
An Adaptive Video Streaming Control System:
Modelling, Validation, and Performance Evaluation

Luca De Cicco and Saverio Mascolo

Abstract—Adaptive video streaming is a relevant advancement
with respect to classic progressive download streaming a-la
YouTube. Among the different approaches, the video stream-
switching technique is getting wide acceptance, being adopted
by Microsoft, Apple and by popular video streaming services
such as Akamai, Netflix, Hulu, Vudu, and Livestream. In this
paper, we present a model of the automatic video stream-
switching employed by one of these leading video streaming
services along with a description of the client-side communication
and control protocol. From the control architecture point of view,
the automatic adaptation is achieved by means of two interacting
control loops having the controllers at the client and the actuators
at the server: one loop is the buffer controller, which aims at
steering the client playout buffer to a target length by regulating
the server sending rate; the other one implements the stream-
switching controller and aims at selecting the video level. A
detailed validation of the proposed model has been carried out
through experimental measurements in an emulated scenario.

Index Terms—Adaptive video streaming, stream-switching,
modelling, performance evaluation

I. INTRODUCTION

V IDEO traffic will account for more than 90% of the
global Internet traffic in 2014 according to a recent

report published by Cisco [1]. Such a tremendous growth
is fed by video streaming applications such as YouTube,
which delivers user-generated video content, or NetFlix, which
streams movies and already accounts for more than 20% of
the USA Internet traffic. Another ongoing trend that is feeding
this growth is the ever increasing number of smart-phones and
tablet devices accessing the Internet by using 3G/4G wireless
mobile connections [1].

Today, the content producer has to undertake the challeng-
ing task of providing the user with a seamless multimedia
experience at the maximum obtainable Quality of Experience
(QoE) given the user device heterogeneity. To this purpose,
multimedia content is required to be adaptive in order to match
a wide set of variables such as user screen resolution, CPU
load, network available bandwidth, power consumption.

Adaptive video streaming represents a key innovation wrt
classic progressive download streaming such as the one em-
ployed by YouTube. In fact, with progressive streaming, the
video is encoded at a constant quality or bit-rate and it is

Luca De Cicco is research assistant at Dipartimento di Elettrotec-
nica ed Elettronica, Politecnico di Bari, Via Orabona 4, Italy (e-mail:
l.decicco@poliba.it), Phone: +390805963851, Fax: +390805963410

Saverio Mascolo is full professor at Dipartimento di Elettrotecnica ed Elet-
tronica, Politecnico di Bari, Via Orabona 4, Italy (e-mail: mascolo@poliba.it),
Phone: +390805963621, Fax: +390805963410

This work has been partially supported by the project ”Platform for Inno-
vative services in the Future Internet” (PLATINO - PON 2007IT161PO006)
funded by Italian Ministry of Education, Universities and Research (MIUR).

delivered as any other file over HTTP. The received video is
temporarily stored in a playout buffer before the playing is
started so that the short-term mismatches between the video
bitrate and the available bandwidth can be absorbed and video
interruptions can be mitigated. Nonetheless, in the case of
a persistent mismatch, the buffer could eventually get empty
with the consequence of playback interruptions and the need
of re-buffering. On the other hand, with adaptive streaming the
video bitrate is throttled on-the-fly in order to match the time-
varying available bandwidth and get the best video quality
while minimizing start-up latency and avoiding video playback
interruptions.

The leading approach for implementing adaptivity is the
stream-switching (or multi bit-rate): the server encodes the
video content at different bit-rate levels and an adaptation
algorithm selects the video level to be served based on
measurements such as the available bandwidth and the player
buffer length [2]. The stream-switching technique is today
employed, among others, by Apple HTTP-based streaming,
Microsoft IIS Smooth Streaming, Adobe Dynamic Streaming,
Akamai, Move Networks, Hulu, NetFlix, and Livestream.
Moreover, this approach is also adopted by the Dynamic Adap-
tive Streaming over HTTP (DASH), a new MPEG standard
pursuing the interoperability between devices and servers of
various vendors [3].

Recently, a great deal of attention in the literature has
been devoted to adaptive streaming and to its commercial
implementations [4], [5], [6], [7], [8], [9], [10] (see Section
II). In this paper we consider a major CDN operator whose
interesting and unique adaptive streaming architecture oper-
ates, according to our findings, using two controllers, one
for selecting the video level that matches the Internet best-
effort bandwidth and the other for controlling the playout
buffer length. In particular, the considered video streaming
system employs a server that actively throttles the sending
rate to control the playout buffer. This makes the considered
control system different from those which entirely rely on
client control [4], [3].

The main goal of this paper is to mathematically model
and analyze, in a control theoretic framework, the mentioned
automatic video streaming system that is based on both server
and client side control.

The paper is organized as follows: Section II summarizes
the related works dealing with adaptation techniques for video
streaming along with the experimental evaluation of several
stream-switching approaches; in Section III the model of the
automatic stream-switching controller is presented; Section IV
describes the client-server communication and control protocol
employed to implement the stream-switching control algo-



2

rithm; in Section V the proposed model is validated in a wired
controlled testbed; finally, Section VI draws the conclusions
of the paper.

II. RELATED WORK

In the last two decades a vast literature regarding video
streaming has been produced with main topics ranging from
the design of transport protocols specifically tailored for video
streaming to the video quality adaptation techniques.

Concerning the first topic, several transport protocols for
video streaming have been proposed, such as the TCP Friendly
Rate Control (TFRC) [11], the Real-Time Transport Protocol
(RTP) [12], the Microsoft Media Services (MMS), the Real
Time Messaging Protocol (RTMP) [13]. Some of the men-
tioned streaming protocols have been employed in commercial
products such as RealNetworks, Windows Media Player, Flash
Player. Even though TCP has been initially considered as
unsuitable for the transport of videos, recently it is getting a
wider acceptance and it is being used with the HTTP. This is
mainly due to the following reasons: i) HTTP-based streaming
is cheaper to deploy since it employs standard HTTP servers
[2]; ii) TCP has built-in NAT traversal functionalities; iii)
it is easy to be deployed within Content Delivery Networks
(CDN) [2]; iv) TCP delivers most part of the Internet traffic
and it guarantees the stability of the network with its efficient
congestion control algorithm [14], [15].

For what concerns video quality adaptation techniques,
the proposed techniques can be classified into three main
categories: 1) transcoding-based, 2) scalable encoding-based,
3) stream-switching (or multiple-bitrate - MBR).

The transcoding-based [16] approach consists in adapting
the video content to match a specific bitrate by means of
on-the-fly transcoding of the raw content. These algorithms
can achieve a very fine granularity by throttling frame rate,
compression, and video resolution. Nevertheless, this comes at
the cost of increased processing load and poor scalability, due
to the fact that transcoding has to be done on a per-client basis.
Another important issue is that such algorithms are difficult to
be deployed in CDNs.

An important class of adaptation algorithms employs scal-
able codecs such as H264/MPEG-4 SVC [17], [18]. Both
spatial and temporal scalability can be exploited to adapt
picture resolution and frame rate without having to re-encode
the raw video content. With respect to transcoding-based ap-
proach, scalable codecs reduce processing costs since the raw
video is encoded once and adapted on-the-fly by exploiting
the scalability features of the encoder. However, this approach
is difficult to be used with CDNs since the adaptation logic
requires to be run on specialized servers and content cannot be
cached in standard proxies. Another issue is that the adaptation
logic depends on the employed codec, thus restricting the
content provider to use only a limited set of codecs.

Stream-switching, or Multiple Bit-Rate (MBR) streaming, is
gaining momentum through its adoption in leading streaming
systems. Such algorithms encode the raw video content at
increasing bitrates resulting into N versions of the video that
form the discrete set L = {l0, . . . , lN−1} of video levels;

an algorithm automatically selects a video level li ∈ L that
matches the user’s available bandwidth; these algorithms min-
imize the processing costs since, once the video is encoded,
no further processing is required in order to adapt the video to
the variable bandwidth. Another important advantage of such
algorithms is that they do not rely on particular functionalities
of the employed codec, i.e. they are codec-agnostic. Moreover,
the encoder can operate at the best efficiency for each of the
video levels. Drawbacks of this approach are the increased
storage requirements and the fact that adaptation is charac-
terized by a coarser granularity since video bitrates can only
belong to a discrete set of levels.

