Performance Evaluation of Westwood+ TCP

Congestion Control ***

S. Mascolo ™, L. A. Grieco, R. Ferorelli, P. Camarda, G. Piscitelli

Dipartimento di Elettrotecnica ed FElettronica,
Politecnico di Bari,
Via Orabona, 4 — 70125 BARI, Italy

{mascolo;a.grieco;ferorelli;camarda;piscitel} @poliba.it

Abstract

Westwood+ TCP is a sender-side only modification of the classic Tahoe/Reno TCP
that has been recently proposed to improve fairness and efficiency of TCP. The key
idea of Westwood+ TCP is to perform an end-to-end estimate of the bandwidth
available for a TCP connection by properly counting and filtering the stream of
ACK packets. This estimate is used to adaptively decrease the congestion window
and slow start threshold after a congestion episode. In this way Westwood+ TCP
substitutes the classic multiplicative decrease paradigm with the adaptive decrease
paradigm. In this paper we report experimental results that have been obtained
running Linux 2.2.20 implementations of Westwood+, Westwood and Reno TCP
to ftp data over an emulated WAN and over Internet connections spanning conti-
nental and intercontinental distances. In particular, collected measurements show
that the bandwidth estimation algorithm employed by Westwood+ nicely tracks
the available bandwidth, whereas the TCP Westwood bandwidth estimation algo-
rithm greatly overestimates the available bandwidth because of ACK compression.
Live Internet measurements also show that Westwood+ TCP improves the goodput
w.r.t. TCP Reno. Finally, computer simulations using ns-2 have been developed to
test Westwood, Westwood+ and Reno in controlled scenarios. These simulations
show that Westwood+ improves fairness and goodput w.r.t. Reno.

Key words: TCP Congestion control, Network emulation, Network measurement,
Network simulation.

Preprint submitted to Elsevier Science 7 April 2003

1 Introduction

Due to the fundamental end-to-end principle [1-3], classic Tahoe/Reno TCP
congestion control implements a self-clocked additive increase multiplicative
decrease (AIMD) sliding window algorithm to probe the network bandwidth
capacity [4-7]. It employs two control variables: (1)the congestion window
(cwnd), which limits the number of segments transmitted by the source and
not yet acknowledged by the receiver, (i.e. the outstanding segments), and
(2) the slow start threshold (ssthresh), which varies the way the cwnd is in-
creased. In order to probe the network capacity, the cwnd is increased until a
congestion episode happens to indicate that the network capacity has been hit.
The way the cwnd is increased consists of two phases: (1) the slow-start phase,
which exponentially increases the congestion window when cwnd < ssthresh,
aims at quickly grabbing the available bandwidth; (2) the congestion avoidance
phase, which linearly increases the congestion window when cwnd > ssthresh,
aims at gently probing for new available bandwidth. The probing phase ends
when the sender becomes aware of congestion via the reception of duplicated
acknowledgements (3 DUPACKS) or when a timeout expires. The sender re-
acts to light congestion (i.e. 3 DUPACKS) by halving the congestion window
(fast recovery mechanism) and by re-transmitting the missing packet (fast re-
transmit mechanism) whereas it reacts to heavy congestion (i.e. timeout) by
reducing the congestion window to one. The ssthresh is always set equal to
cwnd/2 after a congestion episode.

The implementation of the mechanisms described above are at the core of
today Internet stability [4], [8] . However, while the AIMD paradigm can ensure
that the network capacity is not exceeded, it cannot guarantee fair sharing of
that capacity[4]. Moreover today TCP is not well suited for lossy links since
segment losses due to channel interference and fading are misinterpreted as
symptom of congestion thus leading to an undue reduction of the transmission
rate and poor utilization of wireless links [9]. To overcome this problem, TCP
requires supplementary ARQ and FEC algorithms implemented at the data
link layer to efficiently operate over unreliable wireless links [10-12].

TCP Westwood [13] proposes an additive increase/adaptive decrease (AIAD)
paradigm to enhance the classic AIMD algorithm. The AIAD paradigm leaves
unchanged the slow-start and congestion avoidance probing phases and em-

* This work was partially supported by the FIRB Research Project ” Traffic models
and Algorithms for Next Generation IP networks Optimization (TANGO)” and by
the MIUR Research Project 488/92 Cluster 22 entitled ”E-service to the Citizens
and to the Environment”

**This is an extended version of the paper ”Live Internet Measurements Using
Westwood+ TCP Congestion Control”, IEEE Globecom 2002 conference.

* Corresponding author

ploys an end-to-end estimation of the available bandwidth to adaptively set
the control windows after a congestion episode. TCP Westwood significantly
improves fairness in wired networks and utilization of wireless links [13,14].

