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Abstract. TCP Westwood (TCPW) is a sender-side modification of the TCP congestion window algorithm that improves upon the perfor-
mance of TCP Reno in wired as well as wireless networks. The improvement is most significant in wireless networks with lossy links. In
fact, TCPW performance is not very sensitive to random errors, while TCP Reno is equally sensitive to random loss and congestion loss and
cannot discriminate between them. Hence, the tendency of TCP Reno to overreact to errors. An important distinguishing feature of TCP
Westwood with respect to previous wireless TCP “extensions” is that it does not require inspection and/or interception of TCP packets at
intermediate (proxy) nodes. Rather, TCPW fully complies with the end-to-end TCP design principle. The key innovative idea is to continu-
ously measure at the TCP sender side the bandwidth used by the connection via monitoring the rate of returning ACKs. The estimate is then
used to compute congestion window and slow start threshold after a congestion episode, that is, after three duplicate acknowledgments or
after a timeout. The rationale of this strategy is simple: in contrast with TCP Reno which “blindly” halves the congestion window after three
duplicate ACKs, TCP Westwood attempts to select a slow start threshold and a congestion window which are consistent with the effective
bandwidth used at the time congestion is experienced. We call this mechanism faster recovery. The proposed mechanism is particularly
effective over wireless links where sporadic losses due to radio channel problems are often misinterpreted as a symptom of congestion by
current TCP schemes and thus lead to an unnecessary window reduction. Experimental studies reveal improvements in throughput per-
formance, as well as in fairness. In addition, friendliness with TCP Reno was observed in a set of experiments showing that TCP Reno
connections are not starved by TCPW connections. Most importantly, TCPW is extremely effective in mixed wired and wireless networks
where throughput improvements of up to 550% are observed. Finally, TCPW performs almost as well as localized link layer approaches
such as the popular Snoop scheme, without incurring the overhead of a specialized link layer protocol.
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1. Introduction

Congestion control functions were introduced into the TCP in
1988 and have been of crucial importance in preventing con-
gestion collapse [13]. The well-known challenge in provid-
ing TCP congestion control in a mixed (wired/wireless) envi-
ronment is that current TCP implementations rely on packet
loss as an indicator of network congestion. In the wired por-
tion of the network a congested router is indeed the likely
reason of packet loss. In the wireless portion, on the other
hand, a noisy, fading radio channel is the more likely cause
of loss. This creates problems in TCP Reno since it does
not possess the capability to distinguish and isolate conges-
tion loss from wireless loss. As a consequence, TCP Reno
reacts to wireless loss with a drastic reduction of the con-
gestion window, hence of the sender transmission rate, when
the best strategy in fact would be not to decrease the retrans-
mission rate. Thus, TCP congestion control requires sup-

plementary link layer protocols such as reliable link-layer or
split-connections approach to efficiently operate over wire-
less links [17]. Approaches to address this problem have
been discussed and compared in the pioneering work by Bal-
akrishnan et al. [3–5]. Three alternative approaches: end-
to-end (E2E), Split Connection, and Localized Link Layer
methods were carefully contrasted. The best performing ap-
proach was shown to be a localized link layer solution ap-
plied directly to the wireless links. A clever “snooping” pro-
tocol monitors the packets flowing over the wireless link as
well as their related acknowledgments. The protocol en-
tities cache copies of TCP data packets and monitor the
ACKs in the reverse direction. If a packet loss is detected
(i.e., through duplicate acknowledgments, DUPACKs), the
cached copy is used for local retransmission, and any pack-
ets carrying DUPACK information back to the TCP sender
are halted until local retransmission success (to avoid “pre-
mature” retransmission at the TCP sender). The protocol is
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effective in reducing retransmissions, and, more importantly,
in preventing the associated reduction in congestion window
size.

Snoop, however, has its own limitations. First, it requires
a snoop proxy in the base station. Also, if the TCP sender
is the mobile, the TCP code must be modified to respond to
Explicit Loss Notification (ELN) packets from the base sta-
tion. In view of the limitations introduced by link layer solu-
tions, it is of interest thus to explore E2E recovery solutions
that are independent of the link layer, and thus, more versa-
tile.