Among the streaming systems that employ the stream-
switching technique we cite: 1) the Microsoft IIS Smooth
Streaming [2]; 2) the Adobe HTTP Dynamic Streaming (HDS)
[19]; 3) the Apple HTTP Adaptive Live Streaming (HLS) ; 4)
Move Networks that provides live adaptive streaming service
to several TV networks [20]; 5) Netflix that implements stream
switching in its popular video on demand streaming platform
[21]. With the aim of promoting the standardization and inter-
operability of stream switching systems, the MPEG Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) [3] has been
recently standardized within the ISO to deliver multimedia
content over the HTTP using existing infrastructures.

A great deal of attention has been also devoted to the
performance evaluation of adaptive streaming algorithms in
different scenarios.

In [4] an experimental evaluation of Microsoft IIS Smooth
Streaming, Netflix, and Adobe OSMF has been carried out by
testing the three adaptive algorithm under variable network
available bandwidth. The paper has shown that the three
considered algorithms implement client-side adaptation algo-
rithms, which continuously request audio and video fragments
at different bitrate via GET HTTP requests in order to match
the changing available bandwidth. In particular, results have
shown that the IIS Smooth streaming and the Netflix clients
can be in two different phases: the buffering phase and the
steady phase. During the buffering phase, the client requests
new audio/video fragments right after the previous audio/video
fragment has been downloaded in order to build up the player
queue; during the steady phase, the player requests video
segments every τ seconds (around 2s for IIS and around 3s for
Netflix) in order to maintain the client buffer at a desired level.
It has been shown that IIS Smooth Streaming buffers around
30s of video, whereas Netflix buffers up to 300s of video. In
[9] it has been shown that the traffic pattern generated by such
on/off fragments downloads makes the HTTP servers unable to
fully utilize the network bandwidth. In [10], the impact of such
on/off traffic pattern on the fairness in bandwidth utilization
between two video flows is investigated.

In [5] different adaptive video streaming services have
been tested in a mobile 3G network scenario. Results have
shown that the Apple HTTP Dynamic Streaming was very
conservative and less prone to change video level to match
variable network conditions at the cost of a reduced bandwidth
utilization. The Adobe Dynamic Streaming was quite respon-
sive to network variability thus achieving a good bandwidth
utilization even though frequent re-buffering events occur due



3

to short buffering at the client. Finally, Microsoft IIS Smooth
Streaming achieved better quality wrt Apple HTTP Dynamic
Streaming but suffering more re-buffering events.

In [6] Microsoft IIS Smooth Streaming, Adobe Dynamic
Streaming, Apple HTTP Dynamic Streaming, and an imple-
mentation of DASH have been tested in a controlled testbed
by using bandwidth traces obtained in a vehicular scenario.
The results have shown that Microsoft IIS performed well
minimizing the video level switches while maintaining the
buffer at around 20s while avoiding re-buffering events. The
Adobe Dynamic Streaming has shown unsatisfactory results
with very frequent switches between the lowest and the
highest video level and several re-buffering events. The Apple
HTTP Dynamic streaming has exhibited a very conservative
dynamics with very few video level switches and very large
buffering (up to 200 seconds). Finally, the DASH implementa-
tion performed well, maintaining the buffer full and avoiding
re-buffering events, but with more frequent switches wrt to
Microsoft IIS [6].

Recently, bandwidth utilization, stability, and fairness issues
have been addressed in major existing video streaming servers.
In particular, in [7] it has been shown that NetFlix, Hulu, and
Vudu are not able to estimate the actual network available
bandwidth and, as consequence, to serve videos at the best
possible quality. In [8] a suite of techniques is presented for
trading off efficiency, fairness and stability.

III. THE AUTOMATIC STREAM-SWITCHING CONTROLLER

In this section we propose a mathematical model of the au-
tomatic stream-switching controller of a major CDN operator
aiming at describing the dynamic behavior of the controlled
systems, i.e. the mathematical relation between inputs, such as
measured bandwidth, playout buffer length and outputs, such
as input rate, video level. In the following, we use a top-
down approach for the description, i.e. we first describe the
model and then validate it, because it revealed to be the most
effective way to present the algorithm from the point of view
of conciseness and clarity. The model has been the result of
hypothesis based on a careful interpretation of experimental
investigations. After the model has been derived, it has been
validated through other experiments run in completely differ-
ent scenarios. The results of the model validation are reported
in Section V. The remainder of this section is organized
as follows: in Section III-A we describe the overall control
architecture showing the components of the systems and their
interconnections; in Section III-B we propose the model of the
playout buffer controller, whereas in Section III-C we propose
the model of the stream-switching controller.

A. The overall control architecture

The primary goal of the automatic stream-switching con-
troller is to dynamically select the video level li ∈ L in
order to match the network available bandwidth b(t), which
is time-varying and unpredictable. It is reasonable to start by
assuming that the system controllers are driven by the available
bandwidth estimate b̂(t) and the client playout buffer duration
q(t) measured in seconds. In fact, this has been validated in

our experiments by throttling the available bandwidth b(t)
using NetEm [22], which is a network emulation tool that
allows the available bandwidth b(t) to be set, in order to affect
the controller decisions. In particular, the main investigation
method has been to let the available bandwidth b(t) to vary as a
step function and evaluate key system response indices such as
sending rate, video level switching, settling time, overshoots,
and the time constants of the system dynamic response [23].
Using a step function to test the dynamic response of a system
is a typical approach in control and identification [24].

Figure 1 shows the overall control and communication
architecture of the automatic switching video streamer. The
client and the server communicate over the Internet through
the HTTP protocol; each video streaming session employs two
sockets: the control socket (CS), which is used by the client
to send commands to the server via HTTP POST requests to
drive the stream-switching algorithm; the data socket (DS),
which is used by the server to send the video stream to the
client.

The client is made by the following entities:

1) the player buffer that stores the video frames and feeds
the video player;

2) the buffer controller that, based on the player buffer
queue length q(t) expressed in seconds computes a
control variable T (t) that is sent to the buffer controller
actuator at the server using a HTTP POST request;

3) the stream switching controller that, based on the esti-
mated bandwidth b̂(t) and the queue length q(t), com-
putes a control variable c(t) that is sent to the stream
switching actuator at the server using a HTTP POST
request.

4) a measurement module that supplies an array F (t)
of measurements to the controllers. Among the values
supplied by F (t) there are: the measured values of the
buffer length q(t), the received goodput r(t − τb), the
estimated bandwidth b̂(t), and the decoded frame rate
f(t); all the components of F (t) will be examined in
detail in Section IV-A2.

At the server, the following components are present:

1) The stream-switching actuator that, based on the control
variable c(t) received from the stream-switching con-
troller at the client, selects the proper video level li;

2) the buffer controller actuator that, based on the con-
troller variable T (t) received from the buffer controller
and the video level requested by the switching controller
at the client, throttles the video streamer rate r(t).

Before going into a detailed description of the controllers, it
is worth noting that the control loops between the client and
the server are closed over the Internet, which is a time delayed
communication channel characterized by a forward delay τf
(from the client to the server) and a backward delay τb (from
the server to the client).

In the following subsections we will present the models of
the two control loops.



4

Buffer
Control

Stream
switching

Measurement

Decoder

Stream
Switching
Actuator

q(t)

Server

τf

Internet

Buffer

Actuator
Control

τb

T (t)

Player

r(t)

c(t)

Client

F(t)

CS

DS

c(t)

T (t)
F(t)

POST
HTTP

HTTP
traffic

T
(t−

τ
f )

c(t− τf )

li

buffer

Fig. 1. The overall control and communication architecture of the automatic video level switching system: thick lines represent data flow, thin lines represent
control signals

delay

delay

Stream
Switching

Player
Buffer

Actuator

Estimator

Bandwidth

Stream−switching

control

InternetClient Server

Playout buffer control

+

switching
delays

TCP

delay

Controller
Buffer

τf

τb

r(t)

−

q(t)

r̄(t)
qT (t)

S(·)g(·, ·)

T (t)

τf τs

f(·)

r(t− τb)

R(t)

l(t− τf − τs)

l(t)
S(t)

b̂(t)

Fig. 2. Automatic video level switching system containing: 1) a playout buffer control; 2) a stream switching controller; 3) a bandwidth estimator

B. The playout buffer level controller and the bandwidth
estimator

The aim of the playout buffer level controller is to drive
the player buffer length q(t) to a target length qT (t) in order
to guarantee a continuous reproduction of the video. A block
diagram of this control loop is shown in Figure 2.

The output of the nonlinear controller block f(·) shown in
Figure 2 is the throttle percentage T (t) ∈ [10, 500]. It aims at
steering to zero the difference between the target buffer length
qT (t) and the buffer length q(t).

