CONTROL POLICIES CONCILIATING DEADLOCK
AVOIDANCE AND FLEXIBILITY IN FMS RESOURCE
ALLOCATION

M.P. Fanti, B. Maione, S. Mascolo, B. Turchiano

Dipartimento di Elettrotecnica ed Elettronica - Politecnico di Bari
Via Re David 200 - 70125 BARI , ITALY
E-mail : maione@poliba.it

Abstract

Deadlock arises in FMS when a job set is in "circular wait”, i.e. each job in the set waits
for a resource held by another job in the same set. This is an unfavourable situation that can
occur in production systems with high routing flexibility. Facing this problem requires
control policies that avoid deadlock conditions by ruling resource allocation and
deallocation. Often, by reducing the allowed options in resource usage, these policies lead
to poor production system performance. On the other hand, more flexible approaches to
deadlock avoidance usually need more complex control algorithms.

This paper considers two deadlock avoidance policies that use feedback of the
production system state to allow or inhibit resource allocation or deallocation. Both the
policies are stated using a digraph-theoretic approach describing possible and current job-
resource interactions. The former policy has been already introduced by the authors in a
previous work. The latter is original and, by extending the basic ideas that motivate the
previous one, allows wider flexibility in resource use, even if it involves higher
computational complexity. The paper compares the two policies and a third one proposed
by other authors, by analysing two examples by discrete event simulation. This confirms
that the new policy results in better performance measures.

1 Introduction

Deadlock can arise in Flexible Manufacturing Systems (FMS) with high routing
flexibility [11, 12]. It occurs when each element from a set of jobs (pieces, parts) waits for
a resource (machine, buffer slot, transport unit, etc.) held by another job in the same set.
All the pieces and the resources involved in such a condition remain blocked indefinitely
unless a suitable recovery policy restores regular production flow. In the last years several
researchers have dealt with this subject [1, 5, 6, 8, 9, 11, 12}, introducing avoidance
policies that use feedback control laws to rule resource allocation and deallocation. Such
policies differ from one another in computation complexity and in constraint tightness they
impose on the resource utilization. In particular, an excessive reduction of the flexibility in
resource allocation could lead to poor performance of the production system. On the other
hand, higher flexibility usually asks for more complex deadlock avoidance policies.

This paper compares two avoidance policies allowing considerable flexibility in
resource allocation: the former has been introduced in [6], while the latter is a new proposal
of the authors. The policies involve different computation complexities and show different
restrictions in limiting resource usage. Both of them are stated by means of graph-theoretic
tools and assume the system be modelled as a Discrete Event Dynamical System (DEDS)
[3, 4, 13]. The paper is organized in six Sections. The next Section introduces notations
and summarizes the main theoretical results developed in [6, 7], while Section 3 describes
the two deadlock avoidance policies. Section 4 discusses the computational complexity. In

0-7803-2535-4/95 $4.00 © 1995 I1EEE
343

Section 5 we apply the proposed methods and a further policy introduced by Banaszak and
Krogh [1] to two examples, using discrete event simulation to compare the resulting
performance indices of the production. Finally, Section 6 draws the conclusions.

2 Basic Definitions and Previous Results

In an FMS & each part requires service from the system resources in a specific
sequence, called Working Procedure. We assume that each Working Procedure terminates

with a fictitious resource (ry) representing the completion of the job processing. So, if ¢
indicates the set of jobs to produce, each part je§ follows a particular Working Procedure
w, from a set ‘W. We suppose that each part holds one resource at a time, in exclusive
mode. In our approach, detection and avoidance of deadlocks involve two main digraphs
[2]. The former, named Working Procedure Digraph and denoted by Dqy=(N.,E84q;),
shows the specific order in which resources appear in all the Working Procedures. To be
specific, each vertex of the set T, corresponds to a resource r; (i=1,...,R). An edge ¢;,, is
an ordered pair (r;,r,,,) of nodes in T\ such that e, =(r;,r.,), directed from r; to r;,, belongs
to 8oy TN x T\, iff (if and only if) r,, immediately follows r; in some we W .

