
HTTP over UDP: an Experimental Investigation of QUIC

Gaetano Carlucci
Politecnico di Bari &

Quavlive, Italy
gaetano.carlucci@poliba.it

Luca De Cicco
Politecnico di Bari &

Quavlive, Italy
l.decicco@poliba.it

Saverio Mascolo
Politecnico di Bari &

Quavlive, Italy
mascolo@poliba.it

ABSTRACT
This paper investigates “Quick UDP Internet Connections”
(QUIC), which was proposed by Google in 2012 as a reliable
protocol on top of UDP in order to reduce Web Page re-
trieval time. We first check, through experiments, if QUIC
can be safely deployed in the Internet and then we evalu-
ate the Web page load time in comparison with SPDY and
HTTP. We have found that QUIC reduces the overall page
retrieval time with respect to HTTP in case of a channel
without induced random losses and outperforms SPDY in
the case of a lossy channel. The FEC module, when en-
abled, worsens the performance of QUIC.

Keywords
TCP, UDP, HTTP, SPDY, QUIC, congestion control

1. INTRODUCTION
HTTP is the most used application level protocol over the

Internet [1]. Recent studies argue that HTTP will represent
the narrow waist of the future Internet [12]. During the past
decade its adoption has experienced a tremendous growth
[10] mainly fueled by the wide diffusion of HTTP-based in-
frastructure such as Content Distribution Networks (CDNs),
proxies, caches, and other middle-boxes. This growth is
driven by video content delivered using HTTP, which is to-
day the first source of Internet traffic. In fact, video over
HTTP is the mainstream choice employed by all major video
distribution platforms including the ones based on the recent
MPEG-DASH1, HLS standards, and the VoD systems such
as YouTube and NetFlix [5].

Despite its widespread use, some inefficiencies of HTTP
are hindering the development of a faster Internet. The goal
of improving HTTP/1.1 has attracted researchers [12] and
industries, among which Google that has recently proposed
SPDY [4] within the IETF working group HTTPbis2. SPDY

1http://dashif.org/mpeg-dash/
2http://datatracker.ietf.org/doc/draft-ietf-httpbis-http2/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SAC’15, April 13 - 17 2015, Salamanca, Spain
Copyright 2015 ACM 978-1-4503-3196-8/15/04 ...$15.00.
http://dx.doi.org/10.1145/2695664.2695706 .

a) b)

Transport layer

Internet layer

c)

Application layer SPDY
(TLS)

IP IP

TCP TCP

IP

UDP

HTTP
(TLS) (Crypto)

QUIC

Figure 1: HTTP, SPDY and QUIC stack
is meant to overcome the following inefficiencies of HTTP: 1)
a HTTP client can only fetch one resource at a time, even
if this issue can be in part mitigated with pipelining; 2)
a client-server pull-based communication model is used; if a
server knows that a client needs a resource, there is no mech-
anism to push the content to the client; 3) it redundantly
sends several headers on the same channel. HTTP/1.1 Web
browsers attempt to address these issues by opening multiple
concurrent HTTP connections, even though this approach is
discouraged in the HTTP/1.1 RFC which suggests a limit
of two concurrent connections for each client-server pair.

To address these issues SPDY introduces the following
features: 1) it multiplexes concurrent HTTP requests on
a single TCP socket; 2) it compresses HTTP headers; 3)
it enables the server to push data to the client whenever
possible; 4) it allows prioritization among parallel requests.

SPDY has already been deployed world-wide in the Chrome
Web browser and it shows encouraging improvements with
respect to HTTP/1.1 [2] in the case of wired networks, but it
is still not clear whether it is able to improve performances
in the case of cellular networks [7]. The fact that SPDY em-
ploys only one TCP socket to deliver all the Web resources to
the client has the advantage of decreasing the port usage at
the server, but has a key drawback: by multiplexing streams
over a single TCP connection put SPDY in disadvantage
when compared to several HTTP/1.1 connections each with
a separate congestion window. In fact, a single lost packet in
an underlying TCP connection triggers a congestion window
decrease for all of the multiplexed SPDY streams, whereas in
the case of N parallel HTTP/1.1 connections it would affect
only one out of the N parallel connections. Another disad-
vantage of SPDY is that an out-of-order packet delivery for
TCP induces head of line blocking for all the SPDY streams
multiplexed on that TCP connection. Moreover, SPDY con-
nection startup latency depends on TCP handshake which
requires one RTT and in the case SSL/TLS is employed up
to three RTT.