We have observed that the buffer controller works in one the
following three phases: 1) re-buffering; 2) bandwidth probing;
3) normal.

The re-buffering phase is triggered when the player buffer
gets empty and lasts until a sufficient amount of video is stored
in the playout buffer: during this phase the throttle percentage
is set to 200.

During the bandwidth probing phase, T (t) it is set to 500
and the client sends to the server a rtt-test command on
average every 11s (see Section IV), to trigger a bandwidth
probing phase which lasts, on average, 5s: during this short
interval the received video rate reaches a peak which is close
to the available bandwidth b(t). At the end of this phase, the
server sends to the client the RTT estimate R(t). Thus, it can
be argued that, when the throttle signal is 500, the video flow
acts as a greedy flow. At the end of this phase, the received
rate r(t− τb) is measured to get an estimate of the available
bandwidth b̂(t), to be used as input to the stream switching
controller. Moreover, we have found that, based on the round
trip time estimate R(t), the client computes a safety factor



5

S(t) according to the following equations:

S(R(t)) =


0.2 0 < R(t) < 0.02s
2.5R(t) + 0.15 0.02 s < R(t) < 0.1s
0.4 R(t) > 0.1s

(1)

Eq. (1) shows that, when the RTT is less than 20ms, the safety
factor is set to 0.2, whereas when it is larger than 100ms, it
is set to 0.4. For values between 20ms and 100ms the safety
factor grows linearly. In the following we will use S(t) instead
of S(R(t)), for sake of conciseness. In Section III-C we will
show how the safety factor is used by the stream-switching
controller.

During the normal phase the throttling percentage is set as
follows:

TN (t) = max

(
(1 +

qT (t)− q(t)
qT (t)

)100, 10

)
(2)

The client sends the throttle percentage T (t) to the server as
an argument of the throttle command. In order to actuate
the controller decision, the server produces a video rate r̄(t)
that fills a sender buffer with the currently selected video level
l(t− τf ) according to the following equation:

r(t) = l(t− τf )
T (t− τf )

100
. (3)

The rationale of controlling r(t) is to steer q(t) to qT (t). The
block “TCP”, shown in Figure 2, models the TCP congestion
control dynamics [25]: briefly, the TCP sender rate r(t) drains
the video streamer buffer that is filled at rate r(t); a key feature
of the TCP congestion control is that it generates a best effort
traffic that matches the available bandwidth b(t) when the
buffer length B(t) > 0; in particular, the following relation
holds:

r(t) =

{
r̄(t) iff r(t) ≤ b(t) ∧B(t) = 0

b(t) iff r(t) > b(t) ∨B(t) > 0
(4)

Moreover, if we define the error as e(t) = r(t) − r(t), the
integral error is always bounded by the maximum sender
buffer size BM :ˆ t

0

e(ξ)dξ =

ˆ t

0

(r(ξ)− r(ξ))dξ = B(t) ≤ BM (5)

Eq. (5) says that, on “short time average”, r(t) always matches
r(t).

When the throttle percentage T (t− τf ) is above 100%, the
server streams the video at a rate that is greater than the current
video level bitrate and the player buffer is filled. It is important
to remark that, in the live streaming case, it is not possible for
the server to supply a video at a rate that is greater than the
encoding bitrate for a long period, since the video source is
not pre-encoded.

By looking at (2), when the buffer length q(t) matches the
target buffer length qT (t), the throttle percentage T (t) is equal
to 100% and r(t) matches l(t) (see (3)). On the other hand,
when the error qT (t)− q(t) increases, T (t) increases to allow
r(t) to fill the buffer.

It is important to notice that the buffer control loop is
coupled with the stream-switching control loop (see Figure 2)

since the output l(t) of the stream-switching algorithm, i.e. the
selected video level, is an input through g(·, ·) to the buffer
controller loop.

Figure 2 shows that the queue threshold qT (t) is function
of the current video level l(t) and the safety factor S(t). In
particular, the queue threshold is set as follows:

qT (t) = g(S(t), l(t)) = qST (S(t)) + q0T (l(t)) (6)

where qST (S(t)) = 15(S(t)−0.2) and q0T (t) is function of the
video level li ∈ L :

q0T (li) =

{
7 i = 0, . . . , 3

20 i = 4

The rationale of having q0T (li) equal to 7s, when the video
level is less than l4, and equal to 20s, when equal to l4, is that
when an HD video (l4) is streamed a larger amount of video
is stored in the playout buffer in order to better cope with
sudden bandwidth drops. Moreover, qST (S(t)) ∈ [0, 3]s adds a
contribute which is proportional to the safety factor S(t), in
order to buffer more video when the RTT of the connection
is large.

A second threshold qL(t) is used by the stream-switching
algorithm and is computed similarly to (6):

qL(t) = h(S(t), l(t)) = qSL(S(t)) + q0L(l(t)) (7)

where qSL(S(t)) = 15(S(t)−0.2) and q0L(t) is function of the
video level li ∈ L :

q0L(li) =

{
4 i = 0, . . . , 3

16 i = 4

In Section III-C we will describe how qL(t) is used by the
stream-switching controller.

To the best of our knowledge, the considered adaptive
streamer is the only one that controls the playout buffer length.
In fact, client-side adaptive streaming systems such as[4], [7],
[26] employ two phases, the buffering phase, during which the
buffer is filled, and the steady state, during which the client
aims at keeping the buffer length constant (see Section II). In
[6] it has been shown that control strategies in [4], [7], [26]
do not provide a stable playout buffer length.

C. The automatic stream-switching controller

The stream-switching controller aims at selecting the video
level to be sent by the server to the client so that: 1) the
best video quality is perceived given the current available
bandwidth and 2) re-buffering at the player is avoided. The
stream-switching controller is event-based, i.e. its decisions
are triggered when particular events occur.

For each video level li ∈ L a high threshold LH
i and a low

threshold LL
i are maintained:

LH
i (t) = li · (1 + S(t)) ; LL

i = li · 1.2 (8)

A switch up command (SWITCH_UP) is triggered when
b̂(t) > LH

i (t). This means that, in order to switch up to level
li, the estimated bandwidth must cross the LH

i (t) curve from
below. It is worth noting that LH

i (t) is between 1.2 and 1.4



6

BUFFER_FAIL

SWITCH_UP

otherwisek < i < j

li ljlk

lj(1 + S(t)) < b̂(t)

Tup : q(t) ≥ qL∧

Tdown : q(t) < qL ∧ b̂(t) > 1.2lk

Fig. 3. Finite state machine modelling the stream-switching algorithm: li
is the current level played by the client; if Tup (Tdown) is true the level lj
(lk) is selected by sending the SWITCH_UP (BUFFER_FAIL) command to
the server.

times li depending on R(t). This conservative approach may
lead to network underutilization and reduced QoE.

A switch down command (BUFFER_FAILURE) is sent
when q(t) < qL(t) occurs, where qL(t) is the threshold
(7) computed as function of the safety factor S(t) and the
video level li. The BUFFER_FAILURE command triggers the
selection of the highest video level li such that LL

i < b̂(t). In
other terms, in order to select a level li, the currently estimated
bandwidth b̂(t) must be at least equal to 1.2li.

Let us now consider the case of a re-buffering phase that
occurs when the playout buffer becomes empty: assuming that
the average available bandwidth does not further decrease
during the re-buffering phase, it will take less than qT (t)
seconds to reach again the queue target qT (t) regardless of
the value of the chosen level li. In order to prove this result,
we recall that, when a re-buffering event occurs at time t, the
video gets paused and the video level is set to li < b̂(t)/1.2,
according to the estimated available bandwidth b̂(t), and it is
kept constant during the re-buffering phase. In order to buffer
qT seconds of video, it is necessary to download qT · li bytes.
The time required to download such an amount of data is equal
to Trb = qT li/b̂. Thus, to have Trb ≤ qT it is sufficient that
li ≤ b̂, which under setting li < b̂/1.2 is always satisfied. This
result is valid regardless of the value of li.

Figure 3 shows the finite state machine which models the
automatic stream-switching algorithm executed at the client.
The current video level li is maintained until one of the two
transition conditions, or events, occur:

Tup : q(t) ≥ qL ∧ lj(1 + S(t)) < b̂(t) (9)

Tdown : q(t) < qL ∧ b̂(t) > 1.2lk (10)

Moreover, we have found that the server actuates a
SWITCH_UP command after a median switch-up delay τsu of
around 6.5s and a BUFFER_FAIL command with a median
switch-down delay τsd of around 10.5s. These actuation delays
are shown in Figure 2 through the block “switching delays”.