In this paper, we propose to handle wireless losses using
a modified version of TCP Reno. This new version, which
we named TCP Westwood (or TCPW for short), enhances
the window control and backoff process. Namely, a TCPW
sender monitors the acknowledgment stream it receives and
from it estimates the data rate currently achieved by the con-
nection. Whenever the sender perceives a packet loss (i.e.,
a timeout occurs or 3 DUPACKs are received), the sender uses
the bandwidth estimate to properly set the congestion win-
dow (cwin) and the slow start threshold (ssthresh). By
backing off to cwin and ssthresh values that are based on
the estimated available bandwidth (rather than simply halv-
ing the current values as Reno does), TCP Westwood avoids
reductions of cwin and ssthresh that can be excessive or in-
sufficient. In this way TCP Westwood ensures both faster
recovery and more effective congestion avoidance. Exper-
imental studies reveal the benefits of the intelligent back-
off strategy in TCPW: better throughput, goodput, and de-
lay performance, as well as fairness even when competing
connections differ in their end-to-end propagation times. In
addition, our studies of TCPW friendliness when coexisting
with TCP Reno is reassuring since we have observed that
TCP Reno connections are not starved in the presence of
TCPW connections. Most importantly, TCPW is very ef-
fective in handling wireless loss. This is because TCPW
uses the current estimated rate as reference for resetting the
congestion window and the slow start threshold. The cur-
rent rate is only marginally impacted by loss (as long as
loss is a relatively small fraction of data rate). The simula-
tion results presented in section 4 confirm this claim. For ex-
ample, a throughput improvement of up to 550% over TCP
Reno has been observed. Other TCP variants that use band-
width estimation to set the congestion window have been pro-
posed before. To our knowledge, however, such schemes
require the intervention of the network layer. For exam-
ple, the BA-TCP (Bandwidth Aware-TCP) scheme [10] re-
lies on intermediate routers to take measurements of avail-
able bandwidth and compute the “fair share” for the TCP
connections. The fair share value is piggybacked in the
TCP header and conveyed to the TCP source. The latter
uses it to appropriately set its cwin and ssthresh parame-
ters. BA-TCP and TCPW are similar in their reliance on
bandwidth information to set congestion control parameters.
However, while BA-TCP requires new network layer func-
tions to measure available bandwidth and compute fair share,
TCPW relies only on information readily available in the

current TCP header. TCPW does not require any support
from lower layers, and thus strictly adheres to layer separa-
tion and modularity principles. Also, TCPW does not re-
quire that any TCP option be used in segment headers (i.e.,
timestamps).

The paper is organized as follows. Sections 2 and 3 dis-
cuss the TCPW bandwidth estimation and the congestion con-
trol algorithm. TCPW performance behavior in wired and in
mixed networks is studied in sections 4, 5 and 6, whereas sec-
tion 7 concludes the paper.

2. End-to-end bandwidth measurement

2.1. The ACK-based measurement procedure

A fundamental design philosophy of the Internet TCP con-
gestion control algorithm is that it must be performed end-
to-end. The importance of the end-to-end principle [8] can-
not be overstated. In fact, it is this principle that guaran-
tees the delivery of data over any kind of heterogeneous
network, in spite of all possible failures at intermediate de-
vices (proxies). Moreover, the network is considered as a
“black box”. As a consequence, in our approach, a TCP
source does not expect to receive any explicit congestion
feedback from the network. Therefore, the source, to de-
termine the rate at which it can transmit, must probe the
path by progressively increasing the input load (through
the slow start and congestion avoidance phases) until im-
plicit feedback, such as timeouts or duplicate acknowledg-
ments, signals that the network capacity has been reached
[12,13].

The key idea of TCP Westwood is to use the “bandwidth
estimate” to directly control the congestion window and the
slow start threshold. The bandwidth is estimated by monitor-
ing the TCP ACKs. Namely, the source performs an end-to-
end estimate of the bandwidth available along a TCP connec-
tion by measuring and averaging the rate of returning ACKs.
Bandwidth estimation (via ACK monitoring) has been used
before to control the TCP window, but only indirectly, via the
estimation of the bottleneck backlog [12,21].

After a congestion episode (i.e., the source receives three
duplicate ACKs or a timeout) the source uses the measured
bandwidth to properly set the congestion window and the
slow start threshold, starting a procedure that we will call
faster recovery. When an ACK is received by the source, it
conveys the information that an amount of data correspond-
ing to a specific transmitted packet was delivered to the des-
tination. If the transmission process is not affected by losses,
simply averaging the delivered data count over time yields
a fair estimation of the bandwidth currently used by the
source.

When duplicate ACKs (DUPACKs), indicating an out-of-
sequence reception, reach the source, they should also count
toward the bandwidth estimate, and a new estimate should be
computed right after their reception.
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However, the source cannot tell for sure which segment
triggered the DUPACK transmission, and it is, thus, unable to
update the data count by the size of that segment. An average
of the segment sizes sent thus far in the ongoing connection
should therefore be used, allowing for corrections when the
next cumulative ACK is received. For the sake of simplic-
ity, we assume all TCP segments to be of the same size. Fol-
lowing this assumption, we will further assume that sequence
numbers are incremented by one per segment sent, although
the actual TCP implementation keeps track of the number of
bytes instead: the two notations are interchangeable if all seg-
ments have the same size.