All the inefficiencies mentioned above are due to the use

of TCP as transport protocol. This has motivated Akamai
and Google to propose new reliable protocols on top of UDP.
Akamai has proposed a Hybrid HTTP and UDP content
delivery protocol that is employed in its CDN [11]. Google
is aiming at reducing TCP handshake time [13] and, more
recently in [8], at improving TCP loss recovery mechanism.

Unfortunately, the improvements above mentioned are not
implemented in the default version of TCP. Motivated by
this evidence Google has proposed QUIC [14] over UDP
to replace HTTP over TCP. QUIC has been already de-
ployed by Google in their servers, such as the ones powering
YouTube, and can be activated in the Web client Chrome
browser that runs on billions of desktop and mobile devices.
This puts Google in the position of driving a switch of a siz-
able amount of traffic from HTTP over TCP to QUIC over
UDP.

The contribution of this paper is twofold: 1) we provide an
experimental investigation of QUIC to check whether its de-
ployment can be harmful for the network; 2) we assess the
performance of QUIC compared to SPDY and HTTP/1.1
in terms of Page Load Time reduction. To the best of
our knowledge, this is the first experimental investigation
of QUIC.

2. THE QUIC PROTOCOL
Quick UDP Internet Connections (QUIC) is an experi-

mental protocol proposed by Google and designed to pro-
vide security and reliability along with reduced connection
and transport latency. Google has already deployed QUIC
protocol in their servers and has a client implementation in
the Chrome web browsers.

Figure 1 shows the main architectural differences between
HTTP over TCP (Figure 1(a)), SPDY over TCP (Figure
1 (b)) and QUIC over UDP (Figure 1(c)). The main idea
behind QUIC is to use the UDP to overcome the SPDY
inefficiencies as discussed in Section 1 along with an ad-hoc
designed encryption protocol named “QUIC Crypto” which
provides a transport security service similar to TLS.

Since the UDP is unreliable and does not implement con-
gestion control, QUIC implements retransmissions and con-
gestion control at the application layer. Furthermore, QUIC
leverages most part of the SPDY design choices to inherit
its benefits.

A description of the QUIC protocol based on the official
documentation [14] and on the analysis of the Chromium
code base is following below3.

2.1 Multiplexing
QUIC multiples several QUIC streams over the same UDP

connection. Figure 2(a) shows that with HTTP/1.1 a client
can only fetch one resource at a time (even if they are
pipelined) whereas with QUIC (Figure 2(b)) a client can
send multiple HTTP requests and receive multiple responses
over the same UDP socket (in the case of Figure 2 three re-
sources are requested). HTTP/1.1 web browsers attempt to
minimize the impact of head of line blocking (HOL) by open-
ing multiple concurrent HTTP connections, typically up to
six.

The QUIC multiplexing feature has been inherited from
SPDY and provides: 1) prioritization among QUIC streams;

3https://code.google.com/p/chromium/

1 3 4 5 6 72

Requests

TCP Connection

7 8

4 5 6

1 2 3

Requests

UDP Connection

a) HTTP

b) QUIC

8Internet

Internet

HTTP
Server

HTTP
Client

Server
QUICQUIC

Client

QUIC streams

Figure 2: Multiplexing

1 RTT

1 RTT

TCP

Handshake

negotiation

TLS

StartUp
QUIC

a)

1 RTT

1 RTT

b)

Server
QUIC

Client
QUICHTTP

Client
HTTP
Server

Figure 3: Startup latency

2) traffic bundling over the same UDP connection; 3) com-
pression of HTTP headers over the same connection.

