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Abstract In this paper, we introduce a control theoreti-
cal analysis of the closed loop congestion control problem in
packet networks. The control theoretical approach is used
in a proportional rate controller, where packets are admit-
ted into the network in accordance with network buffer oc-
cupancy. A Smith Predictor is used to deal with large prop-
agation delays, common to high speed backbone networks.
The analytical approach leads to accurate predictions re-
garding both transients as well as steady state behavior of
buffers and input rates. Moreover, it exposes trade offs re-
garding buffer dimensioning, packet loss, and throughput.

1 Introduction

With the remarkable growth of the Internet, congestion
likelihood has also increased many folds. This fact has
attracted the interest of researchers as well as switch man-
ufacturers to refine existing control schemes and develop
new ones. At the same time, the introduction of new types
of services in the Internet has underlined the importance
of Quality of Service (QoS) concepts. These concepts can
also be extended to control schemes, in the form of quality
guarantees (e.g., in terms of fairness, packet loss control,
stability, etc.). Quality guarantees imply accountability of
a control algorithm, i.e., the ability to analyze and predict
its performance in various traffic and network conditions.
Most of the control algorithms currently implemented in
operational networks are based on heuristic considerations
and are not amenable to accurate analysis.

The objective of this paper is to introduce a control
theoretical approach to the design and analysis of closed-
loop congestion control schemes in packet networks with
large delay bandwidth product. As a way to support QoS,
we address important issues such as buffer dimensioning,
throughput vs packet loss trade-offs, stability, as well as
transients. The paper is organized as follows. Section 2 is
devoted to a discussion on related work. In Section 3, we
present a continuous model of the closed loop congestion
control problem. In Section 4, we present an analysis of
the transient and steady state behavior of the system, as
well as a stability study of the continuous controlled sys-
tem. Issues such as buffer space, packet loss, throughput
and fairness are also addressed. In section 5, we present a
discretization of the continuous model, in order to obtain
a suitable model of the system for packet networks. Issues
regarding system behavior under loss of feedback informa-
tion are addressed. Section 6 presents a discrete event sim-

ulation study of the controlled system. In the section, we
exemplify various issues discussed in the analytical part of
the work. Conclusions are drawn in the last section. An
appendix is provided, with some mathematical derivations
used in the stability analysis of the system.

2 Related Work

Most of the control theoretical approaches to closed loop
congestion control has appeared in the ATM community,
motivated by the Available Bit Rate (ABR) service, whose
input rate is supposed to be explicitly controlled by a closed
feedback loop. Initially, credit based control algorithms
were considered for regulating input traffic entering the
network. The concept of credit-based control for ABR traf-
fic was first introduced by Kung [17], which is a link by link
back-pressure congestion control scheme where credits are
issued from a switch to its immediately preceding switch
in a connection’s path. The credit based scheme provides
max-min fairness [5], it fully utilizes available capacity, and
most importantly, it prevents cell loss. However, it requires
per VC queueing and scheduling, otherwise back-pressure
can no longer be applied selectively to the connections con-
strained by a bottleneck, generating fairness and through-
put problems. Moreover, a link by link control scheme
does not allow the flexibility of trading off throughput for
buffers.

In rate based control schemes, feedback control is pro-
vided on an end to end basis via Resource Management
(RM) cells, instead of link by link via credits, as in the
credit scheme. In early implementations, congestion was
signaled through a single bit, thus providing a binary feed-
back loop[3]. Based on this congestion information, the
source increased its rate according to an additive factor,
and decreased it exponentially according to a multiplica-
tive factor. These schemes were named Proportional Rate
Control Algorithms (PRCAs), since the amount of rate
increase/decrease is somehow proportional to the actual
transmission rate. Binary feedback schemes were soon dis-
covered to exhibit poor performance due to their inherent
oscillatory behavior. Some rate based schemes attempt to
maintain steady state max-min fair rates on all connections
without direct concern about transient behavior and stabil-
ity. Explicit rates (instead of congestion bits) are reported
back to the source for rate adjustment. Most of the rate
based control algorithms proposed to date are based on dis-
tributed explicit rate computation. These algorithms keep



track of where the various connections are bottlenecked,
and compute the so called max-min fair [5] rates based
on available bandwidth measurements ([12], [1])}. Stabil-
ity aspects of such algorithms can also be addressed, as in
[25]. The main challenge is the accurate computation, in a
max-min fair sense, of rates to be fed back to the sources
[9, 10]. The main advantage of using max-min rates is that
input rates follow closely the available capacity of bottle-
necks, converging to steady-state quickly. However, these
schemes tend to overlook transient behavior, hence, they
do not address the amount of buffers required to either pre-
vent/bound cell loss, or to trade cell loss with throughput
during short lived transients. Another difficulty is the ac-
curate measurement of “available” bandwidth, which may
fluctuate quite rapidly if cross traffic exhibits bursty be-
havior.

In [8], a closed loop proportional control algorithm is
attempted to solve the congestion problem. However, al-
though the approach includes feedback delays, system per-
formance (responsiveness, throughput, and stability) de-
grades quickly as feedback delays increase, preventing its
applicability to high speed network environments. [6]
a successful approach to deal with network delays, although
it requires the computation of a large number of control
parameters. The number of parameters is proportional to
the round trip delays of the system, and must be “tuned”
for each set of delays involved. [16] further acknowledges
the need to use a separate set of parameters for each set
of delays and number of sources in the system by precom-
puting sets of paramenters, and switching between them
dynamically. [4] also includes network delays in the design
of controllers, although their approach also suffers from
an increasing computation complexity with the number of
delays involved in feedback information retrieval. More
recently, [14] has proposed a dual controller, aiming at
throughput and fairness performance, for high bandwidth-
delay product networks. However, their control parameters
also need to be adjusted according to the system round trip
delays so as to guarantee stability, whereas in our case the

In [18], we have introduced a control scheme that explic-
itly deals with network delays with a number of parameters
that is independent of the delays involved. Moreover, the
system parameter can be adjusted independently of the
round trip delays 2. As a consequence, system responsive-
ness can be better adjusted for arbitrary delays without the
danger of driving the system to instability. With that con-
troller, we have been able to reproduce the same simulation
experiments of [6], with the same dynamics, without the
need to compute a large number of parameters to deal with
network feedback delays and a varying number of sources.
The work in [18] has prompted other attempts to explic-
itly incorporate delays into the design of efficient control
schemes [21, 20, 11], and has motivated us to publish our
complete theoretical approach, first used in [18].

1For other bandwidth sharing strategies, see [19]

2Strictly speaking, in our case the system parameter needs to be ad-
justed according to the error of round trip estimates, which is still much
better than the actual delays.

3 Closed-loop Congestion Control
System

In this section, we introduce a continuous model of the con-
gestion control problem. Although we assume fixed packet
sizes throughout the paper, this fact will be of relevance
only when we present a discrete model of the system. Thus,
the continuous model introduced in this section can be of
use for both fixed (ATM) or variable (IP) packet sizes. In
case of IP, the approach can easily be used in conjunction
with Multiprotocol Label Switching [22] for flow control
[11]. Firstly, we state the objectives of the congestion con-
trol system developed in this paper, in order to motivate
the handling of feedback delays. Next, we describe the net-
work and queue models, as well as the rate control model.
We end this section with an extension of the model to mul-
tiple intermediate nodes, as well as a fairness study of the
system.

