBED AND METRICS

In this section we describe the topology of the scenario and
the simulation tool employed to carry out the performance
evaluation and comparison.

The simulator. GCC and NADA algorithms have been im-
plemented in the open-source Chromium Simulation Frame-
work and are available on-line2. Figure 5 shows an essential
view of the topology employed in the simulations. Two nodes
(Node 1 and Node 2) are connected through a link whose
parameters can be configured by the framework APIs. Each
node runs a configurable number of NADA, GCC and TCP
sources or sinks. The one-way propagation delay has been set
to 50ms both on the direct path and on the reverse path in all
of the simulations, resulting in a round trip propagation delay
RTTmin equal to 100ms. Moreover the maximum bottleneck
queue size T̄ q has been set to 300ms in all of the simulations.
Finally, when packets are sent in the network a variable delay
is applied in order to emulate the network jitter noise. The
jitter noise has been chosen with a truncated 3σ Gaussian
distribution in the range [0, 15]ms (σ = 5ms) [19].

Video Encoder and TCP settings. The TCP sources
employ the NewReno congestion control. The video encoder
generates 30 video frames per second and their size is
adapted based on the rate computed by the congestion
control algorithm. The encoder produces a bit in the range
[50, 2500]kbps such that the parameter Rmin and Rmax for
both NADA and GCC are respectively 50kbps and 2500kbps.

Metrics. We consider the following metrics to evaluate the
performance of the video flows controlled by both NADA
and GCC: 1) Channel Utilization U = R/b, where b is
the known link capacity and R is the average received rate;
for every simulation we measure the average value and the
standard deviation; 2) Loss ratio l = (byte lost)/(byte sent);
we measure the cumulative value; 3) Queuing delay mea-
sured as the difference between the one-way delay and the

2https://chromium.googlesource.com/external/
webrtc/+/master/webrtc/modules/remote_bitrate_
estimator/test/



start/stop start/stop

GCC
sender 1

NADA
sender 1

TCP
sink 1

NADA
sink 1

GCC
sink 1

Node 1 Node 2

 

Traffic
shaper

Bottleneck

TCP
sender 1

Network
Parameter

Orchestrator

Fig. 5: Simulation Topology

0 20 40 60 80 100
0

500
1000
1500
2000
2500
3000

R
a

te
 (

k
b

p
s)

Link Capacity NADA GCC

0 20 40 60 80 100
0

100

200

300

400

500

O
W

D
 (

m
s)

0 20 40 60 80 100

Tim e (s)

0

20

40

60

80

100

P
LR

 (
%

) 

Fig. 6: Sending Rate, one-way delay (OWD) and packet loss
ratio (PLR) dynamics in the case of a single GCC or NADA
flow with variable link capacity

propagation delay on the direct path; for every simulation we
compute the average value, the standard deviation, the 5th,
50th and 95th percentile; 4) Jain’s Fairness Index: JFI(t) =
(
∑n

k=1 rk(t))
2

n
∑n

k=1 rk(t)2
, where rk(t) is the instantaneous throughput of

the k-th flow and n is the total number of competing flows.

IV. RESULTS

This section presents the results obtained employing the
scenario described in Section III. The analysis is based on the
evaluation criteria under discussion in the IETF WG RMCAT
[19]. The goal is to check if both NADA and GCC satisfy
the requirements defined in [18] i.e. low queuing in the
absence of competing heterogeneous traffic and a reasonable
share of bandwidth when competing with other homogeneous
or heterogeneous flows. For every scenario ten simulations
have been run. For each of them a Table is provided which
contains the average value of the metrics measured in the
ten runs.

A. Single flow with variable link capacity

This scenario investigates the dynamics of the video bitrate
controlled by GCC or NADA to step-like variation of the link
capacity. To the purpose, we set the link capacity to 1Mbps
for the fist 40s, then we increase the capacity to 2.5Mbps
for 20s, after we decrease the capacity to 0.6Mbps for 20s
and finally we set the capacity to the initial value 1Mbps
for 20s, such that the simulation lasts 100s. Table I shows
the average value of the metrics measured throughout the
ten simulations. Due to space constraints Figure 6 shows the

