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A System Theory Approach for Designing
Cryptosystems Based on Hyperchaos

Giuseppe Grassi and Saverio Mascolo

Abstract—In this paper a general methodology for designing chaotic
and hyperchaotic cryptosystems is developed. The basic idea is to make
the decrypter a nonlinear observer for the state of the encrypter. Re-
ferring to this concept, some propositions are given which enable the
plaintext to be retrieved if proper structural properties of the chaotic
system hold. The proposed tool proves to be powerful and flexible, since a
wide class of cryptosystems can be designed by exploiting different chaotic
and hyperchaotic circuits. The advantages of the suggested approach are
illustrated in detail. In particular, the utilization of hyperchaos-based
cryptosystems, as well as the increased complexity of the transmitted
signal, make a contribution to the development of communication systems
with higher security.

Index Terms—Cryptosystems design, observers, synchronization of
hyperchaotic systems.

I. INTRODUCTION

Recently, synchronization of chaotic systems and its application to
secure communications have received considerable attention [1]–[4].
Different methods have been developed in order to hide the contents
of a message using chaotic signals. However, the attacks proposed
in [5]–[8] have shown that most of these methods are not secure or
have a low security.

These considerations have led the authors of [9] and [10] to propose
a new chaos-based secure communication scheme. In particular,
they have combined both conventional cryptographic method and
synchronization of chaotic systems, so that the level of security
is enhanced. However, these approaches are based on the syn-
chronization properties of Chua’s circuit [9] and Chua’s oscillator
[10], respectively. This feature represents a limitation, since the
cryptosystem design may fail if different chaotic circuits are utilized.

The aim of this paper is to develop a more general approach to
cryptography based on chaotic systems. This objective is achieved
by designing the decrypter as a nonlinear observer [11], [12] for the
state of the encrypter. In particular, some propositions are given which
enable the plaintext to be retrieved if proper structural properties of
the chaotic system hold. The proposed technique proves to be flexible,
since different cryptosystems can be designed by making use of sev-
eral chaotic [13]–[15] and hyperchaotic circuits [16]–[21]. Further-
more, the effectiveness of the communication scheme is enhanced,
since both the adoption of hyperchaotic systems and the increased
complexity of the transmitted signal enable us to weaken the low-
security objections to low-dimensional chaos-based schemes [10].

II. DESIGN OF CHAOTIC AND HYPERCHAOTIC CRYPTOSYSTEMS

The proposed design framework consists of four parts.
Part 1: The chaotic (or hyperchaotic) system is described by the

following state equations:

_xxx = AxAxAx + bbbf(xxx) + ccc (1)
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where xxx 2 <n�1, AAA 2 <n�n, bbb 2 <n�1, ccc 2 <n�1, and f :
<n ! <.

Part 2: Given a plaintext signalp(t), the ciphertext is

een(t) = een(p(t); K(t)) (2)

whereeen(�) is a generic encryption function that makes use of a key
signalK(t) [22]. By adopting symmetric algorithms (i.e., by using
the same key for encryption and decryption), the plaintext is obtained
from the ciphertexteen(t) as follows:

p(t) = d(een(t); K(t)) (3)

whered(�) is the decryption function [22]. Since in chaotic cryptosys-
tems the idea is to exploit (1) for generating the key signalK(t), it
is assumed that

K(t) = K(xxx(t)); whereK: <n ! <: (4)

Part 3: Given the chaotic system (1), the key (4), and the ci-
phertext (2), the encrypter is a dynamic system described by the
equations

_xxx = AxAxAx + bbbf(xxx) + ccc+ bbbeen(t): (5)

In order to retrieve the plaintext, it is necessary to generate the key
at the receiver, that is, synchronization between the encrypter and
decrypter must be guaranteed [9]. Herein, this objective is achieved
by designing the decrypter as a nonlinear observer for the state of
the encrypter. It should be pointed out that an observer is a dynamic
system designed to be driven by the output of another dynamic system
(plant) and having the property that the state of the observer converges
to the state of the plant [11], [12]. Therefore, the fourth part of the
design framework is the following.