3.1 Feedback Control Objectives

Presents We assume that the feedback control is performed over a

traffic type that is not sensitive to service rates nor delays,
but is sensitive to packet loss. In other words, the through-
put of a connection of this type can be decreased as much
as necessary, in order to alleviate congestion and control
packet loss. We refer to this traffic type as Available Band-
width Rate (ABR) traffic. The objectives of a congestion
control algorithm, for delay insensitive, loss sensitive ABR
traffic are:

e Regulate the ABR traffic input rate so that network
resources be utilized to their fullest. This implies that
the controller must be highly responsive to fluctua-
tions of higher priority cross traffic, which are typically
not subjected to flow control.

e Provide fair share of bandwidth (e.g., max-min fair-
ness concept [5]), among various ABR connections.

e Prevent/bound ABR packet loss using appropriate buffer
management policies.

e Scale well to large propagation delays and number of
connections. Large bandwidth delay products affect
responsiveness and stability. Large number of connec-
tions increases the complexity of rate computation.

3.2 Network and Queue Models

The network consists of N = {1,2,...,n} nodes and L =
{1,2,...,1} links. Each link ¢ is characterized by: trans-
mission capacity ¢; = 1/t; (cells/sec); propagation delay
td;; processing latency tpr; (sec), which is the time the
switch ¢ needs to take a packet from the input and place it
on the output queue. We assume fixed packet sizes (cells)
3, as in ATM technology. Herein we include the processing
latency of a switch into its outgoing link propagation de-
lay. The network traffic is generated by source/destination
pairs (S, D), where S, D € N. To each (S, D) connection,

3We use the terms cell and packet interchangeably in this paper.



there is a Virtual Circuit (VC) associated, which has a fixed
path p(S, D) over which all packets of a given connection
travel. Each source is characterized by its maximum trans-
mission speed, ¢s = 1/ts.

For now, we assume that each switch maintains a sep-
arate queue for each Virtual Circuit VC passing through
each of its outgoing links. Let z; ;(¢) be the occupancy at
time ¢ of the queue associated with link ¢ and VC;, and
X7, a corresponding queue threshold level. The control
law computes the source input rate u(t) (cells/sec). The
bandwidth delay product td;/t; represents the number of
“in flight” cells on the transmission link.

For the model of the dynamic behavior of each queue,
we assume a deterministic fluid model approximation of
cell flow [15]. The reason for per VC queueing is to ensure,
through a round robin service discipline, the fair sharing
of the link by each V C, as well as to isolate different flows,
by limiting the interference among them to variations on
their service rates. Considering the queue associated with
the virtual circuit VC; at link ¢ , if the level of queue
occupancy at time ¢ is x;;(t), its input rate u; ;(t), and
service rate d; ;(t), a fluid model of the queue system shown
in Fig. 1 is given by:

dw;(t) _ { u;,5(t) — di ;(t)
dt max(0, u;,;(t) — d;,; (1))

if T > 0
if T = 0

1)

u i,j(t) di,j(t)

Xij ()

Figure 1: Fluid flow queue model

Notice that per VC queueing implies that no flow injected
into the queue modeled by z; ; can be originated by sources
other than the one whose input rate is modeled by u; ;.

3.3 The Rate Control Model

The rate control scheme proposed is a closed-loop control
based on feeding back the network queue occupancy. In
order to control the queue level z(t) * for a specific VC,
we initially use a simple proportional controller. Letting
X? be a target set point for the queue level, we compute
the difference between the set point and the current queue
level z(t). This difference, the error e(t), is multiplied by
a positive constant gain K, so that Ke(t) is the input rate
prescribed to the V C source. The proposed control scheme
enforces an input rate proportional to the storage space
available in the network. The control scheme aims at keep-
ing the bottleneck queue of the controlled VC' connection
as full as possible, for throughput performance, while be-
ing free of packet losses. ® The calculated input rate Ke(t)
at time t affects queue levels only after a round trip delay
along the path.

4From now on we drop the i, j subscripts, for sake of simplicity

5The model can also be used in a window control scheme. In this
case, the rate Ke(t) would be maintained for A amount of time, which
effectively means that Ke(t) x A packets are allowed to be injected into
the network.

Figure 2 depicts the block diagram of this system. T,
is defined as the propagation delay from the flow controlled
source to the VC queue at an intermediate congested node,
whereas Ty, is the propagation delay incurred by pack-
ets carrying feedback information from the intermediate
node to the destination node, plus the delay incurred from
the destination node back to the source node. Therefore,
RTD =Ty, + Ty is the round trip propagation delay in-
curred by a packet carrying feedback information. For the
moment, we assume that the round trip delay (RTD) of a
connection, as well as its components, are invariant with
time and known in advance. This is reasonable for single
node systems, where the source is connected with its queue
via delay lines only. We will address the impact of delay
estimation errors on the system shortly, as well as multiple
intermediate nodes. In Figure 2, a generic controller K*(t)
is depicted, rather than a simple proportional controller
K. The queue service rate is d(t), hence variations in d(t)
represent available bandwidth variations, or disturbances,
and accounts for cross traffic impact on a flow controlled
connection, whereas X° is a target queue fill level.
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Figure 2: Rate controled flow model with a K*(¢) controller

If we use a simple proportional controller, K*(t) = K
the dynamic behavior of the queue level may exhibit oscil-
lations, and even become unstable under large ledays. In
order to reduce oscillations, it is necessary to reduce the
amplification gain K, but this carries the drawback of a
very long transient, i.e., the input rate is not able to fill
up rapidly the queue, resulting in poor link utilization [8].
In order to address these issues adequately, we propose the
use of a classical Smith Predictor [23]. Therefore, we sub-
stitute the controller K*(¢) = K in Fig. 2 with a controller
K*(t) (see Fig. 3) such that the resultant system has a de-
lay free feedback loop in cascade with pure delays (Fig.4).

Smith Predictor K*(t)

X

Figure 3: Rate controled flow model using a proportional
controller plus a Smith Predictor
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Figure 4: Equivalent model of the system using a Smith
Predictor

From Figure 3, the Smith Predictor controller has a
Laplace transform K*(s) = U(s)/I(s) given by:

_ U(s) K @)

K* = -
I(s) 14 K(1=e=22y

where s is the Laplace transform complex variable. Other
equations of interest are:

I(s) = X°(s) — X (s)e Tre® 3)
s)e Trws — D(s
x(5) = T2 =D 0

The Smith Predictor shown in Fig. 3 (K*) gives rise to
the following input rate control equation:

u(t) =K[X° - 2(t — Tpp) — /Z(t')dt' + /Z,(t' — RTD)dt ]
0 0

=KX —at=Tp) = [ utt)ir] (5)

Eq. 5 implements a simple proportional control action
with the difference that the actual queue level is increased
by the number of cells transmitted during the last round
trip delay. The physical interpretation is that the con-
troller reacts as if all the “in flight” cells were stored at
the bottleneck queue, which is a worst case assumption for
queue occupancy. Notice that the integral expression in
Eq. (5) is known by the traffic sender at all times. The
integral computation is over an estimate of the round trip
delay RT D, which for now we assume accurate. We call
this control scheme Enhanced Proportional Rate Control
Algorithm (EPRCA), since the scheme is based on a pro-
portional controller enhanced with the Smith Predictor to
take care of large propagation delays.