It is important to notice that, immediately after a conges-
tion episode, followed either by a timeout or, in general, n du-
plicate ACKs, the bottleneck is at saturation and the connec-
tion delivery rate is equal to the share of the best-effort band-
width (i.e., saturation bandwidth) available to that connec-
tion. At steady state, under proper conditions, such as uni-
form propagation delays, for example, this is actually the “fair
share”. The saturation condition is confirmed by the fact that
packets have been dropped, an indication that one or more in-
termediate buffers are full. Before a congestion episode, the
used bandwidth is less than or equal to the available band-
width because the TCP source is still increasing its window
to probe the network capacity.

As a result, TCP Westwood adjusts cwin by taking into
account the network capacity that is available to it at the time
of congestion, whereas current TCPs “blindly” half the value
of cwin.

2.2. Bandwidth estimation

The TCPW sender monitors ACKs to estimate the bandwidth
currently used by, and thus available to the connection. More
precisely, the sender uses (1) the ACK reception rate and (2)
the information an ACK conveys regarding the amount of data
delivered to the destination.

We discuss the use of the information in (2) in section 2.3.
For now, let assume that an ACK is received at the source at
time tk , notifying that dk bytes have been received at the TCP
receiver. We can measure the following sample bandwidth
used by that connection as bk = dk/�k , where �k = tk−tk−1

and tk−1 is the time the previous ACK was received.
Since congestion occurs whenever the low-frequency input

traffic rate exceeds the link capacity [15] we employ a low-
pass filter to average sampled measurements and to obtain the
low-frequency components of the available bandwidth. No-
tice that this averaging is also useful in filtering out the noise
due to delayed acknowledgments.

In our early design and experimentation, we used a filter
similar to the one used for RTT estimation in TCP. We de-
termined that such an exponential filter with constant coeffi-
cients is not capable of efficiently filtering out high-frequency
components of the bandwidth measurements. We propose the

Figure 1. Bound on the maximum sampling interval obtained by inserting
virtual sample.

following discrete-time filter which is obtained by discretiz-
ing a continuous low-pass filter using the Tustin approxima-
tion [2]

b̂k = αkb̂k−1 + (1 − αk)

(
bk + bk−1

2

)
,

where b̂k is the filtered estimate of the available bandwidth
at time t = tk , αk = (2τ − �k)/(2τ + �k), and 1/τ is the
cutoff frequency of the filter.

Notice that the coefficients αk are made to depend on �k

to counteract the effect of non deterministic interarrival times.
In fact, when the interarrival time �k increases, the last value
b̂k−1 should have less significance. On the other hand, a re-
cent b̂k−1 should be given higher significance. The coefficient
αk decreases when the interarrival time increases, and thus the
previous value bk−1 has less significance with respect to the
last two recent samples which are weighted by (1 −αk)/2. As
an example, let tk − tk−1 = �k = τ/10. Then

b̂k = 19

21
b̂k−1 + 2

21

(
bk + bk−1

2

)
.

The new value b̂k is thus made up of approximately 90%
of the previous value b̂k−1 plus approximately 10% of the
arithmetic average of the last two samples bk and bk−1.

Since the TCPW filter has a cutoff frequency equal to 1/τ ,
all frequency components above 1/τ are filtered out. Accord-
ing to the Nyquist sampling theorem, in order to sample a
signal with bandwidth 1/τ a sampling interval less than or
equal to τ/2 is necessary. But, since the ACK stream is asyn-
chronous, the sampling frequency constraint cannot be guar-
anteed. Thus, to guarantee the Nyquist constraint, we estab-
lish that if a time τ/m (m � 2) has elapsed since the last
received ACK without receiving any new ACK, then the fil-
ter assumes the reception of a virtual null sample bk = 0.
The situation is shown in figure 1, where tk−1 is the time
an ACK is received, t̂k+j are the arrival times of the virtual
samples, with t̂k+j+1 − t̂k+j = τ/m for j = 0, n − 1;
and bk+j = 0 for j = 0, n − 1 are the virtual sam-
ples. Then, bk+n = dk+n/�k+n is the bandwidth sample at
tk+n.

It is desirable that after a long time without ACKs (i.e.,
because no new data were sent), the filter acts in a conser-
vative fashion, progressively decreasing the bandwidth esti-
mation as time elapses without new samples. Consider, thus,
the operation of the TCPW filter when there is prolonged ab-
sence of ACKs after a time t = tk . As can be inferred from
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the following sequence of bandwidth estimates, the estimated
bandwidth exponentially goes to zero:

b̂k = 2m − 1

2m + 1
b̂k−1 + 0 + bk−1

2m + 1
,

b̂k+1 = 2m − 1

2m + 1
b̂k,

...

b̂k+h =
(

2m − 1

2m + 1

)h

b̂k.