Part 4: Given the encrypter (5), the decrypter is the dynamic
system

_yyy = AyAyAy + bbbf(yyy) + ccc+ ggg(z � s(yyy)) (6)

whereggg: < ! <n is a suitably chosen nonlinear function,z(t) is a
scalar signal, which is transmitted through a public channel, whereas
s(yyy) is a scalar output of the chaotic system.

Taking into account the previous considerations, (6) has to be
designed so thatyyy converges to statexxx as t ! 1, that is,eee(t) =
(yyy(t)�xxx(t))! 0 ast!1 whereeee represents the synchronization
error [11]. If e(t)e(t)e(t)! 000 ast!1 for any initial conditionyyy(0), xxx(0),
system (6) is said to be a global observer of (5) [12]. This means that
the synchronization error system has a globally asymptotically stable
equilibrium point foreee = 0.

A block diagram illustrating the proposed approach is reported in
Fig. 1.

By exploiting system theory, a proposition is given which enables
a cryptosystem to be designed if a structural property of system (1)
holds.

Proposition 1: If the n � n matrix

bbbb AbAbAb AAA2bbb � � � AAAn�1bbb c (7)

is full rank, then the decrypter (6) becomes a global observer of the
encrypter (5) by taking

ggg(z � s(yyy)) = bbb � (z � s(yyy)) (8)

z = f(xxx) + kxkxkx+ een(t) (9)

s(yyy) = f(yyy) + kykyky (10)

wherekkk = [k1; k2; � � � ; kn] 2 <1�n must be chosen so that the
eigenvalues of(AAA � bkbkbk) lie in the open left-half plane.
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Fig. 1. A block diagram illustrating the proposed approach.

Proof: By making use of (8)–(10), the synchronization error
system between (6) and (5) can be written as

_eee =AyAyAy + bbbf(yyy) + ccc+ ggg(z � s(yyy))

� (AxAxAx + bbbf(xxx) + ccc+ bbbeen(t))

=AeAeAe+ bbbf(yyy) + bbb(f(xxx) + kxkxkx+ een(t)� (f(yyy) + kykyky))

� bbbf(xxx)� bbbeen(t)

that is

_eee = AeAeAe� bkebkebke = AeAeAe+ bububu: (11)

Equation (11) represents a linear time-invariant single-input dynamic
system whereuuu = �kekeke plays the role of a state feedback. Since (7) is
the controllability matrix of (11), if (7) is full rank, all the eigenvalues
of (11) are controllable, i.e., they can be placed anywhere by proper
feedback gain vectorkkk [23]. It can be concluded that (6) becomes a
global observer of (5), provided that the eigenvalues of(AAA� bkbkbk) lie
in the open left-half plane. �

If the matrix (7) is not full rank, it is well known that (11) can be
transformed to the Kalman controllable canonical form [24]

_eee =
AAA11 AAA12

0 AAA22

eee+
bbb1
0

uuu (12)

wherefAAA11, bbb1g is controllable. From (12) it follows thatfAAA; bbbg is
stabilizable if all the eigenvalues ofAAA22 have negative real parts [24].

Now it is proved that the plaintext is retrieved from the ciphertext
using the key~K(t) = K(yyy(t)), generated by the decrypter (6).

Proposition 2: Let

~een(t) = z � s(yyy) (13)

be the ciphertext recovered by the decrypter, and let

~p(t) = d(~een(t); ~K(t)) (14)

be the plaintext retrieved using~een(t) and ~K(t). If (6) is a global
observer of (5), it results

~p(t)! p(t): (15)

Proof: If (6) is a global observer of (5),yyy ! xxx as t ! 1
for any initial condition. As a consequence,K(yyy(t)) ! K(xxx(t)),
that is, ~K(t)! K(t). Moreover, from (9), (10), and (13) it follows
that ~een(t)! een(t). Finally, the comparison between (3) and (14)
clearly shows that (15) holds. �

III. EXAMPLE

In order to illustrate the proposed approach, a hyperchaotic
cryptosystem is now designed. It is based on the Mat-
sumoto–Chua–Kobayashi circuit [17], which has been the first
example of experimental observation of hyperchaos from a real
physical system. The circuit dynamics are described by the following
equations in dimensionless form [20]:

_x1
_x2
_x3
_x4

=

0 �1 0 0
1 0:7 0 0
0 0 0 �10
0 0 1:5 0

x1
x2
x3
x4

+

�1
0
10
0

g(x1; x3)

(16)

whereg(�) is the piecewise-linear function given by

g(x1; x3) =

�0:2 + 3(x1 � x3 + 1); x1 � x3 < �1;

�0:2(x1 � x3); �1 � x1 � x3 � 1;

�0:2 + 3(x1 � x3 � 1); x1 � x3 > 1.