Channel Util. Queuing [ms] Loss Ratio5th 50th 95th
GCC 76% 11 26.6 40 0.5%

NADA 79% 11 32.2 53 0.6%

TABLE I: Average value of the measured metrics in the case
of a single GCC or NADA flow with variable link capacity

overlapping dynamics of the GCC and NADA throughput,
one-way delay and packet loss ratio. This simulation shows
that when the link capacity increases to 2.5Mbps, GCC takes
about 15 seconds to reach the new value of the link capacity
whereas NADA throughput does not reach 2.5Mbps. On the
other hand, at lower values of the link capacity NADA better
utilizes the channel, even though, when the link capacity is
set to 0.6Mpbs the instantaneous one-way delay exhibits a
spike. Overall, both NADA and GCC are able to contain
the queuing delay since the one-way delay dynamics is kept
close to the one-way propagation delay which is equal to
50ms, except in correspondence to the link capacity drop. In
this case the increment of the one-way delay and loss ratio
forces the algorithms to reduce their sending bitrate in order
to keep the queuing delay low. Overall we have measured
an average value of the 50th percentile of the queuing delay
equal to 26.6ms for GCC whereas 32.2ms for NADA.

B. Intra-protocol fairness

The aim of this scenario is to investigate the GCC and
NADA intra-protocol fairness. To the purpose, we have
considered three concurrent GCC or NADA flows over a
3.5Mbps link. Each flow is started 20 seconds after the
previous one. The simulation lasts 120 seconds. Table II
shows the average value of the metrics measured over ten
simulations when all the three flows are active. Figure 7
shows the dynamics of one simulation for NADA and GCC.
We can notice that both NADA and GCC are not affected by
the “late-comer effect” and they nicely share the bandwidth
among the flows. Figure 7 shows that NADA convergence
rate is faster than the GCC. GCC convergence rate can be
intuitively shown by considering that the equivalent queuing
delay variation measured by each flow is given by:

m(t) = mGCC1(t) +mGCC2(t) +mGCC3(t) (8)

so that an increase of the queuing delay gradient induced
by one of the flow triggers an “overuse signal” for all the
concurrent flows. Since the bitrate is decreased according
to the state machine shown in Figure 4, a flow with higher
bitrate will experience a higher rate decrease, which leads to
rate convergence. In the case of NADA all flows experience
approximately the same aggregate congestion signal xn (see
Section II-A) at steady state. According to (4), the target
rate at steady state Rn for each flow satisfies the following
equation:

Rn =
xref ·Rmax

xn
(9)



0 20 40 60 80 100 120
0

500
1000
1500
2000
2500
3000
3500
4000

R
a

te
 (

k
b

p
s)

Link Capacity GCC GCC GCC

0 20 40 60 80 100 120
0

100

200

300

400

500

O
W

D
 (

m
s)

0 20 40 60 80 100 120

Tim e (s)

0

20

40

60

80

100

P
LR

 (
%

) 

0 20 40 60 80 100 120
0

500
1000
1500
2000
2500
3000
3500
4000

R
a

te
 (

k
b

p
s)

Link Capacity NADA NADA NADA

0 20 40 60 80 100 120
0

100

200

300

400

500

O
W

D
 (

m
s)

0 20 40 60 80 100 120

Tim e (s)

0

20

40

60

80

100

P
LR

 (
%

) 

Fig. 7: Sending Rate, one-way delay (OWD) and packet loss
ratio (PLR) dynamics in the case of three concurrent GCC
or NADA flows over a 3.5Mbps link

Moreover, it is worth to notice that for both NADA and
GCC no packets are lost during the whole duration of the
simulation. Concerning the queuing delay, Table II shows
an average value of the 50th percentile roughly equal to
20ms for both NADA and GCC flows. Overall the algorithms
provide intra-protocol fairness: NADA shows a slightly better
Jain Fairness index then GCC which are respectively equal
to 0.95 and 0.87. To complete the investigation on the intra-
protocol fairness we consider a scenario with 2 flows in the
case of a link with variable capacity. The link capacity is
varied every interval of 25 seconds. We consider 5 intervals
in which the capacity is set respectively to 4Mbps, 2Mbps,
4Mbps, 1Mbps and 2Mbps, such that the video call lasts
125 seconds. Figure 8 shows the dynamics of the variables
in one of the ten simulation runs carried out. In both of the
cases Figure 8 shows that, when the link capacity changes,
intra-protocol fairness is still maintained after a transient
time. However, in this scenario the NADA sending rate
exhibits remarkable oscillations when the link capacity drops
to 1Mbps which also reflects on the one-way delay. Table III
summarizes the average value of the metrics measured over
the ten simulation; as expected the two GCC flows present
a lower channel utilization but also lower queuing delay and
loss ratio. The Jain Fairness index is higher than 0.84 for both
of the algorithms confirming that they provide intra-protocol
fairness.