The second main digraph, named Transition Digraph, describes the progress of jobs in
process, i.e. the dynamic interaction job-resources. Assuming that the system dynamics is
described by a DEDS, we denote by q(t)e the B-state at time t, where Q is the complete
state set. In particular, at each time t, q must describe the set 9q of the jobs in process, the

resources currently held by each job je{,, the Working Procedures associated with such
jobs and, finally, the Residual Working Procedures, i.e. the sequence of resources

necessary for each je& {]q to complete the processing. The Transition Digraph
D1 (q)=[N.,E1(q)] is defined as follows: edge e;, E1,(q) iff a job jed, holds r; in the
state q and requires r,,, as next resource. Hence D, (q) describes all the next transitions of
jobs in A. Not always a transition represented by an edge e;, € 81,(q) (for brevity:
transition e;;,) can be immediately executed. Namely, for e, to occur, r,, must be idle in
the state q. In this case, we call e;, a feasible transition for the state q. Vice versa, if r; is
busy, we say that e, is a blocked transition for q.
The Transition Digraph allows deadlock detection: namely, as shown by Fanti et al. [6],
q is a deadlock state for A8 iff there is at least one cycle in Dp,(q). Such a cycle means that
there is a set of jobs which remain indefinitely blocked, in circular wait. In the following
we denote a deadlock condition as First Level Deadlock (FLD for brevity). Now let
=(N 1,8, be a cycle of Dqy. We define Cycle Capacity of ¥, the number of vertices of
such a cycle, i.e. the integer C(y,)=Card(\). Moreover the Overlap Degree of 7, in the
state q is the integer Oq(}'n)=Card[8nﬂ €1,(q)]. Obviously, a cycle v, of Dy is in deadlock

condition in Dr,(q) iff O4(¥,)=C(Y,) and indicates the number of edges of Y, appearing in

D).

To define deadlock avoidance policies it is essential to prevent the occurrence of some
critical situations, named "impending system deadlocks” [9]. These are not FLD, even if
they necessarily evolve to circular waits in the immediate future. One of such situations is
the Second Level Deadlock (SLD) where a job set is not currently deadlocked, but it
progresses inevitably to a deadlock condition at the next transition. As an example let us
consider a system introduced by Wysk et al. [11] including three Working Procedures:
W 1=(T1,T2,T4,T5), Wo=(T3,T,T4,I5) and wg=(14,r3,15.11,Ts), where rs stands for the
fictitious resource. Figure 1.a gives Dqy, where each edge is labelled by the corresponding
Working Procedure(s). Solid lines in Figure 1.b form Dt,(q) for a SLD state; moreover

344

dashed lines represent second transitions in the Residual Working Procedures and dark
nodes indicate busy resources. It is easy to realize that executing the feasible transition e;,
or €y results in a FLD for cycle v,=({ry.r2},{€12.€21}) or Y,=({r,14,13},{€24.€43.€32}),
respectively.

Figure 1.a: Digraph D¢ for Example 1. Figure 1.b: A SLD state

Now we may go one step further by introducing the cycle set I'y, such that
NaNNy=(r,} for any ¥, ¥, T'g, With 2y, The set Iy is called rosace of Dqy and the
only resource shared by all the elements from 1"8 (i.e. rg) is the centre of rosace I"g [2].
Denoting by ‘]l,rg and Gl—g respectively the sets of all the vertices and edges in the cycles
from Iy, we define the rosace capacity as C(I‘g)=Card(‘IL1-g) and the rosace overlap degree
as Oq(l"g)=Card[Grgﬂ E(q)] .

According to the proof given by the authors [6], necessary and sufficient conditions for
q to be a SLD state is that Doy must contain a rosace I'; with r, idle and all the other
resources busy in the state q. Moreover, for each cycle ¥,e T there exists & I'y such that
the only feasible transition of ¥, determines the deadlock of %,. This implies that a Working
Procedure we W contains vertices t;, r, and 1, in strict order of succession, with e;,e &y,

and e € 6.
The previous conditions point out a connection between the topology of Dqy and the
possibility of SLD occurrences. F.e. it is easy to verify that D¢y of Figure 1.a contains the

rosace I'y={Y,,¥,} with centre r,. Moreover the Working Procedure w; has vertices ry, 1,
and r, in strict order of succession, and wy includes the sequence r3, 1 and r;. Hence the
system enjoys the conditions described above. :

~ Starting from the concept of SLD, it is easy to introduce the notion of Third Level