By using the UDP, QUIC is able to eliminate the HOL
issue affecting the SPDY multiplexed streams; for instance
in the case of Figure 2(a) if packet n.1 is lost and all the other
packets are received, all packets must wait until the lost
packet is retransmitted before TCP can deliver the data to
the application (TCP does not allow out-of-order delivery);
on the other hand UDP can deliver all the received packet
to the application without waiting for the retransmission.

2.2 Connection startup latency and security
Figure 3(a) shows the time required to setup a TCP con-

nection: it takes one RTT for the handshake and at least
one extra RTT or two in the case of an encrypted connec-
tion over TLS. When QUIC is used (Figure 3(b)), the time
taken to set up a connection is at most one RTT; in the
case the client has already talked to the server before, the
startup latency takes zero RTT even in case of an encrypted
connection (QUIC uses its own encryption algorithm named
QUIC-Crypto). QUIC-Crypto decrypts packets indepen-
dently: this avoids serialized decoding dependency which
would damage QUIC ability to provide out-of-order deliv-
ery to reduce the HOL.

2.3 Forward Error Correction
Another interesting feature of QUIC is the Forward Er-

ror Correction (FEC) module that copes with packet losses.
The benefit of the FEC module could be particular effec-
tive in further reducing HOL over a single QUIC stream
by promptly recovering a lost packet, especially in the case
of high RTT where retransmissions could considerably af-
fect the HOL latency. It works as follows: one FEC packetis
computed at the end of a series of packets as the XORsum of
the packets payload; these packets compose a“FEC Group”

(FG). For example FG has size 4, if three data packets plus
a FEC packet are sent: in this way at most one packet loss
within a FEC group can be recovered. It is clear that the
FEC group size plays a remarkable role: a small FG implies
high redundancy at cost of bandwidth, whereas a large FG
implies low redundancy at low bandwidth cost. The decision
on FG size is still considered an open issue; more details are
provided in Section 4.1.

2.4 Pluggable Congestion Control
QUIC has been designed to support two congestion con-

trol algorithms: 1) the first is an implementation of the TCP
CUBIC [9]; 2) the second is a pacing-based congestion con-
trol algorithm that computes the application sending rate
based on an estimate of the relative forward delay defined
as the difference between the inter-arrival time of two con-
secutive data packets at the receiver and the inter-departure
time of the same packets at the sender; this approach is sim-
ilar to the one proposed in the WebRTC framework [6]. At
the beginning of the connection the end-hosts can negoti-
ate the algorithm to employ. At the time of writing QUIC
implements only TCP CUBIC. We remind that the conges-
tion window W in CUBIC increases as proposed in [9], i.e.
W (t) = C(t−K)3 +Wmax, where C is a parameter called a
scaling factor, t is the elapsed time since the last window re-
duction, and K is the time period required to increase Wmax

when no loss is detected. K is given by K = 3

√
Wmaxβ

C
where

β is a constant multiplication decrease factor applied for
window reduction at the time of a loss event as follows:

W (t)←W (t∗)(1− β) (1)

where W (t∗) is the value reached by W (t) when a packet loss
is detected at t∗ and the new Wmax becomes W (t∗). When
a packet loss is detected W (t) is reduced according to (1).
The main difference with respect to CUBIC implementation
in TCP, is the value of the decrease factor: in TCP βTCP is
equal to 0.3 whereas in QUIC βQUIC = βTCP /n, where n =
2. In practice, βQUIC = 0.15 is equivalent to βTCP when
2 concurrent TCP CUBIC flows compete for the available
bandwidth. An initial value of 10 for the congestion window
is set in both QUIC and TCP CUBIC.

2.5 Connection Identifier
A QUIC connection is uniquely identified by a CID (Con-

nection IDentifier) at the application layer and not by the
pairs of IP addresses and port number. The first advantage
is that, since CIDs are not based on IP addresses, any han-
dover between two networks can be transparently handled
by QUIC without needing to re-establish the connection.
Moreover, the CID is useful in the case of NAT unbinding,
when to restore a connection, a new pair of IP addresses
is typically required. Finally with CID, QUIC can provide
native support to multi-path; for example a mobile device
could use all the network connections for the same CID.
It is important to notice that, at the time of this writing,
multi-path is still not implemented in Chrome.