Consider the equivalent system shown in Fig. 4. In this
figure we can observe two parts:

a) The first one, containing the integrator, the constant
gain K, and the delay free feedback loop, is stable for ev-
ery positive value of the parameter K. Notice that the
parameter K affects the transient behavior only. Namely
1/K is the time constant T of the system. Asymptotically,
we may assume that after an interval of 4 T the system
reaches steady state. Moreover the dynamic response to a
step function does not exhibit oscillations in reaching the
steady state. This implies that the queue occupancy never

overshoots the set point level X°, and hence the set point
can be set equal to the queue capacity, avoiding cell loss;

b) The second part consists of two pure delay blocks
that causes a shift in time of the queue level z(t) and dis-
turbance d(t).

Notice that, from a control theory point of view, the use
of the Smith Predictor improves system stability because
the resulting system, depicted in Fig. 4, has a delay free
feedback loop. This allows, for instance, the increase of
the control gain K, which regulates the control scheme
responsiveness (and thus the length of transients) without
the danger of driving the system into unstable behavior.
The decoupling of the control gain from stability issues
is indeed the main reason for using the Smith Predictor
to cope with unavoidable system delays. In its absence,
typically system parameters need to be adjusted according

to worst case delays [13], affecting system performance 6.

3.4 The case of multiple nodes

So far we have modeled our system as having a single bot-
tleneck node, situated T't,, away from the source, and hav-
ing a propagation delay back to the same source of Ty
units of time. We wish to use our controller for multiple
node systems, possibly with dynamic change of the bottle-
neck node during the lifetime of the connection.

We can model the system with multiple nodes as a collec-
tion of single node models as previously described. Thus, a
n node system, with n nodes between the source and des-
tination nodes, is controlled by n distinct equations (5).
Clearly the n controllers have the same RT D, at a given
transient interval, although they typically have different
T§, and T§,, 1 < ¢ < n. Moreover, we assume uniform
control gains K and queue sizes X°7. Each intermediate
node of controller ¢ reports a queue level z¢(t — T's).

The source input rate is determined as the lowest rate
among all input rates computed. This rate computation is
done so as to prevent the source rate exercised from being
larger than the one prescribed by one of the single node
models. It is easy to see that the prescribed input rate
comes from the node that has reported the largest queue
level max, z°(t — chb), or least storage space. Therefore,
all nodes but the bottleneck one may be ignored in the
modeling of multiple node systems, as long as the feedback
information used by the source is the largest queue level
encountered in the forward connection path.

4 Analysis of the Control Scheme

In this section, we present a performance analysis of the
controlled system. The analysis includes transient, steady
state, and stability of the system.

6See [7] results for various delays, as an example of system performance
degradation with delays

"The extension to various queue sizes is not difficult



4.1 Queue Transient Analysis

A queue transient analysis is useful to both identify the
short term queue reaction to traffic changes and to deter-
mine the transient time needed to bring the system back
to steady state. The former is important to determine if
and how much packet loss might occur due to transient
buffer overflow. The latter is useful to determine how fast
the control mechanism reacts to transients, which naturally
limits its effectiveness to that time scale.

From Fig.3, the queue level can be disturbed by two
inputs: the target queue level X° and the queue service
rate d(t). Let the queue level response to input X° be
denoted by zx (t). Moreover, let x4(t) denote the queue
level response to a disturbance in the queue service rate
d(t). In what follows, d(t) is modeled as a step function
a* 1(t) 8. We further assume that RT'D = RT D, leaving
the case of delay estimation errors to be addressed later.
From Egs. (2), (3) and (4), by setting X°(s) = 0, and since
D(s) = a/s, we obtain:

s+ k(l _ e—RTD)

s(s+k)
aKe BTDs g

= ©)

s2(s+ k) 52

Xa(s)

D(s)

Using inverse Laplace transforms °, we finally find:

zq(t) = —af[t*1(t)— (t — RTD)*1(t — RTD)] —

%[1 — e K(U=RID)] , 1(4 — RTD) +

z(0) x 1(t) — z(0)[1 — e KE=ETD)] 4 1(t — RT D)

where z(0) > 0 is the queue level at t = 0. The overall
response to d(t) and X°, by the principle of superposition,
is therefore given by:

z(t) = za(t) + 2x (1) (7)
In steady state condition (¢ — o0), the queue level is:
a
— X° —aRTD - X
z(00) aR e (8)

Figure 5 shows the transient behavior zx (¢) in response
to X°, the transient behavior z4(t) in response to d(t) =
1(t) — 0.5 x 1(t — T,¢f) (where 1(t) is the step function),
and the overall transient z(t).
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Figure 5: Queue level transient dynamics

81t is convenient to model the disturbance as a step function because it
is the most basic disturbance function, hence facilitating the study of the
system transient behavior, which is the sole purpose of this subsection.

9The following inverse transform facts are useful in the derivations:
e F(s) < f(t —a); a/(s% % (s +a)) < t1(t) — 1/al(t) +1/ae™

4.2 Steady State Analysis

The study of how the system behaves in a steady state
regime is useful to expose the trade-offs between buffer
space, throughput, and packet loss, once transients have
vanished. As time approaches infinity, equation (5) gives
us the following relation between the steady state rate ug
and steady state queue z,:

o
X0 —x,

~1/K +RTD ©)

As far as the controller is concerned, any point in the
plane u, z satisfying equation (9) is a stable point for the
system. This plane extends from 0 to X° in the queue level
axis and from 0 to ¢ in the rate axis, ¢, being the max-
imum capacity of the bottleneck link. Later we will see
that the queue service discipline, initially assumed round
robin, may determine which stable point the system is go-
ing to rest upon. Notice that if a single connection must
be allowed to achieve the maximum bottleneck transmis-
sion speed ¢ (cp = us), equation (9) ultimately states that
we need buffers proportional to the product of the round
trip delay RT D times the maximum transmission speed cj.
To see this clearly we only need to make K go to infinity,
thus providing the fastest controller possible in terms of
responsiveness, which is the one requiring smallest buffer
size. Since us = ¢ corresponds to having the full bottle-
neck capacity for a single source/destination pair, its queue
will eventually empty out, resulting in 2, = 0. The buffer
requirement is then:

X°=cRTD

Us

(10)

This stringent buffer requirement results from the fact
that we insist on designing a cell loss free algorithm. If we
are willing to accept some loss, buffer requirements can be
reduced. We will address this trade off shortly. In sum-
mary, we can say the following. Recalling that d(¢) is the
service rate of the flow controlled connection, if the connec-
tion bottleneck total capacity is cp, it is indeed desirable
that, at steady state, the source rate ug should achieve:
us = ds. However, Eq. (9) states that this may not be
possible, due to the fact that RTD delay is present, which
could cause packet losses if the buffer size X° is not large
enough to withstand in flight packet storage, in the event
of a sudden decrease of service rate, d(t) = 0 being the
worst case. Therefore, Eq. (9) dictates what is the maxi-
mum steady state rate achievable by the source, given that
a buffer size of X? is available for the controlled connec-
tion, for a system with control gain K and subject to a
round trip delay of RT'D to withstand an eventual shut off
of its service rate.