2.3. On the effects of delayed and cumulative ACKs on
bandwidth measurement

As previously stated, DUPACKs should count toward the
bandwidth estimation since their arrival indicates a success-
fully received segment, albeit in the wrong order. As a con-
sequence, a cumulative ACK should only count as one seg-
ment’s worth of data since duplicate ACKs ought to have been
already taken into account. Further complications result from
delayed ACKs. The standard TCP implementation provides
for an ACK being sent back once every other in-sequence
segment received, or if a 200 ms timeout expires after the re-
ception of a single segment [18]. The combination of delayed
and cumulative ACKs can potentially disrupt the bandwidth
estimation process.

We, therefore, stress two important aspects of the band-
width estimation process:

(a) the source must keep track of the number of DUPACKs it
has received before new data is acknowledged;

(b) the source should be able to detect delayed ACKs and act
accordingly.

The approach we have chosen to take care of these two
issues can be found in the AckedCount procedure, de-
tailed below, showing the set of actions to be undertaken
upon the reception of an ACK, for a correct determina-
tion of the number of packets that should be accounted
for by the bandwidth estimation procedure, indicated by
the variable acked in the pseudocode. The key variable
is accounted, which keeps track of the received DU-
PACKs. When an ACK is received, the number of seg-
ments it acknowledges is first determined (cumul_ack). If
cumul_ack is equal to 0, then the received ACK is clearly a
DUPACK and counts as 1 segment towards the BWE; the DU-
PACK count is also updated. If cumul_ack is larger than 1,
the received ACK is either a delayed ACK or a cumulative
ACK following a retransmission event; in that case, the num-
ber of ACKed segments is to be checked against the number
of segments already accounted for (accounted_for). If
the received ACK acknowledges fewer or the same number
of segments than expected, it means that the “missing” seg-
ments were already accounted for when DUPACKs were re-
ceived, and they should not be counted twice. If the received
ACK acknowledges more segments than expected, it means
that although part of them were already accounted for by way

of DUPACKs, the rest are cumulatively acknowledged by the
current ACK; therefore, the current ACK should only count as
the cumulatively acknowledged segments. It should be noted
that the last condition correctly estimates the delayed ACKs
(cumul_ack = 2 and accounted_for = 0):

PROCEDURE AckedCount
cumul_ack = current_ack_seqno

- last_ack_seqno;
if (cumul_ack = 0)

accounted_for = accounted_for + 1;
cumul_ack = 1;

endif
if (cumul_ack > 1)

if (accounted_for >= cumul_ack)
accounted_for = accounted_for

- cumul_ack;
cumul_ack = 1;

else if (accounted_for < cumul_ack)
cumul_ack = cumul_ack

- accounted_for;
accounted_for = 0;

endif
endif
last_ack_seqno = current_ack_seqno;
acked = cumul_ack;
return(acked);
END PROCEDURE

3. TCP Westwood

In this section we describe how bandwidth estimation is used
in the congestion control algorithm run at the sender side of a
TCP connection. As will be explained, the fundamental con-
gestion window dynamics during slow start and congestion
avoidance are unchanged, that is they increase exponentially
and linearly, respectively, as in current TCP Reno.

The general idea is to use the bandwidth estimate BWE to
set the congestion window and the slow start threshold af-
ter a congestion episode. We start by describing the general
algorithm behavior after n duplicate ACKs and after coarse
timeout expiration.

3.1. Algorithm after n duplicate ACKs

The pseudocode of the algorithm is the following:

if (n DUPACKs are received)
ssthresh = (BWE * RTTmin)/seg_size;
if (cwin > ssthresh) /* congestion

avoid. */
cwin = ssthresh;

endif
endif

Note that seg_size identifies the length of the payload of a
TCP segment in bits.

During the congestion avoidance phase we are probing for
extra available bandwidth. Therefore, when n DUPACKs are
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received, it means that we have hit the network capacity (or
that, in the case of wireless links, one or more segments were
dropped due to sporadic losses). In either case, the estimated
bandwidth BWE is recognized to be a “feasible”, i.e., achiev-
able bandwidth (in fact, it was just measured at packet loss
time). The goal is to achieve this bandwidth (more appro-
priately rate) with the minimum possible window, the “ideal
window” in order to avoid bottleneck congestion. By defi-
nition, the ideal window is equal to the pipe size when the
bottleneck buffer is empty, i.e., w = BWE ∗ RTTmin.