3. TESTBED AND METRICS
In this Section we describe the testbed and the metrics

employed to carry out the experimental evaluation of QUIC.
We employ the testbed configurations shown in Figure 4.

The testbed in Figure 4(a) has been used to compare the
dynamics of the CUBIC congestion control algorithm im-

b)

a)

TCP
Server

TCP
Client

Web Page

SPDY

point

Client Host

HTTP/1.1

QUIC

Measurement

Chromium
SPDY enabled

Chromium

Chromium
QUIC enabled

HTTP/1.1

Server Host

Measurement
point

Client HostServer Host

File
Server
QUIC

Client
QUIC

NetShaper

NetShaper

Figure 4: Testbed

plemented within QUIC with the one implemented in TCP.
The testbed in Figure 4(b) has been employed to measure
the Web page load time when HTTP/1.1, SPDY or QUIC
is employed.

The testbed consists of two DELL Precision T1650 64-bit
machines (server/client hosts) running Debian Jessy with a
Linux kernel 3.14.2.

In particular Figure 4(a) shows the testbed employed to
compare the congestion control dynamics. A dummy QUIC
server and a dummy QUIC client can be found in the Chromium
browser code-base4 which we have compiled and used in the
testbed as a stand-alone server and client. The testbed em-
ploys the QUIC version 21 that is the latest available im-
plementation at the time of this writing. We have modified
the QUIC source code in order to log the relevant variables
for this investigation. The TCP server is an iperf-like ap-
plication which uses TCP CUBIC [9] and logs the conges-
tion window, the slow-start threshold and the instantaneous
RTT.

Figure 4(b) shows the testbed employed to compare the
Web page load time when QUIC, SPDY over SSL/TLS or
HTTP/1.1 over SSL/TLS is employed in the Chromium
browser. The HTTP/1.1 over SSL/TLS server host employs
Apache/2.4.10 with TLS 1.2. For SPDY over SSL/TLS,
we have employed nghttp25 which supports SPDY 4 that
is the Google implementation of HTTP/2.0; the page en-
cryption is still provided by TLS 1.2. It is worth to notice
that QUIC server always encrypts the data. Encryption is
also mandatory for SPDY. On the client host we have em-
ployed three different configurations of the Chromium M39:
one that has QUIC enabled and can fetch the Web page
from the QUIC server, one that has SPDY 4 enabled and
fetches the Web page from the SPDY server and one that
has QUIC and SPDY disabled which fetches the Web page
from the HTTP/1.1 Web server.

At the receiver we have used a tool called NetShaper that
we have developed to perform bandwidth shaping and to al-
low propagation delays to be set. This tool uses the nfqueue
library provided by Netfilter6 in order to capture and redi-
rect the traffic arriving at the client host to a user space
tail-drop queue, where traffic shaping and measurement are
performed.

4https://code.google.com/p/chromium/
5http://nghttp2.org/
6http://www.netfilter.org/

Table 1: Scenarios and parameters employed in the
experimental evaluation
Dynamics Analysis Parameters
S1.Impact of link capacity
(b), induced random losses
(L) and FEC (ON/OFF)

L:{0, 1, 2}% - b:{3, 6, 10}Mbps

S2.QUIC Vs TCP with
varying buffer sizes (Q)

Q:{13, 30, 60}kByte

Page Load Time Parameters
S3.Web page size: small
(305kB), medium
(690kB), large (2.1MB)

L:{0, 1}% - b:{3, 10}Mbps

Metrics.
We have considered the following metrics: 1) Goodput

G, measured as the average network received rate (without
considering retransmissions and forward error correction);
2) Channel Utilization U , measured as r/b, where r is
the average received rate and b the link capacity; 3) Loss
Ratio l, defined as (byte lost/byte sent) measured by the
NetShaper tool; 4) Page load time P , defined as the time
taken by the browser to download and process all the objects
associated with a Web page (Document Object Module).
To measure the page load time, we employ the Chromium
browser developer console which measures the time elapsed
since the user asks for the Web page until the page is fully
loaded (when the load event is fired).