The first attempt to exploit ACK packets for bandwidth estimation is the
packet pair (PP) algorithm, which tries to infer the bottleneck available band-
width at the starting of a connection by measuring the interarrival time be-
tween the ACKs of two packets that are sent back to back [15]. Hoe proposes
a refined PP method for estimating the available bandwidth in order to prop-
erly initialize the ssthresh [16]: the bandwidth is calculated by using the
least-square estimation on the reception time of three ACKs corresponding
to three closely-spaced packets. Allman and Paxson evaluate the PP tech-
niques and show that in practice they perform less well than expected [17].
Lai and Baker propose an evolution of the PP algorithm for measuring the link
bandwidth in FIFO-queuing networks [18]. This method consumes less net-
work bandwidth while maintaining approximately the same accuracy of other
methods, which is poor for paths longer than few hops. Jain and Dovrolis
propose to use streams of probing packets to measure the end-to-end available
bandwidth, which is defined as the maximum rate that the path can provide
to a flow without reducing the rate of the rest of the traffic [19]. Finally,
they focus on the relationship between the available bandwidth in a path they
measure and the throughput of a persistent TCP connection. They show that
the averaged throughput of a TCP connection is about 20-30% more than
the available bandwidth measured by their tool due to the fact that the TCP
probing mechanism gets more bandwidth than what was previously available
in the path, grabbing part of the throughput of other connections. We note
that the latter result is not surprising: in fact, a fundamental property of the
TCP congestion control algorithm is to allow a new joining TCP flow to grab
its bandwidth share from existing flows. A technique that is similar to the one
proposed in [19] has been proposed in [20]. It uses sequences of packet pairs
at increasing rates and estimates the available bandwidth by comparing input
and output rates of different packet pairs. Westwood TCP tries to measure
the actual rate a connection is achieving during the data transfer by properly
counting and filtering the stream of returning ACKs [13]. It should be noted
that this task is easier than trying to estimate the available bandwidth at the
beginning of a TCP connection. Moreover, Westwood TCP does not use out
of band probing packets since the additive increase phase probes the network
by itself.

In this paper we show that the bandwidth estimation algorithm proposed in
[13] does not work properly in real Internet because of ACK compression [21].
In particular, Westwood may greatly overestimate the available bandwidth,
which is potentially disruptive of fairness and can lead to starvation of co-
existing connections. A slightly modified version of the Westwood bandwidth
estimation algorithm is proposed and tested over the real Internet. We call the

old Westwood TCP congestion control with the new bandwidth estimation al-
gorithm Westwood+ TCP. A Linux 2.2.20 implementation of Westwood+ has
been developed for testing purposes. Measurements collected from an emulated
WAN, obtained using a LAN with Dummynet [22], and from live Internet have
shown that the bandwidth estimation algorithm used by Westwood TCP over-
estimates the available bandwidth up to 300% because of ACK compression.
On the other hand, Westwood+ nicely tracks the available bandwidth and
properly sets the congestion window and slow-start threshold.

To conclude the performance evaluation, computer simulations using ns-2 [23]
have been also reported to test Westwood+ in controlled experimental condi-
tions.

The paper is organized as follows. Section 2 gives a brief background of West-
wood TCP and introduces the new bandwidth estimation algorithm employed
by Westwood+ TCP; Section 3 reports emulation and Internet measurements;
Section 4 shows computer simulation results obtained using ns-2 whereas the
last section draws the conclusions.

2 TCP Westwood+

TCP Westwood+ differs from TCP Westwood [13] in that it employs a new
bandwidth estimation algorithm that works properly also in the presence of
ACK compression. We first summarize the TCP Westwood algorithm and then
we introduce the new bandwidth estimation algorithm.

2.1 TCP Westwood

A TCP connection is characterized by the following variables: (1) congestion
window (cwnd); (2) slow start threshold (ssthresh); (3) round trip time of
the connection (RT'T'); (4): minimum round trip time measured by the sender
(RTT0in); (5) size of the delivered segments (seg-size).

The key idea of TCP Westwood is to exploit the stream of returning acknowl-
edgment packets to estimate the bandwidth B that is available for the TCP
connection. When a congestion episode happens at the end of the TCP prob-
ing phase, the used bandwidth corresponds to the definition of best effort
available bandwidth in a connectionless packet network. The bandwidth esti-
mate is used to adaptively decrease the congestion window and the slow-start
threshold after a timeout or three duplicate ACKs as it is described below:

- When 3 DUPACKs are received by the sender:

ssthresh =(B*RTTmin)/seg_size;
if ssthresh<2 then ssthresh=2;
cwnd = ssthresh;
- When a coarse timeout expires:
ssthresh =(B*RTTmin)/seg_size;
if ssthresh<2 then ssthresh=2;
cwnd = 1;
- When ACKs are successfully received:
cwnd increases following the Reno algorithm.

It is worth noting that the adaptive decrease mechanism employed by West-
wood TCP improves the stability of the standard TCP multiplicative decrease
algorithm. In fact, the adaptive window shrinking provides a congestion win-
dow that is decreased enough in the presence of heavy congestion and not
too much in the presence of light congestion or losses that are not due to
congestion, such as in the case of unreliable radio links. Moreover, the adap-
tive setting of the control windows increases the fair allocation of available
bandwidth to different TCP flows. This result can be intuitively explained
by considering that the Westwood window setting tracks the estimated band-
width B so that, if this estimate is a good measurement of the fair share, then
the fairness is improved. In other terms, it should be noted that the setting
cwnd = B * RTTmin after a congestion episode sustains a transmission rate
cund/RTT = B * RTTmin/RTT that is less than the bandwidth B that is
measured at the time of congestion: as a consequence, the TCP flow clears out
its path backlog after the setting thus leaving room in the buffers for coex-
isting and joining flows, which improves statistical multiplexing and fairness.
On the other hand, the setting cwnd = B - RTT would produce an input rate
that is exactly equal to the used bandwidth, which would lead to an unsta-
ble system because an input rate equal to the experienced output rate would
not drain the queues. Thus, an increasing RTT" due to an increasing backlog
would increase the input rate causing a positive feedback that would lead to
instability.