Deadlock (TLD). This situation characterizes states in which a job set is neither in FLD nor
in SLD but it certainly progresses to a FLD or a SLD at the next transition. Figure 2.a
shows the digraph Dqy for a system with the following Working Procedures:

w 1=(r1,r8,r2,r3,r4,r9), w 2=(r5,r4,r3 ,f6,1'9), w 3=(r5,r6,r3,r7,r9) and
W 4=(1,I3,T2.11,Tg,Tg). Clearly, Doy contains five cycles y;=({r;,r3,r2}.{€15,€82,€21})>
'YZ=({ r23r3} ’ { 623,632}), Y3=((T3,T4 } ’ { 334,643 })o Y4=({r6’r3 } ’ { e63se36 }) and
Y5=({r3,r7},{€37,€73}). Figure 2.b gives the digraph Dr,(q) (solid lines) for a TLD state.
For sake of simplicity, the digraphs of Fig. 2.a and 2.b do not include the fictitious

resource Tg: namely it can not pertain to any cycle [6]. Dashed lines in Fig. 2.b indicate
second and third transitions in the Residual Working Procedures. Executing €43, or €43

leads to FLD condition for 7y, or ys, respectively, while €73 and eg, determine a SLD for

rosaces I'1={Y;,Y2} or I'y={7Y>,Y3,¥s,Ys5), respectively. Obviously, the notions of SLD and
TLD can be generalized to define higher level deadlocks.

345

W2
Iy Iy
W4 W4 13
W2
Wy Wi) Wy ws W,
Tg Iy
Figure 2.a: Digraph Dy for Example 2. Figure 2.b: A TLD state

As proven in [7], for a TLD to occur the topology of Dqy must enjoy some properties.

Namely, if q is a TLD state then Dqy contains two rosace sets (36, and 36,) each one
characterized by a umque centre for all its elements (rgl andr, g2 respectively, with
Ty1#Tgy). All the rosaces in both sets share one cycle and any two rosaces (in the same set
or cach from a set) only share the vertices and the edges of such a cycle. Moreover all the

resources of the rosaces in 3,U ¥, are busy but r,; and ry, that are idle. Finally, for each

rosace I'ye 36, there exists a feasible transition belonging to a rosace I',e 36, that puts I'y
in SLD, and vice versa.

From the example shown in Figure 2.a we have 36,={I";} and ¥,=(I";} with centre r,
and r3, respectively. The sets 3, and ¥ ; share only the cycle y,. Moreover all the
resources in ¥,U%¥,=({T"},I',} are busy, butry and r5.

Finally, let 3; be a rosace set of Doy and let TLq¢, and 64, be respectively the sets of all
the vertices and of all the edges pertaining to the elements of ;. Then we define the rosace
set Capacity and the rosace set Overlap Degree as C(3;)=Card(T ;) and
Og(%6)=Card[E 4,1 &1.(q)], respectively.

3 Deadlock Avoidance Techniques

Deadlock avoidance policies express feedback control laws (named Restriction Policies)
that utilize information on the current state q to inhibit or to enable events modifying the
resource allocation. In particular we consider events of the following two types: a new job
enters the system (1-type event) and a job progresses from a resource to another one or it

leaves the system (2-type event). To describe a 1-type event we use a pair (j,w), where je{

is the job entering A and we‘W is the Working Procedure that it has to follow. Moreover
we specify a 2-type event with the feasible transition e;,, representing the job progress.

-With reference to the following sets: %; = {(q,w)e G xW : the first resource of w is
idle in q} and %, = {(q,&;)€ X% E ¢y : €, is feasible in q}, we define a Restriction

Policy as a pair of functions:
fl : %1 - {O,l} fz : 932—) {0,1}
where f;(q,w)=0 (f;(q,w)=1) means that, for & in the state q, every 1-type event

associated with w is inhibited (enabled) and f;(q,.e;;,,)=0 (f3(q.€;,)=1) indicates that, for
A in the state q, 2-type event associated with the feasible transition e, is inhibited

346

(enabled).

Avoiding deadlock means to prevent situations of any level deadlock from occurring.
One possible approach to the deadlock avoidance consists in suitably limiting the number
of pieces in process. For example, imposing that such a number be less than the minimum
capacity of all the cycles in Dqy, makes impossible the occurrence of any level deadlock "a
priori". However this policy is too restrictive and results in poor production performance.
A more flexible approach limits the number of jobs in progress so that only a SLD and
higher level deadlocks are "a priori" prevented from occurring. In addition, all those events
which just lead to a FLD are inhibited. To make this idea more clear and to state the first
Restriction Policy, further definitions are still necessary.