0 20 40 60 80 100 120
0

500
1000
1500
2000
2500
3000
3500
4000
4500

R
a

te
 (

k
b

p
s)

Link Capacity GCC GCC

0 20 40 60 80 100 120
0

100

200

300

400

500

O
W

D
 (

m
s)

0 20 40 60 80 100 120

Tim e (s)

0

20

40

60

80

100

P
LR

 (
%

) 

0 20 40 60 80 100 120
0

500
1000
1500
2000
2500
3000
3500
4000
4500

R
a

te
 (

k
b

p
s)

Link Capacity NADA NADA

0 20 40 60 80 100 120
0

100

200

300

400

500

O
W

D
 (

m
s)

0 20 40 60 80 100 120

Tim e (s)

0

20

40

60

80

100

P
LR

 (
%

) 

Fig. 8: Sending Rate, one-way delay (OWD) and packet loss
ratio (PLR) dynamics in the case of two GCC or two NADA
flows over a link with variable capacity

Ch. Util. Queuing [ms] Loss Ratio JFI5th 50th 95th
GCC 81% 6 20 48 0% 0.87

NADA 87% 7 20 50 0% 0.95

TABLE II: Average value of the measured metrics in in
the case of three concurrent GCC or NADA flows over a
3.5Mbps link

C. Inter-protocol Fairness

This scenario aims at testing inter-protocol fairness re-
quirements. To the purpose, we have considered one GCC
or NADA flow against one TCP flow over a bottleneck
link with a constant capacity equal to 2Mbps. The NADA
or the GCC flow is started 5 seconds after the TCP flow.
The simulation lasts 120 seconds. Table IV summarizes the
metrics obtained in the ten simulations. Figure 9 shows the
dynamics obtained by one of the simulation. In the case
of GCC with a concurrent TCP flow the sending rate of
the flows converges in about 50s to the fair share equal

Ch. Util. Queuing [ms] Loss Ratio JFI5th 50th 95th
GCC 74% 5 20 44 0.3% 0.84

NADA 77% 6 38 150 1% 0.85

TABLE III: Average value of the measured metrics in the
case of two GCC or two NADA flows over a link with
variable capacity



0 20 40 60 80 100 120
0

500

1000

1500

2000

2500
R

a
te

 (
k

b
p

s)

Link Capacity GCC TCP

0 20 40 60 80 100 120
0

100

200

300

400

500

O
W

D
 (

m
s)

0 20 40 60 80 100 120

Tim e (s)

0

20

40

60

80

100

P
LR

 (
%

) 

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

R
a

te
 (

k
b

p
s)

Link Capacity NADA TCP

0 20 40 60 80 100 120
0

100

200

300

400

500

O
W

D
 (

m
s)

0 20 40 60 80 100 120

Tim e (s)

0

20

40

60

80

100

P
LR

 (
%

) 

Fig. 9: The case of one GCC or NADA flow sharing a 2Mbps
link with 1 TCP flow

Tot. Ch. Util. Loss Ratio JFI

GCC 98% 1.1% 0.80
NADA 97% 1.4% 0.81

TABLE IV: Average value of the measured metrics in the
case of one GCC or NADA flow sharing a 2Mbps link with
1 TCP flow

to 1Mbps. This is possible due to the adaptive threshold
design [5] that makes the delay-based controller less sensitive
in the presence of concurrent loss-based traffic. In the case
of NADA convergence is faster but NADA and TCP rate
oscillate around the fair share at 1Mbps. As expected, the
value of the fraction loss measured for both NADA and
GCC is greater than zero in the presence of TCP since the
algorithms have to operate in loss-based mode in oder to
be more aggressive and compete against TCP. Finally, the
queuing delay cannot be contained as expected, since the
TCP traffic fills the bottleneck buffer.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented and compared the per-
formance of NADA and GCC, two congestion control al-
gorithms proposed for real-time communication over the
Web. The simulations were carried based on the guidelines
under definition in the IETF RMCAT working group. Results
show that overall both the algorithms: 1) adapt the sending
rate to track the link capacity, 2) provide intra-protocol and
inter-protocol fairness. In particular NADA presents a faster
convergence than GCC but exhibits oscillations when the link

capacity drops below 0.6Mbps and in presence of concurrent
TCP traffic. As future work we aim at finding the cause
of NADA oscillatory behavior and improving GCC slow
convergence.

REFERENCES

[1] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end congestion
avoidance on a global Internet. IEEE Journal on Selected Areas in
Communicationss, 13(8):1465–1480, Oct. 1995.