After the reception of n DUPACKs, TCPW sets both slow
start threshold and congestion window equal to the ideal win-
dow BWE ∗ RTTmin. The standard Fast Retransmit/Fast Re-
covery (á la Reno) then follows. It should be noted that
the value RTTmin is set to the smallest RTT sample ob-
served over the duration of the connection. This setting al-
lows the queue to be drained after a congestion episode. Also,
note that after ssthresh has been set, the congestion win-
dow is set equal to the slow start threshold only if cwin >
ssthresh. The rationale behind using BWE to set the slow
start threshold is that TCP exploits the slow start phase to
probe for available bandwidth; it thus seems natural to set
ssthresh to the value we believe represented the available
bandwidth at the time of congestion.

3.2. Algorithm after coarse timeout expiration

The pseudocode of the algorithm is:

if (coarse timeout expires)
ssthresh = (BWE * RTTmin)/seg_size;
if (ssthresh < 2)

ssthresh = 2;
endif;
cwin = 1;

endif

The rationale of the algorithm is again simple. After a
timeout, cwin and ssthresh are set equal to 1 and BWE,
respectively, so that the basic Reno behavior is still captured,
while a speedy recovery is granted by the ssthresh being set
to the bandwidth estimation at the time of timeout expiration.

3.3. TCP Westwood convergence to fair share

An important goal of any TCP implementation is for every
connection to get its “fair share” of the bottleneck. We will
use an informal argument similar to that used for Reno in [14]
to show that TCPW achieves the fair share. Consider the case
of two connections with the same RTT. Suppose, for the sake
of example, that the RTT is X packet transmission times, and
the bottleneck has X buffers. One connection, say A, starts
first. Its window “cycles” between X and 2X (as per the
TCPW algorithm described earlier in this section), each cy-
cle terminating when buffer overflows. Later, connection B

starts, first in slow start mode, and then in congestion avoid-
ance mode. In congestion avoidance, during each cycle the
windows A and B grow approximately at the same rate, i.e.,

Figure 2. Convergence toward fair bandwidth sharing.

one segment per RTT. Eventually, the bottleneck buffer over-
flows, terminating the cycle. One can show that the window
at overflow is

Wi = Ri

(
b

C
+ RTT

)
for i = A,B,

where R is the achieved rate (i.e., BWE); b is the bottleneck
buffer size; and C is the bottleneck trunk capacity.

This is a general property true for all TCP protocols, and
in particular for TCPW. After overflow, TCPW reduces the
windows to new values W ′

i as follows:

W ′
i = Ri (RTT) for i = A,B.

Thus, the ratios of the windows A and B are preserved
after overflow. Yet, the ratio WB/WA keeps increasing dur-
ing congestion avoidance. Consequently, B’s window and
throughput ratchet up at each cycle. Equilibrium is reached
when the two connections have the same windows and the
same bandwidth share. Figure 2 graphically illustrates the
convergence to the fix point WA = WB .

This informal proof is validated by actual simulation re-
sults. It can be generalized to many simultaneous connec-
tions (all with the same RTT). It can also be applied to the
case when the bottleneck is affected by random errors equally
hitting all connections.

4. TCP Westwood performance, fairness, and
friendliness

In this section, we report on the basic performance behavior
of TCPW, its fairness among a number of TCPW connections
sharing a bottleneck link, and its friendliness to coexisting
connections of other TCP variants, such as Reno.

First, the effectiveness of the bandwidth estimation algo-
rithm is studied using a single TCP connection and a fluc-
tuating UDP traffic rate. TCPW window dynamics (cwin,
ssthresh and sequence numbers) are then considered.
TCPW performance behavior is compared to the standard
widely-used TCP Reno, as well as to TCP SACK [16].

All simulations presented in this paper were run using the
LBL network simulator, ns-2 [19].
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Figure 3. TCPW with concurrent UDP traffic: bandwidth estimation.

New simulation modules for TCP Westwood were writ-
ten and they are available at [20], while existing modules for
simulations involving TCP Reno and TCP SACK were used.
All simulated TCP receivers implement delayed ACKs. No-
tice that this introduces a complication for our bandwidth es-
timation algorithm as delayed ACKs represent noise to be fil-
tered.

Each scenario, involving different bottleneck link capacity,
RTT or number of concurrent connections, includes a single-
bottleneck link as is common in the literature. Intermediate
node buffer capacity is always set equal to the bandwidth–
delay product for the scenario under study. The packet size is
set to 400 bytes in all experiments. The ACK arrival pattern is
repetitive for each RTT in absence of packet losses (errors or
buffer overflow). Thus, the interval τ should span one or more
RTTs. Experimentally, we have observed that performance is
not very sensitive to the choice of τ as long as τ > RTT. In
our experiments, we set τ equal to 500 ms.