It is worth noting that these delays τs are at least one
order of magnitude larger than the round trip delays τf + τb,
which makes the latter negligible in the loop dynamics that is
dominated by τs [23], [15], [27].

We conclude this section by briefly summarizing the effects
of time-varying network conditions (the available bandwidth
b(t) and the RTT) on the stream-switching algorithm. The
variable that mainly affects the adaptation algorithm is the
estimated available bandwidth b̂(t). In fact, depending on the

1

2

3

4

GET(’videoname.smil’)User clicks on
video thumbnail

videoname.smil
gets parsed

videoname.smil

GET(l(t0))Requests to get
video level l(t0)

Sends video
level l(t0)

(Flash player)
Client

Server

Sends command c(ti)

(time t = ti) POST(c(ti), l(ti),F(ti))

and feedback F(ti)

Sends video

Sends command c(t1)
and feedback F(t1)

(time t = t1)

POST(c(t1), l(t1),F(t1))

level l(t1)

DS

DS

CS

DS

DS

CS

Sends video
level l(ti)

Sends video
description

Streaming

Fig. 4. Client-server time sequence graph: thick lines indicate video data
transfer, thin lines represent HTTP requests sent from client to server

value of b̂(t), the stream-switching controller selects the video
level li to be sent to the client (see Figure 3). Regarding
the effect of the connection RTT, it can be noted that the
larger the measured RTT R(t), the larger the safety factor
S(t) is, which makes the stream switching algorithm more
conservative, i.e. less prone to switch-up (see equation (8) in
Section III). Moreover, since the video stream is sent over a
TCP connection, the connection RTT has an influence on the
obtainable throughput [28].

IV. THE CLIENT-SERVER COMMUNICATION AND
CONTROL PROTOCOL

A. The client-server communication and control protocol

With the purpose of analyzing the client-server communi-
cation and control protocol we have carried out an experiment
in which the client is connected to the Internet through our
campus wired connection and receives the video sequence
“Elephant’s Dream” from the demo server. By analyzing the
dump file of the traffic received by the client, we were able
to reconstruct the time sequence graph shown in Figure 4.

At first, the client connects to the server through a web
browser, then a Flash application is loaded and a number of
videos are made available to the client. When the user clicks
on the thumbnail of the video he is willing to play (point
¬ in Figure 4), a GET HTTP request is sent to the server
pointing to a SMIL compliant file [29] (an excerpt of this file
is shown in Figure 5). The SMIL file provides the base URL
of the video (httpBase), the video levels filenames, and
the corresponding encoding bit-rates (system-bitrate).
By looking at the SMIL file, it can be seen that the videos
available on the demo website are encoded at five different
bitrates li ∈ {l0, . . . , l4} at any given time instant t. Table I
shows the video resolution for each of the five video levels li,
that ranges from 320× 180 up to high definition 1280× 720.

Then, the client parses the SMIL file (point  in Figure 4)
so that it can reconstruct the complete URLs of the available
video levels and it can request the corresponding video level



7

<head>
<meta name="title" content="Elephants Dream" />
<meta name="httpBase" content=

"http://baseurl"/>
<meta name="rtmpAuthBase" content="" />
</head>
<body>
<switch id="Elephants Dream">
<video src="ElephantsDream2_h264_3500@14411"

system-bitrate="3500000"/>
<video src="ElephantsDream2_h264_2500@14411"

system-bitrate="2500000"/>
<video src="ElephantsDream2_h264_1500@14411"

system-bitrate="1500000"/>
<video src="ElephantsDream2_h264_700@14411"

system-bitrate="700000"/>
<video src="ElephantsDream2_h264_300@14411"

system-bitrate="300000"/>
</switch>
</body>

Fig. 5. Excerpt of the SMIL file

TABLE I
THE SET OF AVAILABLE VIDEO LEVELS L

Video Bitrate Resolution
level (kb/s) (width×height)
l0 300 320x180
l1 700 640x360
l2 1500 640x360
l3 2500 1280x720
l4 3500 1280x720

based on the stream-switching algorithm.We were able to
individually download each video level by using standard
HTTP GET requests pointing to the URLs reconstructed using
the SMIL file. This suggests that the server does not segment
the video as in the case of the Apple HTTP adaptive streaming,
but it encodes the original raw video source into N different
files, one for each available level. This is the same approach
used today by Microsoft IIS which logically partitions a video
level in segments which are physically stored into a single file.
Using one physical file for each video level, instead of having
many files such as in the case of Apple HLS, reduces the
number of objects that a CDN have to handle.

Furthermore, we have analyzed the downloaded files and
we have found out that all the video levels are encoded at 30
frames per second (fps) using the H.264 codec with a FLV
container and a group of picture (GOP) length equal to 36,
which means that two consecutive I frames are 1.2 s apart.
This also implies that, since a video switch can occur only at
the GOP boundaries, the video level can at most be changed
every 1.2 s. It is worth mentioning that a stream switch can
also occur between video levels characterized by different
video resolutions. The audio is encoded with Advanced Audio
Coding (AAC) at 128 kb/s bitrate.

After the SMIL file has been parsed, at time t = t0 (point ®
in Figure 4) the client opens a TCP socket, which is the data
socket (DS), and sends a HTTP GET request that specifies
in the URL one of the video level filenames contained in the
SMIL file. The server starts to stream the video level specified
in the GET request on the data socket. By analyzing the dump-
file, it can be noticed that this socket is kept open until the
reproduction of the video is stopped. This indicates that, when

POST /control/levelFname?cmd=ci,a1, . . . , an
&v=1.0.7.23&r=ABCDE&g=token&lvl1=F1, . . . , F12

Fig. 6. HTTP POST requests from the client to the server over the control
socket

TABLE II
COMMANDS SENT BY THE CLIENT TO THE STREAMING SERVER VIA CMD ,
ARGUMENTS ARRAY a, AND OCCURRENCE PERCENTAGE (× INDICATES

AN UNIDENTIFIED ARGUMENT)

cmd arguments array - a Occ.(%)
throttle T (t) ˜80%
rtt-test ˜15%
SWITCH_UP b̂(t), lk, 1 + S(t), k, oldLevelFname ˜2%
BUFFER_FAIL ×,×, k, lk, b̂(t), 1 +

S(t), newLevelFname
˜2%

log ×,× <1%

a stream-switch occurs, the new video level is sent to the client
using the same socket.

At time t = t1 (point ¯ in Figure 4) the client opens a
second socket, the control socket (CS), and it sends a POST
request to the server specifying five parameters (see Figure 6).

The first POST parameter is cmd and specifies a command
ci containing an array a of n comma separated arguments
a1, . . . , an; the parameter v specifies the HDCore Library of
the client; the parameter r is a 5 letters string that seems to
be encrypted; the parameter g is constant throughout all the
connection and is a session identifier; the parameter lvl1 is
a comma separated array F of feedback variables that will be
described later.

At time t = t1 (point ¯ in Figure 4), the quality adaptation
algorithm starts and at a generic time instant ti > t1, the
client issues commands to the server via HTTP POST requests
in order to drive the automatic stream-switching algorithm
discussed in Section III-C.

Thus, the considered system employs a different approach
with respect to other adaptive video streaming systems. Typ-
ically, when a player wants to switch the video level to
follow a changing available bandwidth, it sends a new HTTP
GET request specifying 1) the new video level URL, 2) the
timestamp pointing to the frame in the stream starting from
which the server should send the new video level [6], [4], [7].

Differently from this approach, the system considered in
this paper, sends a HTTP GET request only at the begin-
ning of the video session, whereas it sends HTTP POST
requests (SWITCH_UP/BUFFER_FAIL commands) in order
to change the video level to the server through the control
socket. In the following, we will discuss the commands and
the feedback variable sent by the client to the server.

1) The cmd parameter: By parsing all the HTTP POST
requests sent by the client to the server through the control
socket, we have identified five different commands ci, each
one with a different number of arguments. Table II reports
all the command names along with the arguments array, the
HTTP reply code sent back from the server to the client, and
the occurrence percentage.

The first two commands, i.e. throttle and rtt-test,
are issued periodically, whereas the remaining three are event-
based. The periodicity of throttle and rtt-test com-



8

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter−departure time (s)

C
D

F

throttle

rtt−test

Fig. 7. CDF of the inter-departure time between two consecutive throttle
or rtt-test commands

mands can be inferred by looking at Figure 7, which shows
the cumulative distribution functions (CDF) of the inter-
departure times of two consecutive throttle or rtt-test
commands. It is worth noticing that the upper tails of both the
commands are due to the re-buffering phases: in fact, during
this phase, the rtt-test command is inhibited, whereas
the throttle command is sent at a lower frequency.
Figure 7 shows that the throttle command is issued with
a median inter-departure time of about 2 seconds, whereas the
rtt-test command is issued with a median inter-departure
time of about 11 seconds.