4.3 Stability analysis

A stability analysis is important for feedback controlled
systems, especially in the presence of large feedback delays.
Recent literature has examples of feedback systems that are
driven to unstable behavior, if careful design of parameters
is not exercised (e.g., [8, 24, 13)]).



For a generic system, a common stability criterion is to
require that the roots of its characteristic equations have
all negative real parts. For the system depicted in Fig 4,
there are two uncontrolled input variables, X° and d(t).
The stability analysis can be focused either on the directly
controlled u(t) input rate variable, or on the indirectly con-
trolled z(t) buffer level variable. Therefore, two transfer
functions can be identified: U(s)/X° and U(s)/D(s). A
stability analysis of the former transfer function relates to
how and if the system gets back to a stable state when dis-
turbed by a change on the target queue level X°, whereas
a stability analysis of the latter transfer function relates
to how and if the system gets back to a stable state when
disturbed by a change of its service rate, caused by an-
other connection being served at the same link, and mod-
eled by d(t). For the particular system shown in Figure
4, these transfer functions are: U(s)/X° = Ks/(s + K)
and U(s)/D(s) = K x e FTDP% /(s 4+ K). Thus, both trans-
fer functions have s + K as their characteristic equation,
which is stable for any positive gain K, since for K > 0 the
polynomial s+ K has a single negative real zero. However,
the system shown in Figure 4 represents our controlled sys-
tem only if the delays T, T are known in advance, so
that the RTD estimator box inside the controller (see Fig.
3) matches perfectly the propagation delays present in the
feedback loop of the system. In reality, RTD estimation
errors, or mismatches, are likely to happen. Therefore, it
is important to study how the controlled system behaves
in the presence of delay mismatches. -

Let the RTD estimated by the source be RTD = §,,
while the real round trip delay is RTD = §, + 6. We
require that d, + & > 0, so that the real round trip delay
be non-negative. The system is still represented by Fig. 3,
with the following change of variables Tty + Ty = 6o + d
and RTD = do. In this case, the two transfer functions
are:

U(s) 1 1 e @otds _gdos o Trus

==+ - 11
Xo [K + s + s ] s (11)
U(S) B [l 1 67(60+6)s _ 67605 . efobs (12)
D(s) 'K s s s

Since equation (5) is still valid, the steady state equation
(9) still applies. Hence, if the system is stable, it settles
to the same point as if there was no delay mismatch. Our
concern here is then whether the system is stable at all.
We follow a similar approach to Walton and Marshall [26]
for stability analysis of time-delay systems. The minor dif-
ference is that in the present case the delay parameter §
can be either positive or negative, since it represents a de-
viation from the estimated delay 6,, rather than a strictly
positive delay. From equations (11) and (12), a single char-
acteristic equation is derived:

F(5,0) =s+ K+ Ke %% % —1) (13)

In the Appendix, we carry out a study of the roots of
F(s,d). Based on that study, we can plot few important
points of the system root locus, depicted in Figure 6.
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Figure 6: Sketch of the system root locus plot

Figure 6 shows the complex plane, with few points v+iw
describing some of the roots that are both easy to compute
and sufficient to define the stable region of the system.
Notice that this figure does not show all root locus plot of
the system, but only the relevant region for our stability
analysis. Fach point is described by its coordinates v, w
in the plane plus the mismatch value ¢ at that point. We
know that, for § = 0 (no mismatch), there exists a real
negative root at v = —K. We have included also the point
v, 0, to stress that points in the real axis to the left of this
point are meaningless, since they represent negative real
round trip delays. An important observation here is that
for —d, < § < 0, we prove in the Appendix that the root
locus plot can never touch the imaginary axis. Therefore,
for —§, < § < 0, which is the region at which RTD is
overestimated, the system is always stable. This fact makes
sense since essentially the control algorithm is using more
information about the past than necessary. Moreover, for
the region at which RTD is underestimated, there is a limit
of §' in the underestimation error up to which the system
is still stable. In the Appendix, we show how to compute
this error limit.

4.4 Buffer space and packet loss trade-off

The steady state analysis of the proposed rate control algo-
rithm has revealed the need for buffers sizes proportional
to the round trip delay (Eq. (10)). We aim at decreasing
this requirement, by trading buffers for packet loss. Two
basic methods can be used: pseudo queues or pseudo RT'D
delays.

In pseudo queues, the algorithm operates with the pa-
rameter X° prescribed by Eq. (10). However, a smaller
buffer size B is allocated for the connection at intermedi-
ate switches. It is not difficult to see that a worst case
analysis reveals a steady state packet loss rate of:

X°—-B

— 14
#+ RTD (14)

Uloss =

Eq. (14) reflects a worst case packet loss rate. This
packet loss rate is caused by the fact that the queue level
information that comes back to the source reports at most
B packets in the queue, which is the actual buffer size



available to that connection. If the control algorithm op-
erates with a parameter of X° (which represents the buffer
size available at the bottleneck), it “believes” that there is
still X° — B free buffer space. Notice that the worst case
characterization consists of two assumptions: the buffer B
remains full indefinitely; an amount of RT'D x us remains
in transit indefinitely. Under these assumptions, Eq. (14)
follows from Eq. (9), and can be interpreted as follows. Un-
der the condition of full buffer z; = B, the control scheme
tries to fill up a non-existent buffer space of X° — B, ac-
cording to Eq. (9), by allowing this number of packets into
the network at each 1/K + RT D time intervals.

In pseudo RT' D, we decrease the buffer requirement dic-
tated by Eq. (10) by operating with a round trip delay
smaller than the actual feedback loop round trip delay. In
this way, the maximum steady state rate is increased (see
Eq. (9)). However, this approach is equivalent to having a
mismatch in the round trip delay estimation, addressed
previously. The recipe then is to operate with a mini-
mum RTD value (conversely a maximum positive delay
mismatch) so that system stability is not jeopardized.

4.5 Fairness and the rate control algorithm

In the congestion control context, fairness is generally de-
fined as the property of exercising traffic blocking or rate
reduction in a “fair” way among all connections. Although
fairness can be defined precisely in a number of ways, in
the flow control context the most common definition is the
so called maz-min fairness [5].

Let r be a rate vector, whose components are connection
input rates of a general network, defined previously as links
I with finite transmission capacity ¢; interconnecting net-
work nodes. Let P be the set of connections p supported
by the network. We need the following definitions [5]:

Definition 1 A feasible rate vectorr is a vector (r1,7r2,...,Tr)

of rates such that 3., v < ¢;, where U; is the set of con-
nections sharing link j.