A further insight into TCP Reno and Westwood can be obtained by compar-
ing the long-term throughputs of these congestion control algorithms using
a mathematical model. In [24,25] it has been shown that when the average
segment loss probability p < 1, the long-term Reno throughput is

1
RTT - \/p

tReno

Througpu X

(1)

where RT'T is the mean round trip time. In [14], the Westwood TCP long term
throughput has been derived using arguments a la Kelly [24]. In particular,

the following formula has been derived:

1

Jp-RTT -T, @

Th’l“OngutWGStwOOd x

where T, = RTT'— RTT'min is the average queuing time. By comparing Egs.
(1) and (2) it can be noted that both Westwood and Reno throughputs depend
on 1/,/p, that is Westwood and Reno are friendly to each other. Regarding
the fairness, it can be noted that Westwood flows with different RTT's sharing
the same bottleneck queue will experience the same queuing time 7;,. There-
fore, from Eq. (1) it derives that the throughput of Westwood depends on
round trip time as 1/+/RTT whereas the throughput of Reno as 1/RTT, that
is, Westwood increases fair sharing of network capacity between flows with

different RTT's.

The Westwood TCP congestion control is heavily based on the bandwidth
estimation algorithm. In fact, the correctness of the bandwidth estimate is a
key feature in order to provide a properly working adaptive decrease mech-
anism. In the sequel of the paper we will show that the original Westwood
algorithm overestimates the available bandwidth because of ACK compression
and we will introduce a modification of the bandwidth estimation algorithm
that forms what we have called Westwood+ TCP.

2.2 The Westwood TCP Bandwidth Estimation Algorithm

We have seen that the idea in Westwood TCP is to measure the actual rate
a connection is achieving during the data transfer by properly counting and
filtering the stream of returning ACKs. At the end of a TCP probing cycle, i.e.
when the path capacity is hit and a congestion episode happens, the achieved
connection rate is, by definition, the best-effort available bandwidth. This
estimate of the available bandwidth is used to set the control windows after
congestion. In details, TCP Westwood computes a sample of the available
bandwidth by = di./(t), — tx_1) every time t; the sender receives an ACK,
where t;, — t,_1 is the last ACK interarrival time, dj, is the amount of data
acknowledged by an ACK, which is determined by a proper counting procedure
that considers delayed ACKs, duplicate ACKs and selective ACKs. A duplicate
ACK counts for one delivered segments, a delayed ACK for two segments,
whereas a cumulative ACK counts for 1 segment or for the number of segments
exceeding those already accounted for by previous duplicate acknowledgments
(see [13] for details).

Bandwidth samples by are filtered using a discrete time-varying low-pass filter

that provides the bandwidth estimate as follows:

o 217 — AkA Ak
b 2’7’ —|— Ak bkil _'_ 27’ —|— Ak (bk + bkil) (3)

where Ay is the inter-arrival time between the (k — 1) and the k' sample
and 7 is the cut-off frequency of the filter(a typical value is 0.5s). Low-pass
filtering is necessary since congestion is due to low frequency components [21],
and because of delayed ACK option. The filter coefficients are time-varying to
counteract the fact that sampling intervals A are not constant.

2.8 The Westwood+ TCP bandwidth estimation algorithm

The filter (3) overestimates the available bandwidth in the presence of ACK
compression provoked by reverse traffic. In fact, a consequence of ACK com-
pression is that bandwidth samples contain high frequency components that
are aliased by a low-pass discrete time filter. As a consequence, ACK com-
pression causes a systematic bandwidth overestimate, which may disrupt the
fairness between TCP connections and even may lead to starvation of some
connections. This effect was not evident in the original paper on TCP West-
wood [13] because the phenomena of ACK compression was negligible in the
considered scenarios.

In order to avoid the effects of ACK compression, we propose to compute a
sample of bandwidth by every RT'T instead of every time an ACK is received
by the sender. More precisely, we count the amount of data D, acknowledged
during the last RT'T to compute the bandwidth sample by, = Dy /Ay, where
Ay is the last RTT. This operation corresponds to evenly spread the band-
width samples over the RT'T interval, that is, it corresponds to filter out high
frequency components due to ACK compression. From a signal processing per-
spective, it corresponds to employ an anti-aliasing filter as it is shown in Fig.
1 [26]. Anti-aliased samples by are then low-pass filtered using the filter (3).
To conclude, we add a few words on the sampling interval A;. The Nyquist-
Shannon sampling theorem requires an interarrival time A; < 7/2. To be
conservative, we require Ay < 7/4. Thus, if it happens that Ay > 7/4, then
we interpolate and re-sample by creating N = integer(4A/7) virtual samples
that arrive with inter-arrival time 7/4. When A\ is not an exact multiple of
7/4, an additional sample by, arriving with inter-arrival time Ap = Ay —4- N7
is considered.

Segments sent

weswoot N[[I J[T [J[J[] =
sender >

Bandwidth Anti-ACK ADDDD DD D |:|
i compression h
esimate e Returning ACKs
v
Discrete-time
low-passfilter

Fig. 1. End-to-end bandwidth estimation framework.