The throttle command is the most frequently issued
(80% of occurrence) and specifies a single argument, i.e. the
throttle percentage T (t), which is used to control the received
buffer length and estimate the available bandwidth b̂(t) as we
have already described in Section III-B.

The rtt-test command is issued by the client to the
server to ask for sending video in greedy mode and to measure
the round trip time (RTT) under loaded network. When this
command is received, the server sends back to the client a
HTTP reply with the measured RTT in milliseconds.

The SWITCH_UP command is issued by the client to trigger
the switching from the current video level lj to a video level
lk > lj . Five parameters are supplied to the server: 1) the
estimated bandwidth b̂(t); 2) the bitrate lk of the video level
that the client wants to receive; 3) 1 + S(t), where S(t) is
the safety factor; 4) the identifier k of the video level that the
client wants to receive; 4) the filename of the video level lj
that is currently playing.

The BUFFER_FAIL command is issued by the client to the
server to switch from the current video level lj to a video level
lk < lj . We have identified five out of the seven parameters
supplied with this command: 1) the identifier k of the video
level that the client wants to receive; 2) the bitrate lk of
the video level the client wants to receive; 3) the estimated
bandwidth b̂(t); 4) 1 + S(t), where S(t) is the safety factor;
5) the filename of the video level lk that is requesting to switch
to.

The last command is log, it takes two arguments and it
is used to log anomalous events occurred during the video
streaming.

2) The lvl1 parameter: The lvl1 parameter is an array
F made of 12 feedback variables F1, . . . , F12 separated by

DS

CS

eth0

Receiver

b(t)Wired Campus
Internet connection

point
Measurement

Sender
TCP

Receiver
TCP

Browser
Web

Streaming
Server

NetEm

Fig. 8. The testbed employed for the model validation

commas. We have identified 10 out of the 12 variables as
follows:
• F1 - Playoutbuffer length q(t): it represents the number

of seconds stored in the playout buffer;
• F2 - Playout buffer target qT (t): it represents the desired

size of the playout buffer size measured in seconds;
• F3 - unidentified parameter;
• F4 - Received video frame rate f(t): it is the decoded

video frame rate, measured in frames per second;
• F5 - unidentified parameter;
• F6 - Estimated RTT R(t): the estimated RTT measured

in ms after an rtt-test command is sent;
• F7 - Estimated bandwidth b̂(t): it is measured in kb/s;
• F8 - Received goodput r(t): it is the received rate (kb/s)

measured at the client;
• F9 - Current video level identifier: it represents the

identifier of the video level that is currently received by
the client. It belongs to the set {0, 1, 2, 3, 4}.

– F10 - Current video level bitrate l(t): it is the
video level bitrate measured in kb/s that is currently
received by the client. It belongs to the set L =
{l0, l1, l2, l3, l4} (see Table I).

• F11 - Playing time: it represent the playing time ex-
pressed in seconds.

• F12 - Timestamp ti: it represents the Unix timestamp of
the client.

V. MODEL VALIDATION AND PERFORMANCE EVALUATION

In this section we validate the model presented in Section
III by employing the bandwidth-controlled testbed described
in Section V-A. Moreover, we evaluate to what extent the
stream-switching algorithm is able to maintain a continuous
reproduction when the bandwidth suddenly drops or when the
bottleneck is shared with TCP flows.

A. The controlled testbed

Figure 8 shows the bandwidth-controlled testbed scenario
that we have built to infer and validate the proposed model.

The receiving host is an Ubuntu Linux machine connected to
the Internet via our campus wired connection. The receiver is
equipped with NetEm, a Linux kernel module that, along with
the traffic control tools available on Linux, allows downlink
channel bandwidth b(t) and delays to be set [22]. In order
to perform traffic shaping on the downlink, we have used
the Intermediate Functional Block pseudo-device IFB1. The
receiving host also runs an iperf server (TCP Receiver) in

1http://www.linuxfoundation.org/collaborate/workgroups/networking/ifb



9

order to receive TCP greedy flows sent by a remote iperf
client (TCP Sender). We use tcpdump2 to capture all the
ingress traffic at the receiver and we use a python script to
post-process the dumpfile and log: 1) all the commands c(t)
and the feedback array F (t) sent by the client to the server
through the control socket (CS); 2) the rate of the video
streaming flow received over the data socket (DS).

The server provides a number of videos through a demo
website that can be accessed using a web browser. We
have used the video sequence “Elephant’s Dream” for the
experiments, since its duration allows a complete performance
evaluation.

With the aim of validating the model proposed in Section
III, we employ step-like downlink available bandwidth in-
creases and decreases and we evaluate: 1) the transient times
required by the video switching algorithm to match the time-
varying available bandwidth with the highest possible video
level, 2) the ability to avoid playout interruptions when a
sudden decrease of the available bandwidth occurs, 3) the
efficiency of the algorithm in terms of bandwidth utilization, 4)
the fairness when sharing the bottleneck with one concurrent
TCP connection.

We have considered the following four experiments: 1) one
video flow over a bottleneck link whose bandwidth capac-
ity changes following a step function with minimum value
400 kb/s and maximum value 4000 kb/s; 2) one video flow
over a bottleneck link whose bandwidth capacity varies as
a square wave with a period of 200 s, a minimum value
of 400 kb/s and a maximum value of 4000 kb/s; 3) one
video flow sharing a bottleneck, whose capacity is fixed to
4000 kb/s, with one concurrent TCP flow; 4) one video
flow over a bottleneck link whose bandwidth capacity drops
from a value A(i)

M ∈ {1000, 2000, 3200, 5000}kb/s to a value
A

(j)
m ∈ {500, 1000, 2000, 3200}kb/s, with A(i)

M > A
(j)
m .

It is worth to mention that, before running each experiment,
we have carefully checked that the end-to-end available band-
width was well above 5000 kb/s, which was the maximum
value of the bandwidth we set in the traffic shaper. The
measured RTT between our client and the server was in the
order of 10 ms. Finally, in order to obtain a careful validation
of the model, we have repeated the experiments for each of
the considered scenarios 50 times unless otherwise specified.
The time-behaviours reported in this section are the typical
ones.

B. Efficiency indices

For what concerns the evaluation of the Quality of Experi-
ence (QoE), we note that, even though metrics based on PSNR
are still widely used in the literature, in many cases they are
not well correlated with subjective quality measures such as
the Mean Opinion Score (MOS) [30]. Even though several
objective video quality metrics have been proposed to assess
the QoE, the design of a video quality metric which is suitable
for any video application is still an open issue and, to the
best of authors knowledge, it has not been proposed to assess

2http://www.tcpdump.org/

the QoE of adaptive HTTP video streaming. In this paper we
propose to evaluate the following three efficiency indices:

1) the network utilization index ηn = l̂/C ∈ [0, 1], which
assesses to what extent the stream-switching algorithm
is able to use a known available bandwidth b, where
l̂ is the average value of the received video level l(t)
and C = min(lM , b) where lM is the maximum video
level; the index ηn is 1 when the average value of the
received video level is equal to C, i.e. when the video
level exactly matches the network available bandwidth.

2) the video continuity index ηc ∈ [0, 1], or complementary
re-buffering ratio, which measures to what extent the
controller is able to avoid re-buffering pauses and it is
defined as follows:

ηc = 1− ∆Trb
∆T

(11)

where ∆Trb is the total time the client remains paused
due to re-buffering events and ∆T is the duration of
the experiment. This efficiency index is 1 when no re-
buffering pauses are experienced by the client. It is
important to notice that ∆Trb does not include start-up
time. In [31], [32] it has been shown that the re-buffering
ratio ∆Trb/∆T is an important factor impairing user
engagement.

3) the transient time required for the video level l(t) to
match the available bandwidth b(t) when a step like
variation of b(t) occurs.

C. Model validation

This section aims at validating: 1) the model of the stream-
switching proposed in Section III; 2) the controller dynamics
of the received video level l(t) and of the receiver buffer
length q(t); 3) the explanation of the commands that we have
described in Section IV.

To the purpose, the available bandwidth follows a step-like
change. In particular, b(t) suddenly increases at t = 50s from
a value of Am = 400 kb/s to a value of AM = 4000 kb/s.
By letting the step vary from 400kb/s > l0 to 4000kb/s > l4,
we are able to excite the complete dynamics of the controller.
Since for t > 50s the available bandwidth is greater than the
maximum video level l4, we expect a steady state video level
equal to l4.