4. RESULTS
In this section we present the experimental results ob-

tained by employing the two testbeds shown in Figure 4.
The first goal is to compare the performance of the CU-
BIC congestion control algorithm implemented within QUIC
with the one implemented in TCP. It is particularly impor-
tant to check that the implementation of QUIC congestion
control over UDP does not generate traffic that is harmful
for the network stability. The second goal is to check to
what extent QUIC is able to improve user performance in
terms of Page Load Time. Towards this end we compare the
performance of QUIC with those of SPDY and HTTP/1.1
(over TLS).

We consider the latest available version of QUIC that at
the time of writing is v.21. In this version CUBIC is the
only congestion control algorithm implemented and the FEC
module is turned off by default; the FEC action has been
activated only in one scenario (see Section 4.1) to evaluate
the FEC influence on the considered metrics.

Table 1 summarizes the scenarios and parameters consid-
ered in the experimental evaluation. For each combination
of the parameters shown in Table 1 we have run ten exper-
iments and evaluated the metrics by averaging over all the
results.

4.1 QUIC flow dynamics (S1)
In this Section we compare the QUIC and TCP flow dy-

namics in isolation. We evaluate the impact of b and L
variation (see Table 1 - S1) when FEC is enabled or dis-
abled on the channel utilization U and loss ratio l. We set
the base RTT RTTm equal to 50ms and the bottleneck size
Q to the bandwidth-delay product [3] with Tail Drop policy.

Figures 5(a), (b) and (c) show the results obtained for each
value of L: each bar group represents the evaluated metric

obtained for a certain link capacity; within each group the
first bar shows the metrics for QUIC when FEC is disabled,
the second bar shows the case of QUIC when FEC is enabled,
and the third one shows the case of TCP.

Let us focus on the case L = 0% (Figure 5(a)): in ev-
ery case the channel utilization is about 99%. When FEC
is enabled, it takes roughly 33% of the channel utilization.
Moreover QUIC introduces higher losses than TCP espe-
cially when FEC is enabled. This is due to the fact that a
recovered loss by the FEC module does not trigger the con-
gestion control and makes the algorithm more aggressive.
At L = 1% (Figure 5(b)) and at L = 2% (Figure 5(c)) the
QUIC channel utilization is not significantly affected by the
introduced random losses; in particular, when FEC is en-
abled, it still takes about 33% of the channel utilization re-
gardless of the parameters variation of Table 1. This means
that, on average, the FEC Group F̄G is equal to 3. On the
other hand, as expected, the TCP goodput is significantly
reduced when random losses are introduced and the reduc-
tion increases with the link capacity.

Figure 6(a) shows an experimental result in the case of
L = 0%, b = 3Mbps and FEC disabled. It is interesting to
notice that the QUIC cwnd exhibits smaller oscillations than
the ones presented by TCP cwnd due to the fact that QUIC
employs a smaller decrease factor β (see Section 2.4); this
explains the more aggressive nature of QUIC flows and the
fact that it shows higher losses in Figure 5(a). Figure 6(b)
shows that, when L = 2%, the QUIC rate is not significantly
affected by the introduced random losses.

Figure 6(c) shows the case of L = 0%, b = 3Mbps with
FEC enabled. FEC uses about 33% of the available band-
width, which reduces the QUIC goodput. Moreover, despite
the FEC action we measure that only a negligible amount of
packets has been recovered when L = 0%: this means that
every time a congestion loss occurs it is likely that more than
one packet is consecutively lost and these packets cannot be
recovered because they belong to the same FEC Group. On
the other hand, in the case of L = 1% or L = 2% we see that
the number of packets which are recovered by FEC is higher
but still at the expense of a remarkable goodput reduction.