Since the matrix (7) is full rank, the proposed method will surely
succeed in designing the desired cryptosystem. In order to encrypt
the plaintext, ann-shift cipher is chosen [9]

een(t) = f1(� � � f1(f1(p(t); K(t)); K(t)); � � � ; K(t)) (17)

where

f1(x; K) =

(x+K) + 2h �2h � (x+K) � �h,

(x+K) �h < (x+K) < h,

(x+K)� 2h h � (x+K) � 2h.

(18)

p(t) = sin t, h = 3, andn = 30. For the sake of simplicity, the key
K(t) = x4(t) has been chosen, although any generic functionK(xxx)

could be used. Equations (5) and (6) can be written as

_x1
_x2
_x3
_x4

=

0 �1 0 0
1 0:7 0 0
0 0 0 �10
0 0 1:5 0

x1
x2
x3
x4

+

�1
0
10
0

g(x1; x3) +

�1
0
10
0

een(t) (19)
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Fig. 2. Time waveform of the transmitted signal (21).

_y1
_y2
_y3
_y4

=

0 �1 0 0
1 0:7 0 0
0 0 0 �10
0 0 1:5 0

y1
y2
y3
y4

+

�1
0
10
0

g(y1; y3) +

�1
0
10
0

� z � g(y1; y3)�

4

i=1

kiyi (20)

where the observed quantityz is the scalar transmitted signal

z(t) = g(x1; x3) +

4

i=1

kixi + een(t): (21)

By placing the eigenvalues of system (11) in�1, it resultsk1 =
�0:3764, k2 = 0:2384, k3 = 0:4324, k4 = �0:4314 and the
decrypter (20) becomes a global observer of the encrypter (19). From
(13) the ciphertext recovered by the decrypter is

~een(t) = z � g(y1; y3)�

4

i=1

kiyi (22)

whereas from (14), the following plaintext is obtained:

~p(t) = f1(� � � f1(f1(~een(t); � ~K(t)); � ~K(t)); � � � ; � ~K(t)) (23)

where the decryption rule is the same as the encryption one [9], with
~K(t) = y4(t). From Proposition 2, it follows that~p(t)! p(t). The
validity of the proposed theoretic approach is confirmed by simulation
results. In particular, the transmitted signal (21) is shown in Fig. 2,
whereas the recovered plaintext (23) is shown in Fig. 3.

IV. DISCUSSION

Now, the advantages of the proposed approach are illustrated.

1) The methods proposed in [9] and [10] are closely related to
Chua’s circuit and Chua’s oscillator, respectively. In particu-
lar, the configuration in [9] guarantees synchronization since
the error system_eee = AeAeAe is characterized by eigenvalues ofAAA

in the open left-half plane [2]. Unfortunately, this hypothesis
onAAA is not satisfied for several chaotic systems [12]. Unlike
[9] and [10], in this paper any chaotic system in the form (1)
can be used, provided that the error system_eee = AeAeAe + bububu is
stabilizable via state feedbacku = �kekeke.

Fig. 3. Time waveform of the recovered plaintext (23).

2) By computing the rank of (7) or the eigenvalues ofAAA22, it can
be easily shown that the encrypter (5) and the decrypter (6)
can include several chaotic systems, such as Chua’s circuit,
Chua’s oscillator, higher dimensional Chua’s circuits [13], and
the chaotic circuits proposed in [14] and [15].

3) Regarding hyperchaos, the proposed cryptosystem can include
Rössler’s system [16], the Matsumoto–Chua–Kobayashi cir-
cuit [17] and its modified version [20], the oscillators in [18]
and [19], and the circuit with hysteretic nonlinearity in [21].
This is because they are all examples of hyperchaotic systems
for which (7) is full rank.