1) Validation of the stream-switching logic: We first focus
on the effects of the commands issued by the client to
the server in order to drive the stream-switching algorithm
described in Section III-C.

Figure 9 shows the dynamics of the video level l(t) and the
estimated bandwidth b̂(t) as reported by the lvl1 parameter
via the HTTP POST requests (see Section IV-A2). In order
to show the effects of BUFFER_FAIL and SWITCH_UP
commands on l(t), Figure 9 also reports the time instants when
these commands are issued.

The figure shows that, every time the client sends a
SWITCH_UP command, the video level l(t) increases after
a switch-up delay τsu , whereas, when BUFFER_FAIL com-
mands are sent, l(t) decreases after a switch-down delay τsd.
We have collected τsu and τsd and we have found that the



10

time (s) time (s)

(k
b

/s
)

BUFFER_FAIL SWITCH_UPb(t) LHib̂(t) l(t)

3500 50 100 150 200 250 300

LH0

LH1

LH2

LH4

LH3

LH1

LH0

LH2

4500

4000

l4 = 3500

3000

l3 = 2500

2000

l2 = 1500

1000

l1 = 700

5000

l0 = 300

300

700

1000

1500

2000

50 60 70 80 90 100

τsu

τsu

Fig. 9. Step variation of the available bandwidth b(t), estimated bandwidth b̂(t), received video level l(t), BUFFER_FAIL/SWITCH_UP events, and switch-up
thresholds LH

i ; a zoom of the time interval t ∈ [50, 100] shows the τsu delay

average value of switch-up delays is τsu ' 14s, whereas
the average switch-down delay is τsd ' 7s. This confirms
that the stream-switching logic is distributed in part at the
client, which executes the stream-switching control by means
of SWITCH_UP and BUFFER_FAIL commands, and in part
at the server, which receives and actuates those commands
after a switching delay. We conjecture that the commands are
executed only if their trigger conditions hold for the time τsu
and τsd respectively. This aims at avoiding persistent switching
between video levels (chattering) which has been shown to
negatively affect the quality of experience [33].

By parsing the debug information provided by the client,
we have found that, every time a rtt-test command is
sent and a new value of R(t) is reported by the server, the
client updates the safety factor S(t) according to (1). With
the aim of validating the safety factor equation (1), Figure 11
shows the measured pairs (R(t), S(t)) drawn as black dots
and the static model S(R(t)) obtained by using equation (1).
Figure 10 (d) shows the round trip time R(t) estimated after a
rtt-test command is sent. This value is used to compute
the thresholds LH

i (t) that are shown in Figure 9.

In order to validate the stream-switching model discussed
in Section III-C, let us look at the zoom in the time interval
[50, 100]s shown in Figure 9: in addition to the dynamics of
the video level l(t) and the estimated bandwidth b̂(t), the
figure shows, in dash-dotted lines, the high thresholds LH

i (t)
computed using (8). It can be seen that, after the available
bandwidth increases at t = 50s, the estimated bandwidth b̂(t)
increases to 875 kb/s and, at t = 54.61s, it crosses from below
the threshold LH

1 = 840 kb/s. Since b̂(t) > LH
1 (t), a switch-

up event, marked with a ◦ in Figure 9, is triggered and a
SWITCH_UP command is immediately sent at t = 54.62s. The
video level is actually increased by the server at t = 72.25s,
i.e. after a switch-up delay of 17.63 s. The same behaviour

can be observed in Figure 9 every time the estimated available
bandwidth b̂(t) surpasses a threshold LH

i .
2) Validation of the playout buffer control model: Figure 10

(a) and (b) show the received goodput r(t) and the throttle per-
centage signal T (t) respectively, along with the time instants,
marked with a ×, at which rtt-test commands are issued.
Figure 10 (b) clearly shows that every time a rtt-test
command is sent, the throttle percentage T (t) is set to 500%
for around 5s: during this short interval the received rate r(t)
reaches a peak which is close to the available bandwidth b(t).
The time behaviour of the received video rate confirms that,
when the throttle signal is 500%, the video flow acts as a
greedy flow.

Figure 12 shows the measured received video rate r(t) and
the sender buffer filling rate r(t) given by (3). The figure
shows that the error between r̄(t) and r(t) is bounded as
dictated by (5).

Figure 13 compares the measured throttle signal with the
time behaviour obtained by using the conjectured control law
(2). Eq. (2) fits very well the measured throttle signal: in fact,
the difference is only in correspondence of the rtt-test
commands, when the throttle is equal to 500, or re-buffering
phases when the throttle is equal to 200.

Finally, Figure 10 (c) shows that the playout buffer con-
troller is able to drive the playout buffer length q(t) to the
target qT (t).

3) Investigation of the dynamic behaviour of the stream-
switching algorithm: Figure 9 shows that the video level is
initialized at the lowest available video level l0. Nevertheless,
at time t = 0 the estimated bandwidth b̂(t) is erroneously
estimated at the value of 3067 kb/s which is above the thresh-
old LH

3 = 3000 kb/s. Thus, a SWITCH_UP command is sent
to the server and the video level l3 = 2500 kb/s is streamed
after a switch-up delay of 7.16s. By sending the video level
l3, which is above the channel bandwidth Am = 500 kb/s, the



11

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

time (s)

k
b

p
s

b(t)r(t− τb)

(a) Received video rate

0 50 100 150 200 250 300 350
0

100

200

300

400

500

600

time (s)

T
h

ro
tt

le
 (

%
)

 

 
rtt-test

(b) Throttle T (t) and rtt-test commands

0 50 100 150 200 250 300 350
0

5

10

15

20

25

s
e
c

time (s)

q(t) qL(t)qT (t)

(c) Playout buffer length q(t) and target buffer length qT (t)

0 50 100 150 200 250 300 350
0

5

10

15

R
T

T
 (

m
s
)

time (s)

(d) Round trip time R(t) estimated via the rtt-test command

0 50 100 150 200 250 300 350
0

10

20

30

time (s)

F
ra

m
e
 r

a
te

 (
F

P
S

)

(e) Frame rate f(t)

Fig. 10. Response to a step change of available bandwidth at t = 50s

0.04 0.06 0.08 0.1

0.25

0.3

0.35

0.4

RTT (sec)

S
a

fe
ty

 f
a

c
to

r 
−

 S
(R

)

 

 
experimental data
S(R)

Fig. 11. Safety factor S(t) vs round trip time R(t)

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

time (s)

k
b

p
s

rr̄

Fig. 12. Sender buffer filling rate r̄ and received video rate r dynamics
when the available bandwidth varies as a step function

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

Measured T (t) TN (t)

Fig. 13. Measured throttle signal T (t) compared to the conjectured control
(2)

received buffer length q(t) starts to decrease and it eventually
gets empty at t = 17.5s. Figure 10 (e) shows that the
playback frame rate decreases to zero, i.e. the video is paused,
in the time interval [17.5, 20.8]s. At time t = 18.32s, a
BUFFER_FAIL command is finally sent to the server. After
a delay of about 16s , the server switches down to the video
level l0 = 300 kb/s that is below the available bandwidth Am.

Figure 10 (e) shows that the adaptation algorithm does not
change the frame rate to adapt the video content to the network
available bandwidth.

Let us now look at the dynamics of the estimated bandwidth
b̂(t) shown in Figure 9. When the bottleneck capacity increases
to AM = 4000 kb/s, b̂(t) slowly increases and, after a transient
time of 75s, it correctly estimates the bottleneck capacity
AM . This large transient can be explained by considering the
stream switching algorithm and the playout buffer controller
described in Section III. In fact, a SWITCH_UP to a level li can
occur only if b̂(t) > (1 + S(t))li = LH

i . When the available
bandwidth increases from 400 kb/s to 4000 kb/s the video
level is l0 = 500kb/s. Then, at t = 51s, a rtt-test event
is triggered and consequently the throttling percentage is set to
500% to enter the bandwidth probing phase during which the
sender buffer filling rate is set to r(t) = 500/100l0 = 5l0 =
1500kb/s according to (3). This means that the sender buffer
is filled at 1500 kb/s so that the sending rate cannot exceed
this rate on average. Being the sending rate at 1500kb/s, it is
not possible to estimate an available bandwidth greater than
1500kb/s and, as a consequence, the video level cannot quickly



12

0

20

40

60

80

100

120

92.75 (7.91)

66.12 (3.87)

40.88 (3.94)

19.62
(5.01)

l0 l1 l2 l3Video level

T
ra

n
s
ie

n
t 
ti
m

e
 (

s
)

Fig. 14. Average transient time E[Ti→4] and standard deviation σTi→4

(shown in parentheses) of the transient time Ti→4 required to switch from
level li to l4

increase to the maximum level. Thus, due to the large transient
time of b̂(t) and to the switch-up delay τsu, the transient
time required for l(t) to reach the maximum video level l4
is around 150s. The safety factor S(t) ∈ [0.2, 0.4] also adds
further conservativeness to the algorithm since, in order to
switch up to level li, the estimated bandwidth must be greater
than (1 + S(t))li.