Definition 2 A wvector r is maz-min fair if it is feasible,
and for each p € P and feasible ¥ for which r, < 7,, there
is some p' with rp > ry and ry > Fp.

Definition 3 A steady state rate vector r° is a rate vector
whose components are the steady state rates of the flow
controlled connections, us (see Eq. (9)).

Definition 2 means that a max-min fair rate vector r
is such that for every rate r; of vector r, any attempt to
increase r; must result in a decrease of another rate r;,
for which r; > r;, in order to maintain feasibility. The
following theorem shows that max-min fairness is achieved
by the proposed rate control algorithm.

Theorem 1 The rate vector r° is maz-min fair.

Proof of Theorem 1 The rate vector r® is feasible, since
feasibility is a necessary condition for stability. Moreover,
it is not difficult to see that each connection p has a bot-
tleneck link b 1°. So we pick a generic connection p, with

10A bottleneck link always exist, which is the link with highest utiliza-

o bottleneck b associated to it, such that ot least one other
connection q s bottlenecked at the same link b. If such
connection p does not exist, then each flow controlled con-
nection is bottlenecked by a link capacity, hence r® is a
degenerate case of a maz-min fair vector, and the Theorem
follows. Therefore, let q be another connection bottlenecked
at the same link b. At steady state, if we try to increase

rate r,, we must decrease the rate vy in order to maintain
feasibility. However, we know that r; = 13, due to the

round-robin service discipline''. Since p and q are arbi-

trary connections, vector r complies with Definition 2, and
the Theorem follows.

5 Model Extension to Discrete Time
Feedback

So far we have dealt with continuous time models only.
However, in packet networks feedback information is re-
layed in cells or packets, and thus not available in con-
tinuous time, but rather in sampled form. We start with
the system model shown in Fig. 2. From Nyquist sampling
theorem we know that, in order to have a “continuous like”
performance of the system under digitized control, the ra-
tio of the time constant of the system over the sampling
time must be at least 2 and cannot get any better if it
is beyond 4 [2]. Indicating by A the sampling time , it

follows:
1

AK
In order to write the discrete time version of the control
equation (5) we must consider two cases:

i) RTD > A: The ratio RTD/A = m + €, where m is
an integer and € € [0,1). Rewriting the continuous
time equation (5) in its discrete version, we obtain the
input rate at time ¢, = kA 12

w(kA)=K[X° — x(kA —Typ) —

=[2,4] (15)

w(kOA—(m + l)A)eA—Zu((k —i)A)A] (16)
ii) RTD < A: =
u(kA)=K[X°— z(kA=Tp;) — u((k — 1)A)RTD] (17)

k-2
—a i R e
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Figure 7: Discrete Time Notation

tion for a given connection. The queue associated with that connection at
the connection’s bottleneck link is always served at a rate that matches
its arrival rate, so as to keep the queue filling level fixed, since the system
is assumed to be in steady state.

11 A work conserving round-robin service discipline results in the same
service rate only among connections sharing the same bottleneck. There-
fore, the round-robin service discipline does not imply that the r; compo-
nents of vector » have all the same value, unless for the degenerate case
in which all connections share the same bottleneck.

12Discrete variable k should not be confused with the gain K.



The notation used in the previous equations is illustrated
in Figure 7, where t, = tx_1 + A. The summation on the
right side of the equation (16) can be rewritten as the sum
of two parts:

ur (kD) =u(t—T - A) A+u(t—T 5 2A) A+ - - -+u(t—RT D) A
u(kA)=u(t — A)A+u(t —20)A -+ -+ u(t — Ty) A

The first one represents the number of cells that have
already arrived at the bottleneck queue but are not yet
know at the source due to the feedback propagation delay
Tp. The second one represents the number of cells that are
traveling from the source to the queue. Therefore the input
rate computation at time ¢ can be rewritten as: u(t) =
K[X° — z(t — Tgp) — u1(kA) —uz(kA)]. We can interpret
z(t — Typ) + ur (kA) + ua(kA) as “effective queue level at
time ¢”. So the calculation of the input rate u(t) is made
as if all “in flight” cells were already at the queue. The
difference between the queue capacity and the “effective
queue level” can be seen as the number of cells that can be
transmitted by the source without causing overflow to the
bottleneck queue. In this way, the dynamic is delay free,
which results in stability and lack of oscillations.

5.1 From periodic to aperiodic feedback

The proposed discrete time control algorithm requires that
the controllers located at the sources be furnished with pe-
riodic feedback information (every A units of time, with
A satisfying equation (15)). This can be realized if the
upstream node of a congested link sends feedback infor-
mation, at every sampling time, to all sources in the up-
stream direction, as in the Backward Congestion Notifi-
cation (BCN) scheme of ATM networks. In this type of
scheme, called “Periodic Feedback Control”, feedback in-
formation does not have to compete for network resources.
In systems where feedback information has to compete with
data traffic in the forward direction, such as Forward Con-
gestion Notification (FCN) scheme, typically the source is
responsible for transmitting a special control packet (a re-
source management (RM) cell in ATM) together with its
data traffic (in ATM, one RM cell every NRM data cells).
The control cell itself has to compete for bottleneck link
bandwidth, since it has to reach the destination node be-
fore being relayed back to the source. In order to guarantee
the minimum sampling time prescribed by equation (15),
we need a control algorithm capable of operating well even
if no feedback information is received for a large period of
time. If the source receives the feedback information, the
control algorithm adjusts the rate accordingly. Otherwise
it computes the rate by estimating the missing feedback
information in a conservative way. We call this type of
control “Aperiodic Feedback Control”. In a FCN imple-
mentation, the feedback information is provided by control
cells that collect the maximum buffer level (or minimum
storage space) along the path.

The idea is to update the source rate at least once every
A sampling interval, regardless whether the source gets the
feedback information or not. Let ty,tr41 be the instants

at which the source receives the last and current feedback
information, respectively. Two cases need to be considered:

i) tgr1 — tr < A. The source stores the rate u(t;) and
its duration Ay, so that u(tx)Ar becomes one of the
terms of the summation in the control equation. The
rate updating equation is:

u(tk + Ak) :K[Xo — ;L'(tk + ANy — be) —

Zu(tk—i)Ak—i_U(tk—m—l)(RTD—ZAk—i)]
i—0

i=0
where

m m+1

ZAkﬂ'SRTD< ZAkﬂ'; Ap i <AV tp=tp_1+Dp_1

i=0 =0

ii) The interval A expires before the source receives feed-
back information. In this case, the algorithm has to
estimate the queue level z(ty + A — Ty). In order
to be conservative, preventing cell loss, we propose a
“worst case” estimate of the missing queue level, as fol-
lows. We assume that in the time interval [tx, tr + A]
(with A = Ay) the queue has zero output rate. Thus
the “worst case” queue level becomes the last value
x(ty — Typ) plus the number of cells pumped into the
network during the interval [t, — RT D, t,—RT D+ A].
The “worst case” estimate of the queue level at time
tr, + Ay yields:

SL'(tk + A — be):;z;(tk — be) +

m—+1
u(tk_m_z))(RTD — Z DNpi) +

i=1 .
U(tg—m—1)(A = (RTD — Z Dp—i))

We call “virtual feedback” to this worst case estimation
of the queue level. The approach is equivalent to storing
the last received feedback value, z(t — Tys), and adding a
new term u(tx)A to the last sum of “in flight” cells STF,
where:

m+1 mtl
SIF :Z u(th—i)Ak—i + u(th—m—2)(RTD — Z Lp—i)
i=1 =1

The resulting controlled rate becomes
u(tk + Ak) =K[X0 — .’L'(tk — be) — u(tk)Ak — SIF]

In this proposed algorithm, the sources at the edge nodes
of the network update their input rates at least every A
units of time. If they do not get information about the
occupancy of the congested queue, they decrease their rates
based on a “worst case” estimate of the congested queue
level. When they get the next feedback information, they
increase their rates because the actual queue level cannot
be larger than the conservative estimate. In other words,
the algorithm behaves as a “positive feedback ”, decreasing
the rate when feedback is not available and increasing it
when feedback information resumes.



5.2 Behavior of the System under Lack of

Feedback Information
In what follows, we study the dynamic behavior of the con-
trolled rate when the source lacks feedback information.
Let u(0) = K(X° — z(t — Tys) — >_prp u(ti)D;) be the
rate computed when the last feedback cell was received.
If no feedback information is further received, the rate is
updated every A units of time, using the “worst case” es-
timate. Thus:

u(l) = K[X° —a(t - Tps) —u(0)A = 3 ut) A
RTD

w(0)(1 — KA)
w(?2) = u(1)(1 - KA)

u(k) = u(k —1)(1 — KA) = u(0) [l — KAJ¥
i.e., the rate decreases exponentially. When the source re-
sumes receiving feedback information, the rate jumps to
K(X° —z(t —Tpp) — 2o prp ulti)Di)-

Therefore, our scheme operates according to a “positive
feedback” mechanism, much like a binary scheme [3]. How-
ever, the dynamic behavior of our regulation is related to
the network state and parameters. In fact, the rate de-
creases exponentially with a base related to the sampling
time / time constant ratio (Eq. (15)). Moreover, the rate
increasing jumps are related to the queue level and the
number of cells released by the source during the last round
trip interval.
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Figure 8: Network Topology - Multiple Bottlenecks
6 Simulation Study

In this section, we present results of several discrete event
simulations. The simulation scenario is built so as to ex-
emplify various properties of the control algorithm. We
simulate a version of our control algorithm, Enhanced Pro-
portional Rate Control Algorithm (EPRCA), at which we
use small buffers in a ATM like framework. We show the
performance of EPRCA for the cases when timely feed-
back information is available and when is not. For com-
parison, we have included results of a Additive Increase
Multiplicative Decrease (AIMD) rate control algorithm, as
well. Finally, we discuss scheduling schemes to be used in
the implementation of the control algorithm. Although we
assume an ATM framework throughout this section, the
control architecture can be applied to any packet network.

The network topology is shown in Fig. 8. Links have uni-
form speeds, normalized to 1 cell per unit of time [cell/s].

They are labeled with their respective propagation delays,
normalized to the uniform transmission time. In an 150Mbps
link speed, 10 units means roughly a 6 mile distance be-
tween switches. In this initial setting, five VC connections
compete for bandwidth resources of bottleneck #2 link only
(connection # 6 is inactive). Queue dynamics are shown
for this bottleneck only. VC connection activity (start/end
epochs) is as noted in Table 1. We assume infinite backlog
at each source. Feedback cells are sent in the reverse direc-
tion of the VC traffic over the same links (but sharing VC
buffers which are distinct from the ones used in the forward
direction). We set a queue level X° = 40 for each queue, so
as to have a system sampling time of 40/4 = 10. Control
information, consisting of the maximum of VC queue levels
among all nodes traversed by a connection, is transported
via special Resource Management (RM) cells, which are es-
pecial cells injected once every N RM data cells. RM cells
are marked on their way to the destination, and are re-
layed back to the source via the reverse path. No marking
is executed in the reverse direction.

Table 1: VC Connections’ Activity

Conn.# 1 2 3 4 5 6
Start ¢ 500 | 2500 | 1000 | 4000 | 5500 | O
End ¢ 7000 | 10000 | 8500 | 10000 | 10000 | O
RTD 0 0 20 40 60 0
= 04 . ,
02} »—r T
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Figure 9: Periodic Feedback

6.1 Periodic Feedback

We first show the performance of a periodic sampling ver-
sion of our control scheme. According to equation (15), we
choose a sampling time A = 10. Figure 9(a) shows the be-



havior of the five input rates, corresponding to connections
S1 — S5, at source nodes. We assume an initial cell rate
of 0.1 [cells/s]. After the start/end of a connection, each
rate rapidly settles to the new fair steady state value 13.
Figure 9(b) shows the dynamic behavior of the five queues
at the bottleneck link, corresponding to VC1 — VC5 bot-
tleneck queues. As it can be seen, no queue overflow or cell
loss occurs. Moreover, each steady state queue level is in
accordance with equation (8).
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Figure 10: Aperiodic Feedback
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6.2 Aperiodic Feedback - No Virtual Feedback

The aperiodic control scheme, with A = 10, requires N RM
1 (one control cell every data cell) in order to guaran-
tee the minimum feedback frequency required. The value
NRM =1 derives from the fact that, under the heaviest
traffic condition (five connections), the feedback cell inter-
arrival time is A = N,.(NRM + 1). Since the minimum
feedback rate is maintained, simulation results (omitted)
are identical to the ones under periodic control. Fig. 10 il-
lustrates performance degradation in case equation (15) is
not respected. By setting NRM = 10, under the heaviest
traffic condition, the feedback inter-arrival time is 55 > 10.
We see from Fig. 10(a) that the rate no longer reaches
rapidly the steady state. Moreover, Fig. 10(b) shows that
overflow occurs in VC4 and VC5 queues. Other simulation
results have verified that the greater the NRM value, the
less controlled the queue levels are.

13When there are three active connections, the figure shows small os-
cillations, due to the fact that the control equation tries to regulate the
queue occupancy to a value between two integers
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Figure 11: Aperiodic + Virtual Feedback
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6.3 Aperiodic + Virtual Feedback

Next, we study the performance of the EPRCA under the
same conditions and feedback frequency (NRM = 10) as
previously. Figure 11(a) depicts the oscillatory behavior
of the controlled rates, due to the control algorithm “posi-
tive feedback” feature, increasing promptly the rate when
a feedback cell is received, and decreasing it exponentially
otherwise. The oscillations, however, have small amplitude
and centered at the fair values of the rates, hence through-
put performance is preserved. The high frequency of os-
cillations is due to the virtual feedback period of A = 10,
which causes a rate decrease every 10 time units, while
the actual feedback inter-arrival time is about 50, causing
a rate increase at every 50 time units only. Figure 11(b)
shows that queue levels are still bounded, with no cell loss.
This verifies that the Virtual Feedback scheme prevents
cell loss, due to congestion, even if it is not possible to
guarantee the frequency of feedback cells.
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Figure 12: AIMD PRCA Control Scheme

6.4 Additive Inc. Multiplicative Dec. PRCA

For sake of comparison, an additive increase multiplicative
decrease (AIMD) PRCA scheme has been simulated un-
der the same traffic conditions as before, with parameters:
NRM=10; ATR=0.053; MDF=8. Results are shown in Fig.
12. Fig. 12 a) illustrates that rates never stabilize, as a
direct result of the AIMD rate adjustment. More impor-
tantly, the AIMD PRCA scheme does not prevent cell loss
due to buffer overflow (Fig. 12 b), because it cannot ac-
count for the bottleneck queues’ levels and the number of
“in flight” cells.