4.2 QUIC and TCP CUBIC friendliness (S2)
In this section we evaluate the impact of the bottleneck

buffer size Q on the goodput G when TCP and QUIC share
the same bottleneck. We consider a link capacity b = 5Mbps
and RTTm = 50ms; three different values of the bottleneck
buffer have been considered Q = {13, 30, 60}kB with Tail
Drop policy. In particular, for Q = 16kB the network is
under-buffered, for Q = 30kB the buffer is equal to the
bandwidth-delay product and for Q = 60kB the network
can be considered over-buffered [3]. Figure 7(a) shows the
case of Q = 30kB : QUIC prevails over TCP, since it gets
roughly 1.5 times the link capacity. Figure 7 (b) shows the
case of Q = 60kB where TCP and QUIC fairly share the
link capacity.

Figure 5(d) summarizes the results for each value of Q.
It shows that for Q = 13kB, QUIC achieves a goodput that
is roughly three times larger than that obtained by TCP.
However, it is worth mentioning that full channel utilization
is not achieved due to the fact that the network is under-
buffered [3]. In the case of Q = 30kB QUIC gets roughly
1.5 times the goodput obtained by TCP. This is mainly due
to the fact that QUIC has a smaller decrease factor β (see

3Mbps 3Mbps 3Mbps6Mbps 6Mbps 6Mbps10Mbps 10Mbps 10Mbps0
20
40
60
80

100

1000

2000

3000

4000

5000

13kB 30kB 60kB

G
 (

k
b
p
s
)

QUIC TCP
U

(%
)

GOOD FEC RTX

3Mbps 3Mbps3Mbps 6Mbps 6Mbps6Mbps 10Mbps 10Mbps10Mbps

(d) TCP Vs QUIC(c) L=2%(b) L=1%(a) L=0%
Impact of buffer sizeImpact of link capacity b, induced random losses L and FEC

0
2
4
6
8

10

L
o
s
s
e
s
 (

%
)

Q
U

IC

T
C

P

Q
U

IC
+

F
E

C

Q
U

IC

T
C

P

Q
U

IC
+

F
E

C

Q
U

IC

T
C

P

Q
U

IC
+

F
E

C

Figure 5: Impact of the parameter variation on the metrics

6000

4000

2000

60

40

20

60

40

20

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

p
k
ts

k
b

p
s

p
k
ts

QUIC rate QUIC rateTCP rate TCP rateLINK Capacity LINK Capacity

cwnd QUIC

cwnd QUIC

Time(s) Time(s)

b) Q=60kBa) Q=30kB

cwnd TCP

cwnd TCP

Figure 7: One TCP flow with one concurrent QUIC
flow over a 5 Mbps bottleneck

Section 2.4). In the case of Q = 60kB TCP and QUIC fairly
share the link capacity since both the flows can enter the
MaxProbing phase [9] when the network is over-buffered.

4.3 Page Load Time comparison (S3)
In this section we measure the Page Load Time P de-

fined in Section 3 using the Chromium browser when QUIC,
SPDY over TLS or HTTP/1.1 over TLS is employed to
transport a small, a medium or a large Web page.

It is quite challenging to compare HTTP, SPDY and QUIC
Page Load Time P due to the fact that it depends on many
factors external to the protocols themselves [15], includ-
ing Web page characteristics and browser processing (i.e.,
JavaScript evaluation and HTML parsing). In order to en-
force reproducibility and eliminate external dependencies,
we employ the controlled testbed shown in Figure 4(b) and
a simple Web page containing only jpeg images without any
JavaScript code and css file. Moreover, on the client side
we employ the same version of the Chromium browser M39
which supports SPDY, QUIC and HTTP. The small Web
page contains 18 jpeg images large 2.6kB and 3 larger jpeg
images of 86.5kB. The medium Web page contains 40 jpeg
images large 2.6kB and 7 jpeg images large 86.5kB. Finally,
the large Web page contains 200 jpeg images large 2.6kB and
17 jpeg images large 86.5kB. Every page has an index.html
that links the images. We consider two different combina-
tions of the link capacity, i.e. b = {3, 10}Mbps, and two
values for the random loss percentages, namely L = {0, 2}%;

the base RTT has been set to RTTm = 50ms and the bottle-
neck has a Tail Drop buffer Q equal to the bandwidth-delay
product. These parameters have been chosen similarly to
[15].