Finally, in order to assess the performance of the quality
adaptation algorithm, we have measured the network efficiency
ηn = 0.676 and the video continuity efficiency ηc = 0.91.

4) Transient times: To conclude this section we investigate
the transient time Ti→4 required to switch from a video level
li, with i = 0, 1, 2, 3, to the maximum video level l4. With
this purpose, we let the bottleneck available bandwidth b(t) to
change as a step function with an initial value A(i)

m belonging
to the set A = {500, 1000, 2000, 3200}kb/s and a final value
AM = 5000 kb/s, i.e. b(i)(t) = A

(i)
m · 1(t) + (AM − A(i)

m ) ·
1(t − 100) for i = 0, 1, 2, 3, where 1(t) is the unitary step
function which is 0 for t < 0 and 1 for t ≥ 0. For each of the
four considered available bandwidths b(i)(t), we have carried
out ten experiments and we have measured the average value
E[Ti→4] and the standard deviation σTi→4

that are shown in
Figure 14. The figure clearly shows that the average transient
time decreases roughly linearly when the required number of
levels to switch-up decreases.

D. Investigation of the dynamic behaviour of the stream
switching in the presence of a square-wave time-varying
bottleneck capacity

In this experiment the bottleneck available bandwidth b(t)
is set to a square-wave function with a period of 200s,
a minimum value Am = 500 kb/s and a maximum value
AM = 4000 kb/s. The aim of this experiment is to assess the
responsiveness of the stream-switching algorithm in shrinking
the video level l(t) in response to a significant drop of the
available bandwidth while guaranteeing a continuous repro-
duction of the video content.

By looking at the time behaviour of the video level l(t)
shown in Figure 15(a), two main facts can be noticed: 1)
when the available bandwidth increases to AM , the video
level is increased to l3, which is less than the maximum video

time (s)

k
b
/s

BUFFER_FAIL SWITCH_UP

0 50 100 150 200 250 300 350 400 450 500

4500

4000

3500

3000

2500

2000

1500

1000
700
300

5000
b(t) LHib̂(t) l(t)

LH2

LH3

LH1

LH0

LH4

(a) Available bandwidth b(t), estimated bandwidth b̂(t), video level l(t),
BUFFER_FAILURE/SWITCH_UP events, and high thresholds LH

i

0 50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

time (s)

k
b
/s

ηc = 0.86
ηn = 1 ηn = 1

ηc = 0.89 ηc = 0.88
ηn = 1

r(t− τb) b(t)
ηc = 1 ηn = 0.4 ηc = 1 ηn = 0.4

(b) Received video rate r(t− τb)

0 50 100 150 200 250 300 350 400 450 500
0

10

20
s
e
c

time (s)

q(t) qT (t) qL(t)

(c) Playout buffer length q(t), target buffer length qT (t), switch-down threshold
qL(t)

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

time (s)

c
u
m

u
l.
 r

e
-b

u
f.
 t
im

e

(d) Cumulative re-buffering time

Fig. 15. Response to a square-wave available bandwidth with period 200 s

level l4, after around 75s; 2) when bandwidth drops occur, the
playback is affected by interruptions (see Figure 15(c), which
shows the client buffer length, and Figure 15 (d), which shows
the cumulative re-buffering time). In particular, when the first
bandwidth drop occurs at t = 200s, the buffer length q(t) gets
below the switch-down threshold qL(t) after roughly 7s and
a BUFFER_FAILURE command is sent to switch down the
video level from l3 to l0 (see Figure 15 (c) and 15 (a)). Finally,
the video level is switched to l0 after a switch-down delay τsd
of 30s. Therefore, it takes a total delay of 37s for the video
level to match the new value of the available bandwidth. Due
to this large delay, the receiver buffer gets empty at t ' 220s
and the reproduction of the video is blocked for around 12s.
This is confirmed by considering Figure 15 (d) which shows
a step of 12s in the cumulative re-buffering time occurring at
t ' 220s.

The same happens when the second bandwidth drop takes
place at 400s. In this case, the total delay required to cor-
rectly set the video level is 34s. Again, 21s after the second



13

time (s)

k
b

/s
BUFFER_FAIL SWITCH_UPLHib(t) b̂(t) l(t)

LH3

LH4

LH2

LH1

LH0

5000

4500

4000

l4 = 3500

3000

l3 = 2500

2000

l2 = 1500

1000
l1 = 700
l0 = 300

0 50 100 150 200 250 300 350 400 450

(a) Available bandwidth b(t), estimated bandwidth b̂(t), video level l(t),
BUFFER_FAILURE/SWITCH_UP events, and high thresholds LH

i

0 50 100 150 200 250 300 350 400 450
0

1000

2000

3000

4000

5000

6000

time (s)

k
b

/s

Video goodput TCP goodput b(t)

(b) Video goodput and TCP goodput

Fig. 16. Adaptive video streaming when sharing the bottleneck with a TCP
flow

bandwidth drop, the video reproduction is paused for 11s.
Finally, Figure 15 (b) shows the video continuity index ηc

and the network efficiency index ηn computed during each
half-cycle of the square wave. In particular, when the available
bandwidth is maximum (b(t) = AM ) no pauses due to re-
buffering occur (ηc = 1), but the network efficiency is only
0.4, meaning bandwidth underutilization and reduced QoE.
Conversely, when the available bandwidth is minimum (b(t) =
Am) the network efficiency is 1, whereas the video continuity
index is roughly 0.9, meaning that for roughly 10% of the
time the video was paused.

E. One video flow versus one concurrent TCP flow

This experiment investigates the performance of the stream-
switching algorithm when one video flow shares the bottleneck
with one greedy TCP flow. The bottleneck available bandwidth
is kept constant at 4000 kb/s throughout the whole duration of
the experiment. A video streaming session is started at t = 0
and a greedy TCP flow is injected at time t = 150 s and
stopped at time t = 370s.

Figure 16 (a) shows the video level time behaviour l(t) and
the estimated bandwidth b̂(t). Vertical dashed lines divide the
experiment in three parts.

During the first part of the experiment (t < 150 s), except
during the short time interval [6.18, 21.93]s when l(t) is equal
to l4 = 3500 kb/s, the video level is set to l3 = 2500 kb/s and
the network efficiency ηn is 0.74.

The second part of the experiment starts at t = 150s
when the TCP flow joins the bottleneck and grabs the fair
bandwidth share of 2000 kb/s. However, it is worth noting
that the estimated bandwidth b̂(t) decreases to the correct value
only after 9s. After an additional delay of 8s a BUFFER_FAIL
command is sent at t = 167s (see Figure 16 (a)). Then, after
the switch-down delay τsd, the video level is shrunk to the

TABLE III
AVERAGE AND STANDARD DEVIATION (IN PARENTHESIS) OF

RE-BUFFERING TIME ∆T
(i,j)
rb IN SECONDS FOR EACH CONSIDERED

BANDWIDTH DROP FROM A
(i)
M TO A

(i)
m IN KBPS

A
(i)
M

A
(j)
m 3200

(l3)
2000
(l2)

1000
(l1)

500
(l0)

5000 (l4) 0 (0) 0 (0) 0 (0) 0.51
(1.1)

3200 (l3) / 0 (0) 2.7 (2.2) 8.5 (2.8)
2000 (l2) / / 0(0) 6.1 (3.9)
1000 (l1) / / / 0 (0)

correct value l2 = 1500 kb/s. Therefore, it took a total delay of
24s to select the proper video level. In this case, the actuation
delay does not affect the video reproduction. At time t = 182s,
a second BUFFER_FAIL command is issued and the video
level is shrunk at time t = 189s, after a switch-down delay
of τsd ' 7s. At time t = 193s, an rtt-test command
is issued so that for a short amount of time the video flow
becomes greedy (see Subsection V-C). At time t = 196s,
a 2200 kb/s bandwidth is estimated so that a SWITCH_UP
command is sent and, at t = 212s, the video level is switched
up to the suitable value of l2 = 1500 kb/s. In this part of the
experiment, the network efficiency index was equal to 0.76,
the average goodput of the greedy TCP flow was 2170 kb/s,
whereas the goodput obtained by video flow was 1643 kb/s,
showing network underutilization. TCP gets a larger share of
bandwidth since the streaming session is not always greedy
using its throttling control (see equations (2), (3)). In the third
part of the experiment, after the TCP flow leaves the bottleneck
at time t = 370s, the level is switched up to l3 = 2500 kb/s
after a delay of 26s. In this part of the experiment the network
utilization was ηn = 0.69.