3 Performance Evaluation using a WAN emulated scenario and
live Internet Experiments

When a new protocol is proposed, it is necessary to collect a large set of
simulation and experimental results in order to assess its validity and the
advantages of its deployment in the real Internet [27]. We have developed a
Linux 2.2.20 implementation of Westwood+ and we have set up a set of tests
in order to evaluate and compare Westwood+ with respect to classic TCP
Reno. Measurements have been collected from a WAN emulated environment
and from live Internet. In both cases we have evaluated the goodput as well as
the correctness of bandwidth estimation algorithm. Fig. 2 depicts the topology
of the first set of experiments where two Ethernet segments are connected by
a router, which emulates delays by using Dummynet [22]. Two Linux PCs are
connected with the first Ethernet segment and one Linux PC with the second
segment.

The second set of measurements has been collected from Internet live ex-
periments. TCP Linux implementations of Westwood, Westwood+ and Reno
located at the Computer, Control and Communication (C?) laboratory at the
Politecnico di Bari, Italy, have been employed to upload files with different
sizes to the signserv.signal.uu.se server located at University of Uppsala, Swe-
den, and to the panther.cs.ucla.edu server located at University of California,
Los Angeles.

3.1 Bandwidth Estimation

This subsection reports bandwidth estimates obtained by Westwood and West-
wood-+, respectively. In order to test the bandwidth estimation algorithm,
Dummynet has been configured to provide a 500Kbytes/s link between the
two Ethernet segments with a 100ms round trip time. An FTP transfer from

4 I

Linux TCPW Client #2

\n

|
d

Ml

Linux FTP Server

i TCPW Cli 1
Linux TCPW Client # Lintx Router

_ /

Fig. 2. Emulating a WAN using a LAN and Dummynet emulator .

PC+#1 to the FTP server shows that both Westwood and Westwood+ nicely
estimate the link capacity when there is no ACK compression (see. Fig. 3). In
order to evaluate Westwood and Westwood+ in the presence of ACK compres-
sion, another FTP transfer has been launched along the reverse path going
from the FTP server to the PC#2. Fig. 4(a) shows that the bandwidth esti-
mation algorithm used by TCP Westwood greatly overestimates the available
bandwidth up to 300%. On the other hand, Fig. 4(b) shows that Westwood+
nicely tracks the 500Kbytes/s channel capacity (the slight difference is due to
the presence of protocols headers).

500000 500000
450000 450000
% 400000 % 400000 -
& 350000 & 350000
£ 300000 - 2300000 -
£ 250000 - £ 250000
= 200000 £ 200000
o =
2 150000 £ 150000 -
o e
5 100000 - 5 100000 -
m m
50000 - 50000
o+ oM
01 234567 8 910111213 1415 001 23 456 78 9101112131415
S S
(a) (b)

Fig. 3. Bandwidth estimates without ACK compression in the emulated scenario:
(a) Westwood; (b) Westwood+.

Figs. 5 and 6 plot the bandwidth estimates obtained using Westwood and
Westwood+ during two ftp uploads to UCLA, Los Angeles executed in the
same day. Figs. 7 and 8 show analogous data obtained during two ftp uploads
to Uppsala University, Sweden. The thick line shown in Figs. 5-8 represents the
average goodput at the end of the transfer. It is a useful reference line because
a good bandwidth estimate must be close to the average goodput. It can
be noted that also in the case of live Internet measurements, TCP Westwood
overestimates the available bandwidth up to 400%, whereas Westwood+ nicely
tracks the actual used bandwidth.

Bandwidth estimate (Bytes/s)

2000000

1800000 -
1600000 -
1400000 -
1200000 -
1000000 -
800000 -
600000 -
400000 -
200000 -

0

9 10 11 12 13 14 15

Bandwidth estimate (Bytes/s)

Fig. 4. Bandwidth estimates in the presence

scenario: (a) Westwood; (b) Westwood+.

Bandwidth estimate (Bytes/s)

900000

800000 -
700000 -
600000 -
500000 -
400000 -
300000 -
200000 -
100000

0

a4 M MWMWM

0

20 40 60 80 100

(a)

Bandwidth estimate (Bytes/s)

500000

450000 -
400000 -
350000
300000
250000
200000
150000
100000
50000

0

10 11 12 13 14 15

of ACK compression in the emulated

80000

70000
60000

50000

T

40000 -
30000
20000

10000 +

0

T Tl

70 80 90 100

Fig. 5. Bandwidth estimate during the first ftp to UCLA, Los Angeles, California:
(a) Westwood; (b) Westwood+.

Bandwidth estimate (Bytes/s)

500000

450000 -
400000 -
350000 A
300000 A
250000
200000
150000 -

100000 ~
50000
0

0

80

Bandwidth estimate (Bytes/s)

120000

100000 ~

80000 -

60000 -

40000 -

20000

0

o MW e) AN g gn A

"\/““\M“W ALY

0

T T T T T T T

10 20

Fig. 6. Bandwidth estimate during the second ftp to UCLA, Los Angeles, California:
(a) Westwood; (b) Westwood+.

10

20000000 120000
18000000 -
16000000 ~
14000000
12000000 -
10000000
8000000 -

6000000 -
4000000 -
2000000
PN N . Do N

0

100000 -
80000 m

60000 - JLL
40000 - U w w
20000 -

0
0O 10 20 30 4 50 6 70 0 0 20 30 4 50 6 70

Bandwidth estimate (Bytes/s)
Bandwidth estimate (Bytes/s)

(a) (b)

Fig. 7. Bandwidth estimate during the first ftp to Uppsala University, Sweden: (a)
Westwood; (b) Westwood+.