Let {Y,... Yy---» ¥n} be the complete set of all the cycles of Dqy. We define the Second
Level Digraph D2w=(‘n.2,62w), by associating a vertex nzn with each cycle ¥y, of Dy, so
that ‘]'Lz={n21,...,n2,,,...,nzN}. Moreover, the edge e2v5=(n2‘,,n25) belongs to 82, iff ¥,
and Y, have only one vertex in common (say r,;) and there exists a Working Procedure
we W, containing vertices r;, r,,, and 1, in strict order of succession, with ¢;,€ &, and
€mp€ &5 Now let =(N2,82) indicate a cycle of D% (second level cycle). The Cycle
Capacity, C(yz11 , of the second level cycle yzn equals the number of resources in the cycles
from T, i.e. C(¥%,)=C(T,). Moreover, we denote by Oq(ﬁ,) the Overlap Degree of ¥, in

the state q, where oq(yz,,)=oq(r,,). A crucial role in the Restriction Policies proposed in
the following is played by a particular subset of the second level cycles. It is defined as

F2={721,...,'{2n'...,720}, where, for any n=1,2,...,G, the vertices in ‘]'1,2,, correspond to a
rosace I, of Dy .

Given such definitions, the following Proposition proven in [6] introduces a necessary
condition for q to be a SLD state.

Proposition 1: Necessary condition for q to be a SLD state is that the Second Level
Digraph D2y, has a cycle yz,,e I'2, whose overlap degree in the state q is Oq(yz,,)=[C(yzn)-
1].

The previous result motivates the first deadlock free Restriction Policy.

Restriction Policy A (RPA)
fi(q,wy)=1 if D1,(q") does not contain any cycle and Card(f]q.)<(C20-l);
f1(q,wy)=0 otherwise; '

f2(q.6;)=1 if D1y(q") does not contain any cycle;
f2(q,6;)=0 otherwise

where q' indicates the state obtained as a consequence of the considered 1-type or 2-type
event and

CZ%o=min C(¥%,)
2
is an integer, with Czo =oo if [is empty.

The function f; bounds the number of jobs in progress so that the necessary conditions
of Proposition 1 fail. Namely, since the previous definitions imply Oq-(yzn)SCard(ﬂq-) and

[C%-11S[C(¥2)-1), the function f, leads to Og:(Y)<S[C(y*)-1] for any Y€ T2, Even if
this condition avoids any SLD, it does not keep FLD from occurring. Thus, to inhibit
events just leading to a FLD, f; and f, impose that Dy,(q") is acyclic.

347

To further improve flexibility in resource allocation, the Restriction Policy must allow a
larger number of pieces in the system. To this mm one can bound Card({,) to make a TLD

and higher level deadlocks impossible "a priori”. At the same time the pohcy must inhibit
any event just leading to a FLD or to a SLD.

To go into details, let {T'y,...,I'g} be the set of rosaces of Dqy corresponding to the
second level cycles in I'2. We define the Third Level Digraph D3 =(N3,83,), by
associating a vertex n>, with each ¥, e I'2, so that ‘IL3={n31,...,n3G]. The edge
e3vs=(n3v,n3s) belongs to 63«“; » iff there exists a cycle Y; of Dy such that l‘vﬂI‘s={yg} ,
N NN =N, 6r,NE=E, and the centres r, of I', and r; of I'; are distinct.

Now let ¥*,=(N.%,,&3,) be a cycle of D> (Third Level Cycle) and let %, be the set of
rosaces in Dq; corresponding to the vertices in ‘IL3n. We define the Cycle Capacity,
C(y3n), of the third level cycle 73,, as the number of resources associated with the rosaces
in ¥, C(‘YS,,)=C(‘J{»,,). Moreover we denote by Oq(73n)=0q(%n) the Overlap Degree of

¥, in the state q and by I'® the third level cycle set.
The above ideas support the following proposition [7].

Proposition 2: Necessary condition for q to be a TLD state is that the Third Level
Digraph D3«w has a cycle ysn, whose overlap degree in the state q is Oq(y3n)=[C(y3n)-2].

Proposition 2 motivates the next deadlock-free Restriction Policy.

Restriction Policy B (RPB)

fi(q,w)=1 if: Dr,(q") does not contain any cycle,
Oq (YR <(C(¥,)-1) for each e T2,
Card(f])<(C35-2);

f,(q,w)=0 otherwise;
f2(q.6;m)=1 if: Dr,(q") does not contain any cycle,
Oy (P)<(C(Y)-1) for each ¥ e T
f,(q,;m)=0 otherwise
where

C3y= min Oy
T
and C30 =eo if D3y is acyclic.