4.1. Bandwidth estimation effectiveness

In this section, we test the effectiveness of the proposed band-
width estimation algorithm. For this purpose we consider
a single TCPW connection sharing the bottleneck link with
UDP connections. Packets are queued and transmitted on the
link in FCFS order. In addition to demonstrating the accuracy
of the bandwidth estimation algorithm, this scenario also il-
lustrates the capability of a TCP Westwood connection to use
the bandwidth left over by dynamic UDP flows. The config-
uration simulated here features a 5 Mbps bottleneck link with
a one-way propagation delay of 30 ms. One TCP connection
shares the bottleneck link with two ON/OFF UDP connec-
tions, and TCP and UDP packets are assigned the same pri-
ority. Each UDP connection transmits at a constant bit rate
of 1 Mbps while ON. Both UDP connections start in the OFF
state; after 25 s, the first UDP connection is turned ON, joined
by the second one at 50 s; the second connection follows an
OFF-ON-OFF pattern at times 75 s, 125 s and 175 s; at time
200 s the first UDP connection is turned off as well. The UDP

Figure 4. Sequence numbers versus time for long and short RTT connections
without RED.

connections then remain silent until the end of the simulation.
The TCPW connection sends data throughout the simulation.

The scenario above is intended to demonstrate the effec-
tiveness of the feedback control used in TCPW when subject
to “step” and “impulse” stimuli. The behavior of the band-
width estimation process is shown in figure 3.

4.2. TCPW fairness

Fair bandwidth sharing implies that all connections are pro-
vided with similar opportunity to transfer data. Our experi-
ments show that TCPW fairness is at least as good, if not bet-
ter, than that provided by the widely-used TCP Reno. In the
sample results below we show that two flows with different
round trip times (RTT) share the bandwidth more effectively
under TCPW than under TCP Reno.

We ran simulations in which connections faced 50 ms and
200 ms RTT, respectively. Figures 4 and 5 show the sequence
number progress for TCPW and Reno connections without
and with RED, respectively. In all cases the short connection
progresses faster as expected. We note however that TCPW
provides better fairness than Reno across different propaga-
tion times. The reason for the superior fairness exhibited by
TCPW is that the long connection suffers less reduction in
cwin and ssthresh. In Reno, cwin reduction is indepen-
dent of RTT. The results in figure 5 show that both protocols
benefit from RED, as far as fairness is concerned. Remark-
ably, the improvement in TCPW due to RED was higher than
the improvement in Reno.

4.3. TCPW friendliness

Friendliness is another important property of a TCP proto-
col. TCPW must be “friendly” to other TCP variants. That is,
TCPW connections must be able to coexist with connections
running TCP variants while providing opportunities for all
connections to progress satisfactorily. At least, TCPW con-
nections should not result in starvation of connections run-
ning other TCP variants. Better yet, the bandwidth share of
TCPW connections should be equal to their fair share.
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Figure 5. Sequence numbers versus time for long and short RTT connections
with RED.

Figure 6. Experimental test bed layout.

We ran simulation experiments with the following para-
meters: 2 Mbps bottleneck link, 20 flows total, flows with
RTT = 100 ms. With all 20 connections running TCPW, the
average throughput per connection was 0.0994 Mbps. The
20 Reno connections have an average throughput of
0.0992 Mbps. As predicted, we got the same results for the
two schemes. We then ran 10 Reno with 10 Westwood con-
nections sharing the same 2 Mbps bottleneck link over a path
of 100 ms RTT. The average throughput for a TCPW con-
nection went up to 0.1078, and that of a Reno connection
went down to 0.0913. This shows that TCPW behavior de-
parts from “fair share” by 16% (TCPW gains 8% and TCP
Reno loses 8%). This unfairness is rather moderate and it can
be tolerated as coexistence with Reno is not compromised.

To probe the friendliness issue further, we also carried out
actual measurements using our TCPW Linux implementation
in our lab. Figure 6 shows the topology of our lab testbed.
The link emulator is used to vary the link propagation time
and error characteristics.

We measured the throughput for a total of 5 connections
with a variable Reno/TCPW mix. Then, to evaluate the friend-
liness of TCPW under stress, we introduce a relatively high
error rate on the bottleneck link, namely 1% packet loss (see
figure 7). This error rate is actually appropriate for wireless
links as we shall discuss later. Note that TCPW shines in
presence of line errors, so friendliness in the error situation is
even more difficult to establish than in error free operation.