We have observed that when Chromium fetches the Web
pages from the Apache Web server using HTTP/1.1 it opens
maximum 6 TCP parallel sockets, so that more than one
image can be downloaded simultaneously from the server.
In the case of QUIC only one UDP socket is opened and six
QUIC streams are multiplexed over this connection. Finally,
in the case of SPDY 4 only one TCP socket is opened and,
after the index.html is parsed, all the images are requested
simultaneously; the requests are all multiplexed on top of
the single TCP connection.

Figure 8 shows the percentage page load time improve-
ment Im(%) obtained by QUIC or SPDY with respect to
HTTP/1.1, which is considered the baseline of the compar-
ison:

Im =
PHTTP − PQUIC/SPDY

PHTTP
· 100 (2)

Figure 8(a) shows that, when the channel is without in-
duced losses both SPDY and QUIC outperform HTTP. In
particular in the case of link capacity b = 3Mbps, SPDY pro-
vides a higher improvement with respect to QUIC due to the
higher level of multiplexing. When b = 10Mbps in the case
of small or medium size page, QUIC shows a higher improve-
ment due to its zero RTT start-up latency; the impact of the
zero RTT start-up latency becomes less remarkable in the
case of large Web page, since in this case the transport time
prevails. Moreover, in the case of large Web page and when
b = 10Mbps, the benefit of the higher level of multiplexing
used by SPDY is more effective than the one employed by
QUIC which multiplexes six streams only (version 21).

In the scenario of Figure 8(b) where 2% of random losses
are introduced QUIC provides a lower improvement than in
the case of channel without induced random losses. In the
case of medium and large Web page at 10Mbps even QUIC
increases the Page Load Time. Even if it may look counter-
intuitive based on the dynamics comparison shown in Figure
6(b), it should be noted that, in the case of HTTP/1.1, the
browser opens 6 parallel TCP connections and the effect
of the random losses will be distributed among the 6 TCP
flows, which has less impact than in the case of a 6 streams
multiplexed over a single UDP connection (see Figure 2(b)).
This is also confirmed by observing that in the case of SPDY,

0 10 20 30 40 50
0

1000

2000

3000

4000

k
b

p
s

QUIC rate LINK Capacity

0 10 20 30 40 50
0

1000

2000

3000

4000

k
b

p
s

TCP rate LINK Capacity

0 10 20 30 40 50
0

10
20
30
40
50

p
k
ts

cwnd QUIC

0 10 20 30 40 50
0

10
20
30
40
50

Time(s)

p
k
ts

cwnd TCP

(a) L = 0%,b = 3Mbps,FEC OFF

0 10 20 30 40 50
0

1000

2000

3000

4000

k
b

p
s

QUIC rate LINK Capacity

0 10 20 30 40 50
0

1000

2000

3000

4000

k
b

p
s

TCP RATE LINK Capacity

0 10 20 30 40 50
0

10
20
30
40
50

p
k
ts

cwnd QUIC

0 10 20 30 40 50
0

10
20
30
40
50

Time(s)

p
k
ts

cwnd TCP

(b) L = 2%,b = 3Mbps,FEC OFF

0 10 20 30 40 50
0

1000

2000

3000

4000

k
b

p
s

QUIC rate FEC rate RTX LINK Capacity

0 10 20 30 40 50
0

1000

2000

3000

4000

k
b

p
s

TCP rate LINK Capacity

0 10 20 30 40 50
0

10
20
30
40
50

p
k
ts

cwnd QUIC

0 10 20 30 40 50
0

10
20
30
40
50

Time(s)

p
k
ts

cwnd TCP

(c) L = 0%,b = 3Mbps,FEC ON

Figure 6: Rate and cwnd dynamics results in 3 different experiments

3Mbps 10Mbps 10Mbps3Mbps 10Mbps3Mbps

3Mbps 10Mbps 10Mbps3Mbps 10Mbps3Mbps

Small Page Large PageMedium Page

b) L=2%

0
10
20

30

40

50

a) L=0%
Small Page Large PageMedium Page

I
I

m
m

(%
)