Functions f; and f, in Restriction Policy B guarantee that the system does not reach any
FLD and (by Proposition 1) any SLD state. Furthermore, f; bounds the number of jobs in
progress so that the necessary conditions of Proposition 2 are not satisfied. Namely, we

get O (y3n)<Card($])<[C30-2]<[C(y3)-2] for any 'f‘ €T3, Therefore neither a TLD nor a
hlgher level deadlock can occur.

4 Computational Complexity
To discuss the computational complexity of the proposed Restriction Policies, we
separate the on-line costs from the off-line costs. The first ones concern the real-time

computations while the second ones characterize the algorithms that are employed only
once, before the proper real-time control.

348

Restriction Policy A requires the following off-line steps: the determination of cycles
from Dy and from D2, with their capacities, the characterization of I'? and, finally, the

computation of the minimum capacity C?,. Determining cycles of D¢y and of Dz.u, is the
heaviest operation of this control law. To this aim, cycles can be generated in

O{[Card(\.)+Card(€)](c+1)} time [10], where c represents the number of cycles of Dqy

or of D2 . Obviously, the complexity of the computation is prohibitive if the number of
cycles from Doy is very high (f.e. if Dqy is complete). However in many applications the

adjacency matrices of Dq; and of Dz.w are sparse enough, so that the effort for determining
cycles is reasonable.

The on-line computations of RPA consist in updating Card({,,), in transforming Dy,(q)
into D1,(q") and in checking if such a new digraph contains a cycle. This last operation can

be easily performed by a depth-first search algorithm whose complexity is O[Card(T,)],
because the outdegree of the vertices of the Transition Digraph equals zero or one.
Restriction Policy B requires the same off-line computation steps as RPA and, in

addition, it needs the determination of the digraph D3ew- , of the set T'> and of the minimum

capacity C30. For what concerns the on-line computations, RPB is more expensive than
RPA. Namely, it also demands to store and update the Overlap Degree for any second level

cycle from l"2, at each state q'.
To sum up, the complexity of the off-line algorithms depends on the number of cycles

from Dey, D%y and Dy On the other hand, the on-line computational costs are small:
thus, in many practical cases, both RPA and RPB are suitable for real-time control
applications. Finally, RPB is more complex than RPA even if it is more flexible in
allocating the resources at disposal.

5 Examples

This section illustrates two examples implementing the Restriction Policies defined
above. In each case we also compare the Restriction Policies with the deadlock avoidance
techniques proposed by Banaszack and Krogh (RPBK) [1] which is simpler and very easy
to implement.

Figure 1.a and 2.a describe the Working Procedure Digraphs of Example 1 and of
Example 2, respectively. Such Working Procedures have been explicitly defined in Section
2. For each Working Procedure there is a job type to produce and both examples use
gamma distributions for the processing times. For what concerns loading and timing
policies, all the jobs in the production mix are ordered randomly in an input queue. On each
2-type event occurrence, a job enters the system if the first resource in its Working
Procedure is idle and, of course, if f; enables such an input. Finally, priority discipline is
First In First Out.

Example 1: The production mix is composed of 50 items for each job type. The
processing times are distinct in two cases. In case 1, they have mean 100 and variance 20
for each resource; in case 2 mean and variance for both r, and r5 are changed to 150 and
30, respectively. While in case 2 the processing times balance the workloads of the four
machines, in case 1 the system is unbalanced. Figure 3 shows the Second Level Digraph
Dz.w, possessing one cycle only: 721=({n21,n22},' {czu,ezm,}), with C(yzl)=C20=4. The
Third Level Digraph is obviously acyclic. Concerning the established scheduling policies,

the simulation assumes the makespan as performance index. The results of Figure 4
confirm that RPB is the best policy in any case.

349

m
w2, n2, " 50000
40000+

e 30000 WRPA
2 s 20000 @ RPE
n%; n? B RPBK
O O e
n 0 B8 4 g s .
O n%, casel case2

Figure 3: Digraph Dzw for Example 1. Figure 4: Simulation results for Example 1.

Example 2: In this example, the production mix is composed of 30 items for each job
type. As in Example 1, we consider two cases: case 1 with unbalanced workload
(processing times with mean 100 and variance 20) and case 2 with balanced workload (r;
with mean 50 and variance 10 and the other resources with mean 100 and variance 20).