Figure 7 shows the average throughput per connection for
TCPW and for Reno with a 100 ms RTT. The lower average

Figure 7. Average throughput versus number of Reno connections over good
and lossy link (5 connections total).

Figure 8. A simple simulation topology.

throughput line is that of Reno connections. The horizontal
axis represents the number of Reno connections in the mix.
For example, at the point marked 3 on the horizontal line, the
measurement experiment includes 3 Reno connections and
2 TCPW connections. The results in figure 7 illustrate two
important points. First, TCPW has a significant edge in a
high-error-rate environment: 5 TCPW get 10% more through-
put than 5 TCP Reno. We will press more on this later. Sec-
ondly, friendliness is preserved. Even though TCPW has an
advantage over Reno in error-prone environments, Reno con-
nections are not starved. Indeed, the introduction of TCPW
connections into the mix reduces the average throughput of a
Reno connection only by a minimal amount. Thus, for prac-
tical purposes, we can claim that TCPW is friendly.

5. TCPW performance in mixed (wired/wireless)
networks

TCPW is being proposed in this paper as an end-to-end so-
lution to error and congestion control in mixed wired and
wireless networks. In view of this claim, a number of dif-
ferent scenarios are studied below to show the benefits of us-
ing TCPW in such wired/wireless environments. Independent
and correlated loss models are used. Ground radio as well as
satellite scenarios are developed and studied.

5.1. Independent loss model in ground radio environment

Figure 8 shows a topology of a mixed network with a wired
portion including a 10 Mbps link between a source node and
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Figure 9. Throughput versus error rate of the wireless link.

Figure 10. Throughput versus one-way propagation delay.

a base station. The propagation time over the wired link is
initially assumed to be 45 ms. Later, the propagation time is
varied from 0 to 250 ms to represent a variety of wired net-
work environments ranging from campus to intercontinental
connections.

The wireless portion of the network is a very short 2 Mbps
wireless link with a propagation time of 0.01 ms. The wire-
less link is assumed to connect the base station to a destination
mobile terminal. Errors are assumed to occur in both direc-
tions of the wireless link.

We compare the throughput of TCPW to that of Reno and
SACK assuming independent (Bernoulli) errors ranging from
0 to 5% packet loss probability. The error model assumed
here is equivalent to the “exponential error” model in which
the time between back-to-back errors is exponentially distrib-
uted [3]. The range of error rates assumed here is also simi-
lar to the range used in [3]. The results in figure 9 show that
TCPW gains up to 394% over Reno or SACK. This gain oc-
curs at a realistic packet error probability of 1%.

To assess TCPW throughput gain and its relationship to
the end-to-end propagation time, we ran simulations with the
wired portion propagation time varying from 0 to 250 ms. The

Figure 11. Throughput versus link capacity.

Figure 12. TCP Westwood over lossy link – cwin and ssthresh.

results in figure 10 show a significant gain for TCPW of up
to 567%, at a propagation time of 100 ms. When the prop-
agation time is small (say, less than 5 ms), all protocols are
equally effective. This is because a small window is adequate
and window optimization is not an issue. TCPW reaches the
maximum improvement over Reno and SACK as the prop-
agation time increases to about 100 ms. After that, in this
experiment, the gain starts to decrease as the feedback infor-
mation used to estimate the available bandwidth arrives too
late to be of significant help to TCPW.

Simulation results in figure 11 show that TCPW gains
also increase significantly as the bottleneck link transmis-
sion speed increases (again, because what matters is the win-
dow size determined by the bandwidth–delay product). Thus,
TCPW is more effective than TCP Reno in utilizing the Gbps
bandwidth provided by new-generation, high-speed networks.
Figure 11 shows that the improvement obtained via TCPW in-
creases to approximately 550% when the wireless link speed
reaches 8 Mbps. The error model is still Bernoulli with para-
meter 0.5%, and the round trip time is 45 ms.

Window dynamics of TCPW and of TCP Reno are pre-
sented in figures 12 and 13. The graphs show the improved
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Figure 13. TCP Reno over lossy link – cwin and ssthresh.

window dynamics in TCPW. The cwin and ssthresh values
are consistently higher than the corresponding values in Reno,
thus yielding higher throughput.

Next, we compare TCPW to Snoop, the leading local strat-
egy shown to provide the biggest improvement over TCP
Reno [4]. Published results show that Snoop provides approx-
imately a 400% improvement over an E2E approach based on
TCP Reno when the error rate is 1 bit in 64 kBytes and the
round trip propagation time is 135 ms. Our simulations with
similar parameter values show that TCPW provides a 382%
improvement over Reno. This shows that TCPW and Snoop
gains are remarkably (and enticingly) close. We plan to probe
further the issue of effectiveness of local versus E2E error
recovery via simulation and measurements. From the quali-
tative and protocol implementation standpoint, however, we
note that TCPW is completely end-to-end, and does not re-
quire any support from network or link layers. It does not
have the scalability problems that Snoop may encounter as
the number of mobile terminals increases. Further, the effec-
tiveness of Snoop in wireless subnets including multiple base
stations and handoffs is not clear.