700000 250000
600000 | — e
?':i é 200000 - VH// V&
& 500000 1 &
‘é 400000 ““é 150000
2 2
= 300000 4 £ 100000 1
3 3
E 200000 e
g S 50000
& 100000 - &
0 ‘ ‘ , ‘ , ‘ 0 ‘ . ‘ ,
0 5 0 15 2 25 30 35 0 5 0 15 20 25 30 35
S s
(a) (b)

Fig. 8. Bandwidth estimate during the second ftp to Uppsala University, Sweden:
(a) Westwood; (b) Westwood+.

3.2 Congestion Window and Slow Start Threshold

In order to get a further insight into the behaviors of Westwood+ and Reno
TCP, Fig. 9 plots the cwnd and the ssthresh dynamics during the FTP trans-
fer in the WAN emulated scenario depicted in Fig. 2. After a short transient,
TCP Westwood+ sets the ssthresh equal to a constant value that is greater
than the corresponding value set by Reno: this setting provides a more efficient
use of network bandwidth.

Similar results have been shown by Internet measurements. Fig. 10 plots the
cwnd and the ssthresh of Reno and Westwood+ during an FTP transfer to
UCLA, Los Angeles, whereas Fig. 11 shows analogous data during an FTP
transfer to Uppsala University, Sweden.

11

200

200
180 - — Cwnd 150 1 — Cwnd
160 1 Ssthresh 160 1 Ssthresh
140 A 140 -
@ 120 A P 120
%; 100 1 % 100 -
& 80 A & g0
60 1 60
40 40 A
20 4 20
0 T T T 1 0 T T T
0 10 20 30 40 0 10 20 30 40

Fig. 9. cwnd and ssthreh during the ftp in the emulated scenario in the presence
of ACK compression: (a) Reno; (b) Westwood+.

100
90 -
80
70 A
60 -
50 A
40 4
30
20
10 4

packets

— Cwnd
Ssthresh

AtV

20 40 60 8

S

(a)

100
90 +
80 -
70 4
60 -
50
40
30
20
10 4

packets

— Cwnd
Ssthresh

|

0

40 60 80

Fig. 10. cwnd and ssthresh during the ftp transfer to UCLA, Los Angeles: (a) Reno;
(b) Westwood+.

100 100
90 A — Cwnd 90 - — Cwnd
80 1 Ssthresh 20 - Ssthresh
70 70 1
60 60 1
3 50 1 ke 50 4
: :
40 A 40 4
30 A 10 4
20 A £ 20 1
10 - J 10 -
0 T T T 0 T T T
0 10 20 30 40 0 10 20 30 40

S

(a)

Fig. 11. cwnd and ssthresh during the ftp transfer to Uppsala University, Sweden:
(a) Reno; (b) Westwood+.

12

3.8 Goodput

To compare the efficiency of Westwood+ with respect to Reno TCP, we have
repeated 50 file uploads to the server in Los Angeles and to the server in
Uppsala. Moreover we have used different file sizes to investigate the impact
of the transient time on the goodput. The goodput has been measured as
File_size/transfer_time. The average values of the goodput achieved in each
series of 50 uploads are reported in Fig. 12 for the server in Los Angeles, and
in Fig. 13 for the server in Uppsala. The last column represents the average
goodput over all the transfers. TCP Westwood+ provides goodput increment
ranging approximately from 10% to 46% with respect to Reno.

120+ W Westwood+
1004
g0l |
6ol |

4"

Goodput (KBytes/s)

201"

2mega 4mega 8mega Average
File size (Bytes)

Fig. 12. Average goodput during ftp transfers to UCLA, Los Angeles.

250+ W \Westwood+
2001
150+

100+

Goodput (KBytes/s)

501

2mega 4mega 8mega Average
File size (Bytes)

Fig. 13. Average goodput during ftp transfers to Uppsala University, Sweden.

13

4 Ns-2 simulation results

Testing a protocol is a complex and delicate issue [27]. A major advantage of
using simulations is that experimental conditions can be controlled and results
carefully analyzed. In this section Westwood+ is evaluated and compared with
Reno using the ns-2 simulator [23]. Single and multi-hop scenarios with wired
as well as wireless links are considered. Sender and receiver socket sizes are
set large enough so that connections are limited always by network capacity.
Segments are 1500 bytes long and,unless otherwise specified, routers buffer
capacities are set equal to the bandwidth delay product as recommended in
[28]. When the bandwidth delay product is less than 10 segments, the buffer
capacity is set equal to 10 segments. Simulations last 1000s unless otherwise
specified.

4.1 A single TCP connection scenario

In order to clearly compare the behavior of different TCP algorithms, we start
by considering the single connection scenario depicted in Fig. 14 (N = 1),
where a persistent TCP source, with RTT = 250ms, transmits data over
a bottleneck link. We investigate the impact of buffer capacity and random
losses on the goodputs of Westwood+ and Reno.

N TCP
) connections
Bottleneck link

o Sender e —t
Router
O Sink Router

Fig. 14. Single bottleneck scenario.

----» Dataflow

4.1.1 The impact of the buffer size

To investigate the impact of the bottleneck buffer size on the performance of
Reno and Westwood+ TCP, the scenario in Fig. 14 has been considered where
the bottleneck link capacity has been set equal to 10Mbps and the bottleneck
buffer size has been varied from 0.1 to 1.5 times the bandwidth-delay product.
Fig. 15 shows the goodput achieved by Reno and Westwood+ TCP.