Figure 5 shows that the digraph Dzw has five vertices and two cycles: ‘Y21=({n21,n22})
{3212,6221,}) and 722=({n22,n23,n24,n25}, {3223,3234,3245,3252}), with C(Y21)=4 and
C(y%,)=5. Moreover, we get [2={y*|, v,}.The digraph D’y has two vertices and one

cycle ¥1=({n3,,n3,},(e*12.€321)), with: C(y*;)=7. Finally, Figure 6 shows the
simulation results that lead to the same conclusions as before: the makespans obtained
applying RPA and RPBK are very close to each other, while RPB gives better results.

m 40000
n2 n2 a
1 2 , 30000
mRPA
: 20000 BRPB
EIRPBK
n2, n’ P 10000
a
n 0
n2, casel case2

Figure 5: Digraph chw for Example 2. Figure 6: Simulation results for Example 2.

6 Conclusions

Techniques to prevent and avoid deadlock must guarantee a wide flexibility in the use of
resources in FMS. Namely, reducing the allowed resource options can result in poor
system performance. On the other hand, since in FMS management and control various
decision making tasks are more and more assigned to on-line computers, it is acceptable to
use more complex software to avoid deadlock if this leads to valuable improvements in the
performance indices. In this framework, we have proposed a deadlock avoidance policy
(RPB) which appears more flexible, though a little more complex, than other preceding
approaches (RPA and RPBK). The results obtained by simulation confirm that RPB is less
restrictive than RPA and RPBK because it allows better performance indices.

Acknowledgement
This work was supported by 40% MURST funds.

350

References

(1]

[2]
(31

(4]

[5]

(6]

(7]

(8]

(91

[10]
[11]

[12]

[13]

Z.A. Banaszak and B.H. Krogh, "Deadlock Avoidance in Flexible Manufacturing
Systems with Concurrently Competing Process Flows," IEEE Trans. on Robotics
and Automation, vol. 6, no. 6, pp. 724-734, Dec. 1990.

C. Berge, Graphs. North-Holland Mathematical Library, Amsterdam, 1991.

M.P. Fanti, B. Maione, G. Piscitelli, and B. Turchiano, "System approach to a
generic software specification for Flexible Manufacturing System job flow
management,” Int. J. of Systems Science, vol. 23, no. 11, pp. 1889-1902, 1992.
M.P. Fanti, B. Maione, G. Piscitelli, and B. Turchiano, "System Approach to
Design Generic Software for Real-Time Control of Flexible Manufacturing System,”
IEEE Trans. on Systems, Man, and Cybernetics, to appear.

M.P. Fanti, B. Maione, S. Mascolo, B. Turchiano "Low-cost deadlock avoidance
policies for Flexible Production Systems,” Proc. of the IASTED Int. Conf. Applied
Modelling and Simulation, Lugano, Switzerland, June 20-22, 1994, pp. 219-223.
M.P. Fanti, B. Maione, S. Mascolo, B. Turchiano "Event-Based Feedback Control
for Deadlock Avoidance in Flexible Production Systems," DEE Report No. 12/93/S,
Politecnico di Bari, Dipartimento di Elettrotecnica ed Elettronica, 1993, pp. 1-32,
(submitted for publication).

M.P. Fanti, B. Maione, S. Mascolo, B. Turchiano "A graph-theoretic framework
for deadlock detection and avoidance in FMS," DEE Report No. 6/94/S, Politecnico
di Bari, Dipartimento di Elettrotecnica ed Elettronica, 1994, pp. 1-12.

F.S. Hsieh and S.C. Chang, "Dispatching-Driven Deadlock Avoidance Controller
Synthesis for Flexible Manufacturing Systems," IEEE Trans. on Robotics and
Automation, vol.10, no. 2, pp. 196-209, 1994.

T.K. Kumaran, W. Chang, H. Cho, and R.A. Wysk, "A structured approach to
deadlock detection, avoidance and resolution in flexible manufacturing systems”,
Int. J. Prod. Res., vol. 32, no. 10, pp. 2361-2379, 1994.

E.M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1977.

R.A. Wysk, N.S. Yang, and S. Joshi, "Detection of Deadlocks in Flexible
Manufacturing Cells," JEEE Trans. on Robotics and Automation, vol. 7, no.6, pp.
853-859, Dec. 1991.

N. Viswanadham , Y. Narahari, and T.L. Johnson, "Deadlock Prevention and
Deadlock Avoidance in Flexible Manufacturing Systems Using Petri Net Models,"
IEEE Trans. on Robotics and Automation, vol. 6, no. 6, pp. 713-723, Dec. 1990.
B.P. Zeigler, Multifacetted Modelling and Discrete Event Simulation. Academic
Press Inc., London, 1984.

351