[2] C. Briat, H. Hjalmarsson, K. H. Johansson, U. T. Jönsson, G. Karlsson,
and H. Sandberg. Nonlinear state-dependent delay modeling and
stability analysis of internet congestion control. In Proc. of Conference
on Decision and Control (CDC), pages 1484–1491. IEEE, 2010.

[3] C. Briat, E. A. Yavuz, H. Hjalmarsson, K. H. Johansson, U. T. Jonsson,
G. Karlsson, and H. Sandberg. The conservation of information,
towards an axiomatized modular modeling approach to congestion
control. IEEE/ACM Tran. on Networking, 23(3):851–865, 2015.

[4] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. Analysis
and Design of the Google Congestion Control for Web Real-time
Communication (WebRTC). In Proc. of the ACM Multimedia Systems
Conference, Klagenfurt, Austria, May 2016.

[5] G. Carlucci, L. De Cicco, and S. Mascolo. Modelling and Control
for Web Real-Time Communication. In 53rd IEEE Conference on
Decision and Control, Los Angeles, CA, USA, Dec. 2014.

[6] G. Carofiglio, L. Muscariello, D. Rossi, and S. Valenti. The Quest for
LEDBAT Fairness. In IEEE Global Telecommunications Conference,
pages 1–6, Dec. 2010.

[7] L. De Cicco, G. Carlucci, and S. Mascolo. Understanding the Dynamic
Behaviour of the Google Congestion Control for RTCWeb. In Proc.
of Packet Video Workshop, San Jose, CA, Dec. 2013.

[8] L. De Cicco and S. Mascolo. A mathematical model of the Skype
VoIP congestion control algorithm. IEEE Transactions on Automatic
Control, 55(3):790–795, Mar. 2010.

[9] L. De Cicco, S. Mascolo, and S.-I. Niculescu. Robust stability analysis
of smith predictor-based congestion control algorithms for computer
networks. Automatica, 47(8):1685–1692, 2011.

[10] N. Dukkipati and N. McKeown. Why flow-completion time is the right
metric for congestion control. ACM SIGCOMM CCR, 36(1):59–62,
Jan. 2006.

[11] L. A. Grieco and S. Mascolo. Performance evaluation and comparison
of Westwood+, New Reno, and Vegas TCP congestion control. ACM
SIGCOMM CCR, 34(2):25–38, Apr. 2004.

[12] D. A. Hayes and G. Armitage. Revisiting TCP Congestion Control
Using Delay Gradients. In Proc. of the 10th IFIP TC 6 Conference
on Networking - Volume Part II, pages 328–341, Jul. 2011.

[13] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A control theoretic
analysis of red. In Proc. of IEEE INFOCOM, volume 3, pages 1510–
1519 vol.3, Apr. 2001.

[14] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control.
IEEE Control Systems, 22(1):28–43, 2002.

[15] S. Mascolo. Congestion control in high-speed communication net-
works using the smith principle. Automatica, 35(12):1921–1935, 1999.

[16] W. Michiels, D. Melchor-Aguilar, and S.-I. Niculescu. Stability
analysis of some classes of tcp/aqm networks. International Journal
of Control, 79(9):1136–1144, 2006.

[17] C. Parsa and J. Garcia-Luna-Aceves. Improving TCP congestion
control over Internets with heterogeneous transmission media. In Proc.
of Network Protocols (ICNP ’99), pages 213–221, Oct. 1999.

[18] J. Randell and Z. Sarker. Congestion control requirements for RMCAT.
Draft IETF, Dec. 2014.

[19] Z. Sarker, V. Singh, X. Zhu, and R. M. Test Cases for Evaluating
RMCAT Proposals. IETF Draft, Aug. 2015.

[20] H. Schulzrinne, S. Casner, S. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. RFC 3550, 2003.

[21] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low extra
delay background transport (LEDBAT). RFC 6817, Dec. 2012.

[22] R. Shorten, F. Wirth, and D. Leith. A positive systems model of tcp-
like congestion control: asymptotic results. IEEE/ACM Transactions
on Networking, 14(3):616–629, 2006.

[23] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP: motivation,
architecture, algorithms, performance. IEEE/ACM Transactions on
Networking, 14(6):1246–1259, 2006.

[24] X. Zhu, R. Pan, S. Mena, P. Jones, J. Fu, S. D’Aronco, and
C. Ganzhorn. Nada: A unified congestion control scheme for real-
time media. IETF Draft, Mar. 2015.