Westwood+ achieves a goodput that is roughly constant for all the considered
buffer sizes and close to full link utilization. On the other hand the goodput of
Reno depends on the buffer size. In particular, the goodput of Reno increases
with the bottleneck buffer size and achieves the 90% of the link capacity

14

1.0E+07

9.5E+06 AN _

9.0E+06

8.5E+06 -

Goodput

8.0E+06 -

7.5E+06 1 — Reno

— - Westwood+
7. 0E+O6 T T T T T T T T T T T T T

01 020304050607 0809 1 1112131415
Buffer size/Bandwidth*RTTmin

Fig. 15. Goodput as a function of the bottleneck buffer size.

when the buffer size is 0.7 times the bandwidth-delay product. For smaller
buffer sizes, TCP Reno is not able to provide a satisfying link utilization. An
explanation of this effect is the following: by letting C' denote the bottleneck
capacity,) the buffer size and RTT'min the round trip propagation time
without queuing delays, it results that Reno inflates the cuwnd up to the value
C - RTTmin 4+ @), when a congestion episode happens. At this point Reno
TCP reduces by half the cuwnd to the value 0.5-C - RT"T'min + 0.5 - Q. If Q
is less than C' - RTT'min, then the setting of cwnd is less than C' - RT'Tmin,
which means that the cwnd is not big enough to keep the pipe full and provide
full link utilization. On the other hand, the cwnd setting of Westwood+ does
not depend on the bottleneck buffer size because of the bandwidth estimation
mechanism that sets cund = C' - RTTmin for any value of Q).

4.1.2 The impact of link losses

To evaluate the impact of random segment losses on the goodputs of Reno
and Westwood+, we assume that the bottleneck link is affected by uniformly
distributed random losses ranging from 0.1% to 1% in both directions. The
bottleneck link capacity is varied from 100Kbps to 100Mbps. Fig. 16 shows
that, when the bottleneck link is not lossy, both Reno and Westwood+ achieves
full link utilization. This confirms results in Fig. 15, since we are assuming a
buffer capacity equal to the bandwidth delay product. On the other hand, Fig.
17 shows that Westwood+ improves the goodput with respect to Reno TCP
in the presence of losses not due to congestion such as in the case of lossy
links.

To give a further insight into the improvements provided by Westwood+ in
the presence of lossy links, Fig. 18 (a) and (b) show the cwnd and ssthresh
variables of Westwood+ and Reno, respectively, in the case of a 4Mbps link
affected by 0.4% loss rate. A comparison of Figs. 18 (a) and (b) shows that

15

1.0E+08
— Reno Yy
—— Westwood+ 7
1.0E+07
a
o,
<
2 1.0E+06 -
5
8
S
© ~
1.0E+05 ~
1.0E+04
0.1 1 10 100

Bottleneck Capacity (Mbps)

Fig. 16. Goodput of Westwood+ and Reno in the presence of reliable link.

1.0E+07 1.0E+07
— Reno T T T T - — Reno
— — Westwood+ P - — — Westwood+
- e —
2 1.0E+06 | T T g 0w -
0 i) -
) s & = -~
2 ~ 2 ~
g e g /
© 1OE+05 A © 1.0E+05 1
1.0E+04 T T 1.0E+04 T T
0.1 1 10 100 0.1 1 10 100
Bottleneck Capacity (Mbps) Bottleneck Capacity (Mbps)
(a) (b)
1.0E+07 ~ 1.0E+07
——Reno
— — Westwood+
7 1.OE+06 e —— T T T T T T - 2 1.OE+06 e ——
& —~ & -
1 - 1 -
i _F S S
g - g 7
O 1.OE+05 - © 1.0E+05 -
——Reno
— — Westwood+
1.0E+04 T T 1.0E+04 T T
0.1 1 10 100 0.1 1 10 100
Bottleneck Capacity (Mbps) Bottleneck Capacity (Mbps)

() (d)

Fig. 17. Goodput of Westwood+ and Reno in the presence of lossy link with: (a)
0.1% loss rate; (b) 0.4% loss rate; (c¢) 0.8% loss rate; (d) 1% loss rate.

Westwood+ provides control windows that are roughly four times larger than
those of Reno.

16

100 - 100
90 - — ownd 90 -
30 | ssthresh 30 | ssthresh
70 70

60: l .
ig] WJ‘“W‘ “ M) th f N‘“‘MWA J\/ W i
! /Mw SN Ry

T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

— cwnd

Segments
Segments
%

S

Fig. 18. cwnd and ssthresh in the presence of a lossy bottleneck link with 0.4% loss
rate: a) Westwood+ TCP; b) Reno TCP.