4) In relation to the concept illustrated in [25], one could design
a communications system with one encrypter and multiple
decrypters. LetfAAA; bbbg be stabilizable and letkkk1, kkk2, � � �, kkkm
bem different gain vectors. In this case, the communications
scheme is constituted by one encrypter andm decrypters.
The encrypter’skkk can be tuned to switch from one specific
decrypter to another. In this way, the components ofkkk1, kkk2,
� � �, kkkm at the decrypters constitute a synchronization address,
in the sense that the only receiver that will synchronize to the
transmitter is the one with the samekkk.

5) The tool developed herein is flexible and powerful, since a
wide class of cryptosystems can be designed by making use
of different circuits as well as multiple decrypters.

6) The suggested approach enables synchronization to be
achieved via a scalar transmitted signal. This is a remarkable
feature, since a single channel is usually available for
communication applications [25].

7) If (7) is full rank, all the modes of system (11) can be
arbitrarily assigned. As a consequence, it is possible to gen-
erate cryptosystems characterized by short synchronization
times, in order to avoid having part of the message lost
during the transient behavior. Nevertheless, iffAAA; bbbg is
stabilizable, synchronization is practically achieved after the
time 4� , where� is the largest time constant deriving from
the uncontrollable part of system (12).

8) The proposed class of cryptosystems does not require initial
conditions of (5) and (6) belonging to the same basin of
attraction. This represents another remarkable feature of the
method developed herein [25].

9) Low-dimensional chaotic systems exhibit very regular geo-
metric structures when viewed in some suitable phase space
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[5]. For these systems, it is possible to reveal the hidden infor-
mation by creating the geometric structure with a forecasting
approach [6]. However, when the chaotic dynamics are more
complex, the forecasting approach may fail, since it becomes
difficult to recreate the underlying geometric structure in the
phase space [8]. Thus, a way to improve the level of security
is surely the adoption of hyperchaotic systems [8], [25].

10) The security of a communications scheme can be enhanced
by making the transmitted signal more complex [5], [10].
In particular, in [5] it is suggested that two chaotic signals
can be added together to create a carrier signal of sufficient
complexity. In this way, it is not possible to predict the carrier
dynamics based on a reconstruction of the geometric structure
in the phase space [5]. The present paper makes a further
contribution in this direction, since a transmitted signal of
high complexity is used. Namely, in (9) the first addend is
related to the nonlinear element of the chaotic circuit, the
second one is a linear combination of all the chaotic state
variables, whereas the third one is the ciphertext.

11) The forecasting approach developed in [5] and [6] enables
the behavior of the chaotic carrier to be predicted in low-
dimensional systems. Although this is hard to do for hy-
perchaotic systems, consider the transmitted signal (21) and
suppose that the carrierz0(t) = g(x1; x3) +

4

i=1
kixi is

reconstructed in some way by an intruder. By considering the
results available in the literature, it seems that it is not possible
for an intruder to reconstruct the keyx4(t) starting from a
completely different signalz0(t). This conjecture leads to the
conclusion that, even if the ciphertexteen(t) = z(t)� z0(t)
is reconstructed, it is not possible for an intruder to obtain the
plaintext p(t).

12) Although the suggested approach presents several advantages,
two issues need to be further investigated. The first one
regards the truthfulness of the above mentioned conjecture,
whereas the second one is related to the practical implemen-
tation of the proposed method.

V. CONCLUSION

In this paper a general framework for hyperchaos-based cryptog-
raphy has been developed. By applying the proposed technique, it
is possible to design cryptosystems based on different chaotic and
hyperchaotic circuits. This objective has been achieved by making the
decrypter a nonlinear observer for the state of the encrypter. Finally,
the advantages of the suggested approach have been discussed in
detail. Taking into account the considerations reported in [25], it can
be concluded that the proposed approach has most of the features
that are desirable in private and secure communications systems. In
particular, the utilization of hyperchaotic cryptosystems, as well as
the increased complexity of the transmitted signal, seem to make a
further contribution to the development of communication systems
with higher security.
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