F. Investigating re-buffering events due to bandwidth drops

In this section we investigate to what extent the stream-
switching is able to avoid re-buffering phases when switching
down from li to lj with li > lj . With this purpose we have
considered the available bandwidths b(i,j)(t) = A

(i)
M 1(t) −

(A
(i)
M − A

(j)
m ) · 1(t − 100) exhibiting a sudden bandwidth

decrease at t = 100s from A
(i)
M ∈ {A(1)

M = 1000, A
(2)
M =

2000, A
(3)
M = 3200, A

(4)
M = 5000}kb/s to A

(j)
m ∈ {A(0)

m =

500, A
(1)
m = 1000, A

(2)
m = 2000, A

(3)
m = 3200}kb/s with

A
(i)
M > A

(j)
m . We have run 10 experiments for each b(i,j)(t)

and we have measured the average and standard deviation of
the re-buffering time ∆T

(i,j)
rb that are shown in Table 3. The

table shows that the stream-switching algorithm performs well
when switching down from l4 to a lower video level. In fact,
when l(t) = l4 the queue threshold qT (t) is greater than 20s
and the switch-down threshold qL(t) is greater than 16s (see
equations (6) and (7)): thus, when the bandwidth decreases
a BUFFER_FAIL command is sent when the buffer length is
equal to qL(t) ∈ [16, 19]s giving enough time to avoid a buffer
underrun episode.

When switching down to the lowest level l0 the player
exhibited re-buffering phases due to buffer underruns: in
particular, the most critical case was with a switch down from



14

level l3 to level l0 (AM = 3200 kb/s, Am = 500 kb/s) during
which the re-buffering phase lasted on average 8.5s with a
standard deviation of 2.8s. This suggests that increasing q0T (li)
for i = 0, . . . , 3 could help to mitigate re-buffering phases.

VI. CONCLUSIONS

In this paper we have investigated the control system of a
leading adaptive video streaming service. The contribution of
this paper is twofold: 1) we have modelled and validated the
automatic stream-switching controller; 2) we have carried out
an extensive performance evaluation in a controlled environ-
ment.

For what concerns the modelling, we have found that the
adaptive streaming algorithm employs two controllers: the first
one controls the length of the client buffer and the second one
selects the video level. The dynamics of the two interacting
controllers have been described and validated in a controlled
testbed scenario.

Regarding the performance evaluation, we have mainly
found that: 1) a video flow takes 21s on average to switch
up between two adjacent video levels in response to a band-
width increase; 2) due to the conservativeness of the stream-
switching algorithm, a low bandwidth utilization may be
obtained; 3) when the available bandwidth suddenly decreases,
interruptions of the video playback may occur due to a large
actuation delay.

ACKNOWLEDGMENTS

We thank the Associate Editor and the anonymous reviewers
for the constructive comments that allowed us to improve the
overall quality of the paper.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index:Forecast and Methodology
2012-2017,” White Paper, 2012.

[2] A. Zambelli, “IIS smooth streaming technical overview,” Microsoft
Corporation, 2009.

[3] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[4] S. Akhshabi, A. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” Proc.
of ACM MMSys ’11, pp. 157–168, 2011.

[5] H. Riiser, H. Bergsaker, P. Vigmostad, P. Halvorsen, and C. Griwodz,
“A comparison of quality scheduling in commercial adaptive HTTP
streaming solutions on a 3G network,” in Proc. of the 4th Workshop
on Mobile Video, 2012, pp. 25–30.

[6] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic
adaptive streaming over HTTP in vehicular environments,” in Proc. of
the 4th Workshop on Mobile Video, 2012, pp. 37–42.

[7] T. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Con-
fused, timid, and unstable: picking a video streaming rate is hard,” in
Proc. of ACM IMC ’12, 2012, pp. 225–238.

[8] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive,” in Proc.
of CoNEXT ’12, 2012, pp. 97–108.

[9] T. Kupka, P. Halvorsen, and C. Griwodz, “Performance of On-Off Traffic
Stemming From Live Adaptive Segmented HTTP Video Streaming,” in
Proc. of IEEE Conference on Local Computer Networks, Oct. 2012, pp.
405–413.

[10] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “What
happens when http adaptive streaming players compete for bandwidth?”
in Proc. of ACM NOSSDAV ’12, 2012.

[11] M. Handley, S. Floyd, and J. Pahdye, “TCP Friendly Rate Control
(TFRC): Protocol Specification,” RFC 3448, Proposed Standard, Jan.
2003.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 3550, Standard
track, 2003.

[13] “Real-Time Messaging Protocol (RTMP) Specification,” Available at:
http://www.adobe.com/devnet/rtmp.html, Apr. 2009.

[14] V. Jacobson, “Congestion avoidance and control,” in Proc. of ACM
SIGCOMM ’88, 1988, pp. 314–329.

[15] S. Mascolo, “Congestion control in high-speed communication networks
using the Smith principle,” Automatica, vol. 35, no. 12, pp. 1921–1935,
1999.

[16] M. Prangl, I. Kofler, and H. Hellwagner, “Towards QoS Improvements of
TCP-Based Media Delivery,” in Proc. of ICNS ’08, 2008, pp. 188–193.

[17] C. Krasic, J. Walpole, and W. Feng, “Quality-adaptive media streaming
by priority drop,” in Proc. of NOSSDAV 2003, 2003.

[18] R. Kuschnig, I. Kofler, and H. Hellwagner, “An evaluation of TCP-based
rate-control algorithms for adaptive internet streaming of H. 264/SVC,”
in Proc. of ACM MMSys ’10, 2010, pp. 157–168.

[19] D. Hassoun, “Dynamic streaming in Flash Media Server 3.5 - Part
1: Overview of the new capabilities,” Jan. 2009. [Online]. Available:
http://www.adobe.com/devnet/flashmediaserver/

[20] “Move networks hd adaptive video streaming,”
http://www.movenetworkshd.com.

[21] “Netflix,” http://www.netflix.com.
[22] S. Hemminger, “Network emulation with NetEm,” in Linux Conference

Au, 2005, pp. 18–23.
[23] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback control of

dynamic systems. Addison-Wesley, 2002.
[24] L. De Cicco and S. Mascolo, “A Mathematical Model of the Skype

VoIP Congestion Control Algorithm,” IEEE Transactions on Automatic
Control, vol. 55, no. 3, pp. 790–795, Mar. 2010.

[25] T. Ott, J. Kemperman, and M. Mathis, “The Stationary Behavior of
Ideal TCP Congestion Avoidance,” Aug. 1996. [Online]. Available:
ftp://ftp.research.telcordia.com/pub/tjo/TCPwindow.ps

[26] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous,
“Network characteristics of video streaming traffic,” in Proc. of CoNEXT
’11, 2011, pp. 25:1–25:12.

[27] L. De Cicco, S. Mascolo, and S.-I. Niculescu, “Robust stability analysis
of Smith predictor-based congestion control algorithms for computer
networks,” Automatica, vol. 47, no. 8, pp. 1685 – 1692, 2011.

[28] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in ACM
SIGCOMM Computer Communication Review, vol. 28, no. 4, 1998, pp.
303–314.

[29] D. Bulterman, “SMIL 2.0 Part 1: Overview, Concepts and Structures,”
IEEE Multimedia, vol. 8, no. 4, pp. 82–89, 2001.

[30] S. Winkler and P. Mohandas, “The evolution of video quality measure-
ment: From PSNR to hybrid metrics,” IEEE Transactions on Broadcast-
ing, vol. 54, no. 3, pp. 660–668, 2008.

[31] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the impact of video quality on user
engagement,” in Proc. of ACM SIGCOMM 2011, 2011, pp. 362–373.

[32] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs,”
in Proc. of ACM IMC ’12, 2012, pp. 211–224.

[33] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Flicker
effects in adaptive video streaming to handheld devices,” in Proc. of
ACM International Conference on Multimedia ’11, 2011, pp. 463–472.