4.2 Single Bottleneck scenario

In order to evaluate how a set of N TCP flows of the same flavor with different
RTTs share the capacity of a common bottleneck, we consider N=10,20,40,60,
80,100 infinite greedy connections sharing a FIFO bottleneck with RTTs rang-
ing uniformly from (10+240/N)ms to 250ms (see Fig. 14). To provide a single
numerical measure reflecting the fair share distribution across the various con-
(XL bi)”
N - Zﬁl biQ’
b; is the throughput of the i* connection [29]. The fairness index belongs
to the interval [0, 1]; a unitary index represents maximum degree of fairness.
Simulation results have shown that both Westwood+ and Reno achieve high
utilization of the bottleneck link because the buffer size has been set equal
to the bandwidth delay product (see Fig. 15). Figs. 19(a) and (b) show the
fairness index of Westwood+ and Reno when the bottleneck capacity is equal
to 10Mbps and 100Mbps, respectively.

nections we use the Jain fairness index defined as F.I. = where

0.98 - 14

0.97fK///A&44444444j&\\‘‘‘\\kﬂf’”ﬁ“\\\ﬂ 0.98

0.96 4 A 0.96 -

0.95 1

0.94 1 /fggll’,rk’#'g//

0934 1

092 1 // 0.88
0.86

X
=3
o
B

092 1

o
o

Fairness Index
Faimess Indes

0.91 A /
094 / --Reno 0.84 -4-Reno
089 4 A~ Westwood+ 0.82 -4 Westwood+
0.88 T T T T T T T T 08
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
No. of TCP Connections No. of TCP Connections
(a) (b)

Fig. 19. Fairness Index of Reno and Westwood+ over a single bottleneck of capacity:
a) 10Mbps; b) 100Mbps.

To give a visual explanation of what the fairness index represents, Fig. 20
(a) plots the sequence numbers of 10 TCP Westwood+ flows and Fig. 20 (b)

17

the sequence numbers of 10 Reno connections sharing a 10Mbps bottleneck
link. These figures show that the sequence numbers of the Reno connections
are much more spread than those of Westwood+ connections, meaning that

Westwood—+ is fairer than Reno.

200000

Sequence Numbers (segments)

0

Fig. 20
tleneck

180000
160000
140000 ~
120000 ~
100000
80000 -
60000
40000 -
20000 ~

200000

Sequence Numbers (segments)

(a)

T
600

T
800

0
1000

180000 -
160000 -
140000
120000 -
100000
80000 -
60000 -
40000 -
20000

0

T
200

T T T
400 600 800 1000

(b)

. Sequence numbers vs. time of 10 TCP connections sharing a 10Mbps bot-
: a) 10 Westwood+ connections; b) 10 Reno connections.

Finally, to give a further insight into the fairness issue and its correlation
with the bandwidth estimation mechanism, Fig. 21 shows the bandwidth es-
timates obtained by 10 Westwood+ flows sharing a 10Mbps bottleneck. The
estimates oscillate around the fair-share that is equal to 1Mbps, thus showing
that the end-to-end bandwidth estimation algorithm improves the ability of
TCP congestion control to allocate the bandwidth in a fair way.

4.3 Multiple congested gateways

1.0E+07 |

1.0E+05 -
1.0E+04 A
1.0E+03 A

1.0E+02

Bandwidth estimates (bps)

1.0E+01 +

LOE+06 —rmim— = — i o L s s

— -Fair share

1.0E+00
0

200

400

600

800 1000

Fig. 21. Bandwidth estimates of 10 TCP Westwood+ flows.

We consider the multihop topology depicted in Fig. 22, which is characterized
by: (a) N hops; (b) one greedy TCP connection C going through all the N

18

hops; (¢) 2N cross traffic greedy TCP sources Cy — Coyyq transmitting data
over each single hop. The simulation lasts 1000s during which the C connec-
tion always sends data. Each cross traffic source Cy — Cynyq starts randomly
in the interval [0, 500]s, and stop randomly in the interval [500, 1000]s. The
round trip time of the C; connection is 250ms, whereas round trip times of
the Cy — Cyny1 connections are equal to 50ms. The link capacity between
routers is equal to 10Mbps. The capacity of entry/exit links is 100Mbps. Fig.
23 shows the goodput achieved by Westwood+ and Reno TCP as a function of
the number of traversed hops: Westwood+ achieves a sligthly better goodput
w.r.t. Reno for any considered number of hops.
Sinks Gz Sinks Cs Sink; C; Sinkon+: Conet

Si nk4C6

« J AN J
Y

1" hop 2" hop 3" hop

1.0E+07
%
a,
2,
5 J
= 1.0E+06
o
[e]
6]
— Reno
—— Westwood+
1 . OE+05 T T T T T T T T

1 2 3 4 5 6 7 8 9 10

No. of traversed hops

Fig. 23. Goodput over the multihop topology as a function of the number of traversed
gateways.

4.8.1 A multihop scenario with a wireless lossy link

In this section we compare Westwood+ and Reno in the presence of unreliable
links such as in the case of radio links. The topology shown in Fig. 22 is
considered where N = 10 hops, and the last hop is a 2Mbps lossy link. We
assume that the lossy link is affected by an independent uniform packet loss
probability ranging from 0.1% to 1% in both link directions. Fig. 24 shows
that Westwood+ provides a higher goodput of the C; connection w.r.t Reno
TCP for any value of the drop rate.

19

5.0E+05

— Reno
\ —_
A0E+05 1\ Westwood+
@
&' 3.0B+05
Z
]
g 2.0B+05 A
@]
1.0E+05 -
0.0E+00 T \ \ \

0 0.002 0.004 0.006 0.008 0.01
Segment loss rate

Fig. 24. Goodput over a 10 hop topology with a last hop wireless link.