6.5 Scheduling Schemes

So far we have assumed a round-roubin scheduling scheme
over a per VC queueing architecture. In this subsection, we
show that other less costly scheduling schemes are also fea-
sible without giving up much performance. We still assume
switch architectures with output queueing. We consider
the following alternatives for scheduling schemes :

FIFO scheduling -
where cells belonging to different VCs and destined to
the same output port are stored in a single queue, be-
ing served in a FIFO service discipline.

FIFO scheduling with VC counters - In this alterna-
tive, cell are served from a single FIFO queue per out-
put port. However, per VC counters are kept in order
to measure the number of cells per VC stored in the
FIFO queue. This scheduler relieves the switch from
the burden of serving a possibly great number of VC
queues in round-robin.

11

This is the simplest scheduling scheme,

VC scheduling - This is the most sophisticated schedul-
ing scheme, where queues per VC are provided for
each output port, being served in a (possibly weighted)
round-robin service discipline.

We accrue one more connection to the previous network
scenario, with the purpose of giving rise to traffic activity in
multiple bottlenecks. Thus, in this setting, connection #6
becomes active, so its “End t” entry in Table 1 becomes
6000. Now connections number 5 and 6 share the first
bottleneck, while connections number 1, 2, 3, 4, and 5 share
the second bottleneck. The performance results hereafter
are based on the control parameters: X° = 40 cells, K =
1/X°, A =10 units, and will be used as reference for sake
of comparison among the scheluding schemes.

6.5.1 VC Scheduling

Fig. 13(a) shows the rate adjustment performed by the
algorithm when new connections start/stop. The rates are
quickly adjusted to their fair share of the available band-
width every time the system is perturbed. Fig. 13(a) shows
that max-min fairness is indeed achieved, by having VC
connection number 6 (VC#6) taking most of the band-
width left by VC#5 on bottleneck 1, since VC#5 rate was
constrained by bottleneck # 2 and could not increase its
rate any further. Fig. 13(b) shows bottleneck # 2 VC
queue levels. Notice that no overflow is experienced. Sim-
ilar curves can be obtained for queues at bottleneck # 1,
omitted here.
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6.5.2 FIFO Scheduling with VC Counters

In this case, we have per VC counters that indicate the
number of cells currently stored in the FIFO queues. This
information is relayed back to the corresponding source for
controlling input rate. We have simulated the same net-
work and traffic activity shown in the previous subsection,
under a common FIFO queue for all VCs.

Figure 14(a) shows that, although rate control is still
performed with cell loss avoidance (Fig.14(b)), the algo-
rithm fails to provide fairness among the connections. No-
tice that this fact does not contradict Theorem 1, since the
theorem assumes a round robin service discipline. To un-
derstand why fairness is not maintained, we recall equation
(9). We plot this equation for the various RTDs involved
in the simulated system (Fig.15).
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Figure 15: Stability Curves

We can interpret the behavior of the control algorithm
as seeking a point in each of the lines shown in the figure,

so that it can “stabilize”, while satisfying > us = ¢} over
all connections sharing a bottleneck with capacity c;. Ev-
ery time the system is disturbed with the start/stop of a
connection, the “operating points” of the remaining con-
nections move down/up accordingly. However, connections
with small RTD start earlier their search for a new stable
point than the ones with large RTD, and reach another
stable point sooner, giving rise to unfairness. Thus, band-
width re-sharing can be seen as a race between existing VC
connections. The connections with longer RTDs start too
late and hence grab less bandwidth. We can compensate
RTD discrepancies by using a slower gain for VCs with
shorter RTD. This is equivalent to matching the curves of
Figure 15 by changing their slopes. Hence, we use equation
(9) to choose K for each VC; so that:

% =X°+ RT D4, — RTD; (18)
where RT D ;44 'is the largest round trip delay among all
connections sharing a bottleneck. We call this procedure
gain RTD normalization. A fair version of the EPRCA
operating under this FIFO scheduling consists in relaying
not only queue levels, but also gains K (more conveniently
1/K, an integer quantity) in RM cells. Whenever VCs
join or drop from a link, new gains must be computed and
relayed back to sources. Since VCs may cross many differ-
ent bottlenecks, and might have to compete for bandwidth
at any of them, the gains should be normalized not only
among VCs sharing the same bottleneck, but also among
bottlenecks being crossed by a common connection. There-
fore, gains must be relayed not only from bottlenecks to
sources, but also from sources to bottlenecks.
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Figure 16 shows EPRCA performance when such proce-
dure is executed. Note that part (a) of this figure shows a
premature saturation rate point for VC # 6 even though
its RTD is zero, as if its RTD were in fact RT D45, due
to the gain RTD normalization procedure. One may argue
that, since VC #6 and VC#5 are not competing for bot-
tleneck # 1 bandwidth, because VC#b5 is constrained by
bottleneck # 2, such normalization is not only unnecessary,
but in fact should be avoided in this case. However, the
temporary situation in which VC#5 is constrained by bot-
tleneck # 2 may change at any time, reversing the scenario
and making VCs # 5 and # 6 start competing for bottle-
neck # 1 bandwidth. Therefore, EPRCA must be prepared
for bandwidth re-sharing at any time on a fair basis, hence
making gain RTD normalization necessary. The dwon side
of this procedure is that it can prevent some switches to
have their available bandwidth fully utilized due to the rate
saturation problem. Although this problem also happens
with VC scheduling, it is more likely to happen here due to
the fact that “pseudo RTDs” are spread around switches
traversed by a large RTD connection.

6.5.3 FIFO Scheduling

In this case, we do not keep track of the number of cells
stored in the switch memory on a per VC basis, but only
the total number of cells currently stored in the FIFO
queue. The motivation for exploring this strategy is that,
if the mechanism provides fair rates, the number of cells
stored at intermediate switches should be the same for all
VCs using the FIFO queue. Indeed, the results presented
in the last section show that this is the case. Therefore, the
switch needs to know only the total number of cells stored
in its FIFO queue, plus the number of VC connections cur-
rently sharing that queue. It then assumes that stored cells
are equally subdivided among VCs, relaying this cell count
back to the sources for rate control.