(%
)

QUIC SPDY

30

0

−30

−60

−120

−150

−90

Figure 8: Page load Time Improvement with respect
to HTTP/1.1
which employs only one TCP socket, the improvement with
respect to HTTP is always negative and in the worst case,
when b = 10Mbps, it is on average under -120%; this is due
to the fact that, in the case of a larger link capacity, the
congestion window reduction due to the random losses have
remarkable influence on the goodput (see Figures 5(a)-(c)).
The fact that using QUIC is beneficial compared to SPDY in
the presence of induced random losses is due to the different
β factor (see Section 2.4).

5. CONCLUSIONS
In this paper we have carried out an experimental inves-

tigation of QUIC, a protocol recently proposed by Google
to transport HTTP traffic over UDP. We have compared
the performance of the latest QUIC implementation with
the standard HTTP/1.1 under different network conditions.
We have found that QUIC shows higher goodput with re-
spect to TCP CUBIC in the case of under-buffered networks
and also in the presence of random losses but at the cost of
an increased packet loss ratio. Moreover, when QUIC is em-

ployed to transport a Web page, it reduces the overall page
retrieval time with respect to HTTP/1.1 in case of a channel
without random losses and outperforms SPDY in the case of
a lossy channel. The FEC module, when enabled, worsens
the performance of QUIC.

6. ACKNOWLEDGEMENTS
This work has been partially supported by the Italian

Ministry of Education, Universities and Research (MIUR)
through the MAIVISTO project (PAC02L1 00061). Gae-
tano Carlucci has also been partially supported by “Scuola
Interpolitecnica di Dottorato”. Authors would also like to
thank Ali Begen, Josh Gahm, Vittorio Palmisano, and Ser-
gio Zaza for their help in setting up the testbed and for their
helpful discussions.

7. REFERENCES
[1] Global Internet Phenomena Report, 2014.

https://www.sandvine.com/trends/global-internet-
phenomena/.

[2] SPDY: An experimental protocol for a faster web.
http://www.chromium.org/spdy/spdy-whitepaper.

[3] G. Appenzeller et al. Sizing router buffers. In Proc. of
ACM SIGCOMM ’04, Portland, Oregon, USA, 2004.

[4] M. Belshe and R. Peon. Spdy protocol. IETF Draft, 2012.

[5] Cisco. Cisco Visual Networking Index:Forecast and
Methodology 2013-2018. White Paper, June 2014.

[6] L. De Cicco et al. Understanding the dynamic behaviour of
the google congestion control for rtcweb. In in Proc. of
Packet Video Workshop 2013, San Jose, CA, USA.

[7] J. Erman et al. Towards a spdy’ier mobile web? In Proc. of
ACM CoNEXT, pages 303–314, 2013.

[8] T. Flach et al. Reducing web latency: The virtue of gentle
aggression. In Proc. of ACM SIGCOMM ’13, Hong Kong.

[9] S. Ha et al. Cubic: a new tcp-friendly high-speed tcp
variant. ACM SIGOPS ’08, 42(5):64–74, 2008.

[10] C. Labovitz et al. Internet inter-domain traffic. In Proc. of
ACM SIGCOMM ’11, pages 75–86, Toronto, Canada, 2011.

[11] M. Ponec and A. Alness. Hybrid http and udp content
delivery, Aug. 23 2013. US Patent App. 13/974,087.

[12] L. Popa et al. Http as the narrow waist of the future
internet. In Proc. of ACM SIGCOMM Workshop on
HotNets, pages 6:1–6:6, Monterey, California, 2010.

[13] S. Radhakrishnan et al. Tcp fast open. In in Proc. of
CoNEXT ’11, pages 21:1–21:12, Tokyo, Japan, 2011.

[14] J. Roskind. Multiplexed Stream Transport over UDP, 2013.

[15] X. S. Wang and et. al. How speedy is spdy. In Proc. of the
11th USENIX, pages 387–399, San Diego, CA, USA, 2014.