5 Conclusion

In this paper we have tested the behavior of the TCP Westwood+ algorithm
using WAN emulation, live Internet measurements and ns-2 simulations. Col-
lected results have shown that the new bandwidth estimation algorithm em-
ployed by Westwood+ nicely estimates the connection available bandwidth
whereas the estimation algorithm used by Westwood overestimates the avail-
able bandwidth in the presence of ACK compression. Collected results have
shown that Westwood+: (a) slightly (significantly) improves the goodput with
respect to Reno in wired (wireless) scenarios; (b) significantly improves fair-
ness in bandwidth allocation.

6 Acknowledgements

We thank Profs. Mario Gerla and Mikael Sternad who allowed us to collect
live Internet measurements using servers located at their Universities in Los
Angeles, and Uppsala, respectively.

References

[1] D. Clark. The design philosophy of the darpa internet protocols. In ACM
Sigcomm ’88, pages 106114, Stanford, CA, USA, August 1988.

[2] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in
the internet. IEEE/ACM Transactions on Networking, 7(4):458-472, 1999.

20

[3] S. Mascolo. Congestion control in high-speed communication networks using
the smith principle. Automatica, Special Issue on Control methods for
communication networks, 35:1921-1935, December 1999.

[4] V. Jacobson. Congestion avoidance and control. In ACM Sigcomm ’88, pages
314-329, Stanford, CA, USA, August 1988.

[5] M. Allman, V. Paxson, and W. R. Stevens. TCP congestion control. RFC 2581,
April 1999.

[6] W. Stevens. TCP/IP illustrated. Addison Wesley, Reading, MA, 1994.

[7] L. Peterson, B. Davie, and D. Clark. Computer Networks a Systems Approach.
Morgan Kaufmann, 2 edition, October 1999.

[8] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Computer Networks and ISDN
Systems, 17(1):1-14, June 1989.

[9] H. Balakrishnan, V. N. Padmanabhan, and S. Seshan andR. H. Katz. A
comparison of mechanisms for improving TCP performance over wireless links.
IEEE/ACM Transactions on Networking, 5(6):756-769, December 1997.

[10] C. Barakat and E. Altman. Bandwidth tradeoff between TCP and link-level
FEC. Computer Networks, 39(2):133-150, June 2002.

[11] H. M. Chaskar, T. V. Lakshman, and U. Madhow. TCP over wireless with link
level error control: Analysis and design methodology. IEEE/ACM Transactions
on Networking, 7(5):605-615, October 1999.

[12] R. Krishnan, M. Allman, C. Partridge, and J. P. G. Sterbenz. Explicit transport
error notification (ETEN) for error prone wireless and satellite networks.
Technical Report 8333, BBN Technologies, March 2002.

[13] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP westwood:
End-to-end bandwidth estimation for efficient transport over wired and wireless
networks. In ACM Mobicom 2001, Rome, Italy, July 2001.

[14] L. A. Grieco and S. Mascolo. Westwood TCP and easy RED to improve
fairness in high speed networks. In IFIP/IEEFE Seventh International Workshop
on Protocols For High-Speed Networks, pages 130-146, Berlin, Germany, April
2002.

[15] S. Keshav. A control-theoretic approach to flow control. In ACM Sigcomm 91,
pages 3—6, Zurich, Switzerland, September 1991.

[16] J. C. Hoe. Improving the start-up behavior of a congestion control scheme for
TCP. In ACM Sigcomm 96, pages 270-280, Stanford University, CA, USA,
August 1996.

[17] M. Allman and V. Paxson. On estimating end-to-end network path properties.
In ACM Sigcomm ’99, pages 263-276, Harvard University Science Center,
Cambridge, Massachusetts, USA, August 1999.

21

[18] K. Lai and M. Baker. Measuring link bandwidths using a deterministic model
of packet delay. In ACM Sigcomm 00, pages 283-294, Stockholm, Sweden,
August 2000.

[19] M. Jain and C. Dovrolis. End to end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput. In ACM Sigcomm
2002, Pittsburgh, PA, USA, August 2002.

[20] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-to-end probing
and analysis method for estimating bandwidth bottlenecks. In IEEE Global
Telecommunications Conference, pages 415420, San Francisco, CA, November
2000.

[21] J. C. Mogul. Observing TCP dynamics in real networks. In ACM Sigcomm ’92,
pages 305-317, Baltimore, MD, USA, August 1992.

[22] L. Rizzo. Dummnynet: a simple approach to the evaluation of network protocols.
ACM Computer Communication Review, 27:31-41, January 1997.

[23] Ns-2. network simulator, 2002.

[24] F. Kelly. Mathematical modeling of the internet. In Fourth International
Congress on Industrial and Applied Mathematics, Edinburgh, July 1999.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A
simple model and its empirical validation. In ACM Sigcomm ’98, pages 303—-314,
Vancouver BC, Canada, 1998.

[26] L. A. Grieco and S. Mascolo. End-to-end bandwidth estimation for congestion
control in packet networks. In Second International Workshop, QoS-IP 2003,
pages 645-658, Milano, Italy, February 2003.

[27] S. Floyd and V. Paxson. Difficulties in simulating the internet. IEEE/ACM
Transaction on Networking, 9:392-403, August 2001.

[28] C. Villamizar and C. Song. High performance TCP in ANSNET. ACM
Computer Communication Review, 24(5):45-60, 1995.

[29] R. Jain. The Art of Computer Systems Performance Analysis Techniques for
Ezxperimental Design, Measurement, Simulation, and Modeling. John Wiley and
Sons, April 1991.

22