We have simulated the same network and traffic activ-
ity shown previously, under a common FIFO queue for all
ABR VCs with a single counter to keep track of the total
number of cells stored in each queue. Results are almost
identical to the ones of Fig. 16, hence they are omitted for
space considerations. Notice that this simplified version of
the algorithm works only because fairness holds. Indeed, if
among the competing connections, different number of cells
per connection were allowed to be circulating inside the
feedback loop, we would certainly have a different number
of cells per connection stored at each intermediate switch
queues. Dividing the total number of cells evenly among
the connections and relaying this information would help
only to perpetuate the unfair situation.

It is worth mentioning that throughout our simulation
experiments, the flow controlled sources have always traffic
to send whenever there is an opportunity. These source are
sometimes referred to as “persistent” sources. Other sim-
ulation scenarios, with non-persistent sources, have shown
that the only effect of not sending traffic at the prescribed
rate at a certain time interval, but below it, is that a higher
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input rate is prescribed at the next time interval by the
control algorithm than the rate computed had the source
injected traffic at the full prescribed rate.

7 Conclusions

In this paper, we have presented a comprehensive theoreti-
cal analysis of the closed-loop congestion problem in packet
networks. Through the use of a proportional controller plus
a predictor of propagation delay, we have exemplified how
important characteristics of the controlled system can be
studied. In particular, we have studied the system tran-
sients, convergence, stability, as well as exposed trade-offs
regarding throughput, packet loss, frequency of feedback
information, among other issues. Although more complex
control theoretical approaches are possible, the more com-
plex the approach is, the less insights into practical aspects
of the flow control problem in packet networks are likely to
emerge. The approach used in this paper can be attended
to other congestion control algorithms for packet networks.
This becomes important as switch vendors move to the de-
sign of their own proprietary control algorithms.
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Appendix

In this section, we carry on a study of the roots of the
following characteristic equation:

F(5,8) = s+ K + Ke (e % — 1)

We first examine the roots of F(s,0), which correspond
to the case of a perfect estimation of the propagation de-
lays. In this case, we have a single real root at s = —K,
which is negative for any K > 0. Next we consider a
infinitesimally small 4, in which case an infinite number
of new roots appear, due to the exponentials in equation
(13). Tt is necessary then to study the locations of these
new roots in the complex plane. Finally, we need to find
values of 4, if any, at which there are roots of Eq. (13)
lying on the imaginary axis, i.e., find w,§ values for which
F(iw,d) = 0, and then determine whether the root locus
plot merely touches the imaginary axis or crosses from one
half-plane to the other with increasing 4. If the root locus
plot crosses from left to right, increasing § destabilize the
system, otherwise increasing § stabilize the system. We
start studying the roots of Eq. (13) at the imaginary axis.
Namely, s = +wi such that:

(19)

F(wi,8) = wi + K + Ke™%%i(e™®% _ 1) =0

which, after some algebraic manipulation, results:

K(coswd, — 1) + (- K sinwd, — w)i
K coswé, + (—K sinwd, )i

e—wéz —

(20)

If there exists real § that satisfies Eq. (20), then by
equating the imaginary and real parts of both sides of Eq.
(20), there must exist a pair w,d of real values satisfying
the following equations:

sin wéd

% cos wd, + sin wd, (21)

1+ 2 sin wd, — cos wd, (22)

)
cosw I

Moreover, if for a particular system described by K, §,,
we find a pair w , ¢ such that Eqs. (21,22) are satisfied,
then it is easy to see that:

also satisfy Egs. (21,22). So, once a minimum/maximum
14§ satisfying Eqs. (21,22) is found, we use Eq. (23) to
find the other infinite roots lying on the imaginary axis.
Notice that w is independent of the delay mismatch 61,
which can be seen by removing ¢ from these equations (
using the trigonometric identity: sin®wé 4 cos?wé = 1).
By removing §, we first find w' from the following resulting
equation:

’11)2

7 (24)

2w
+ — sinwd,

2coswd, =1+ %

14Minimum for stabilizing points, maximum for destabilizing points.



and then use either Eq. (21) or Eq. (22) to determine
6. Notice that equation (24) has two solutions, +w . Un-
fortunately, numerical methods are necessary to determine
solutions of this equation for non-trivial systems.

We next need to determine which among the roots found
in the last computation are stabilizing, and which ones
are destabilizing. We do this by studying the sign of the
% derivative at the imaginary roots computed. From Eq.
(13), this derivative is given by:

ds K se (0o+0)s
dd ~ 1+ Kd,e=95 — K(8, + 8)e—(0ot0)s

(25)

If we define S as:

ds

do

after some manipulation we find:

S = sgn Re— (wi)

S =sgn Re [m+n-z]
o+ pt
where
m = Kwsinw(d, +9)
n = Kwcosw(d, +9)
o = 1+ Kd,coswd, — K (6, + 9) cosw(d, + 9)
p = K(6,+90)sinw(d, + §) — Kd, sinwd,

We are particularly interested in the positive sign of
the previous expression, since for a minimum/maximum )
found, a positive S gives us the maximum /minimum delay
mismatch over which the system becomes unstable. Since
we are looking for points that satisfy Eqgs. (21, 22), we
use these equations, plus some fundamental trigonometric
identities to obtain:

m = Kwsinwd, +w?

n = Kw(coswd, —1)

o = 14+Ké,+ Kol —coswd,)
P w(d, + 6) + Kdsinwd,

The points at which S is positive are the ones such that:

mo + np >0
02+p2
or

(Kwsinwd, + w?)[1 + K (6, + &) — K& coswd, |+

Kw(coswd, — 1)[w(d, + &) + Kdsinwd,] > 0

After some manipulation, the previous relation reduces to:

Kwsinwd,(1 + K§,) +w?(1 + K&, coswd,) >0  (26)

Some remarks are due. First notice that relation (26)
contains no § parameter, which means that all crossing
points at the imaginary axis for a given system behave the
same way, namely they are either all destabilizing or all
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stabilizing. So we can conclude that the root locus plot of
our system has a similar shape to the one shown in [8] for a
simpler time delay system. Notice also that the validity of
relation (26) is determined by the particular w" computed
from equation (24), which again depends solely on (K, d,)
parameters, not on 4.

Using equation (24), the above relation becomes:

K 2 1 1 2
6—[1+60(K+w7)]w60 sin w5&[5—2+§(1(+“’?)](w50)2>0 (27)

which is of the form f(w)wsinw + g(w)w? > 0, where
f(w), g(w) > 0 for all w, given that K,5, > 0. It is not
difficult to prove that relation (27) holds for any real w.
Therefore, we conclude that, if there are roots of the system
characteristic equation lying at the imaginary axis, they
are all destabilizing, regardless of which particular system
(K,4,) we are dealing with.

Summarizing all observations we have made in this sub-
section about a system described by (K, d,), we can sketch
few important points of the system root locus plot, as
shown in Figure 6, and computed as follows. First, by
solving equation (24), we find £w’ values. Next we com-
pute the maximum delay mismatch 6 from Eq. (22) or
(21), which gives us the first and most important destabi-
lizing point, depicted in Figure 6. Clearly there is a pos-
itive range of delay mismatch [0,6') in which the system
stability is guaranteed despite the delay mismatch.