Comparisons were also run with Explicit Loss Notification
(ELN), which is an E2E scheme that was introduced and as-
sessed in [3]. Basically, the method provides explicit notifica-
tion from TCP receiver to TCP sender that a loss due to a link
error has occurred. The lost packet is also identified to the
Sender TCP entity. Using the same parameter values above
(1 bit in 64 Kbytes error rate, and 135 ms propagation time),
ELN is shown to provide a gain of approximately 200% over
Reno. In comparison, TCPW provides 382%, closer to Snoop
performance. Further, ELN assumes that the destinations can
detect errors on a link and identify the packet and its TCP
source. These assumptions are not likely to be uniformly sat-
isfied for various error causes and various link technologies,
hence the limited versatility of ELN in addition to its limited
gain over Reno.

We compared, via simulation, TCPW to BA-TCP [10], an
alternative strategy where the routers explicitly measure and
relay the bandwidth available for each connection back to the
TCP sender. At 40 ms round trip time, and 1 bit in 100 KB

Figure 14. 2-state Markov model for burst error characterization.

error rate, BA-TCP’s improvement over Reno is 202%. For
TCP Westwood, the throughput improvement at the same pa-
rameter values is 161%. This is quite remarkable considering
that BA-TCP measures the bandwidth actually available for a
connection at the bottleneck router, while TCPW works with
no support from routers to estimate the available bandwidth
at the bottleneck. Note that the router functionalities required
by BA-TCP are not available in today’s routers.

5.2. Burst error models in a ground radio environment

To study TCPW performance with correlated errors, we use
the 2-state Markov models following [1,5]. In such models,
burst errors occur at a high rate due to a variety of conditions
associated mostly with terminal mobility. Such conditions in-
clude variable fading, blackouts due to shadowing, and the
like. Figure 14 depicts the 2-state Markov model. The wire-
less link is assumed to be in one of two states: Good or Bad.
In the Good state, a bit (or packet) error Bernoulli model is
assumed. The time intervals between bit errors is thus expo-
nentially distributed (that is a memoryless model for channel
errors). In addition, a link is assumed to stay in the Good
state for a time interval that is exponentially distributed with
parameter λgb. The time spent in the Bad state is also expo-
nentially distributed but with parameter λbg. In the Bad state,
we assume that errors are still Bernoulli-distributed, but their
rates are much higher. For the simulation experiments below
we vary the error rate in the Bad state depending on the spe-
cific link conditions we want to study. To represent fading
conditions, the bit error rate is assumed to range from 0 to
30%. For blackouts, the error rate is 100%.

Simulation results using the 2-state Markov models show
that TCPW improves the throughput for links with fading and
blackouts as discussed below.

5.2.1. Fading
Let the Bad state represent fading conditions, and let the mean
duration of Good and Bad states be 8 and 4 s, respectively.
The error rate in the Good state is assumed to be 0.001%
packet loss, and the error rate in the Bad state is varied from
0 to 30% packet loss rate. The results in figure 15 show
the improvement obtained with TCPW over Reno or SACK.
TCPW increases the throughput by as much as 300%. This is
achieved when the error rate in the Bad state is 5%. When the
error rate is higher, all protocols perform poorly. When the
error rate is less than 5%, TCPW provides a 150% improve-
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Figure 15. Throughput versus error rate of the bad state.

Figure 16. Throughput versus link capacity in 2-state error model.

ment. The link speed was also varied to determine its impact
on protocol performance.

Figure 16 shows that TCPW improvement increases as the
speed of the wireless link (bottleneck link in this case) in-
creases (as expected, since a similar trend was observed also
in wired links). Again, the error rate in the Bad state was 5%.
It can be observed that, at 10 Mbps link speed, a remarkable
400% throughput improvement is achieved.

5.2.2. Blackouts
Let us now assume that the Bad state represents a blackout,
where a base station becomes temporarily not visible to a ter-
minal due to mobility. The mean duration for the Good state
is 4 s; the mean duration of the Bad state varies between 0
and 0.5 s. Figure 17 shows the throughput improvement ob-
tained by TCPW to be 167% over Reno and SACK when the
mean blackout duration is 0.1 s. For longer blackouts, TCP
timeouts occur and all protocols are equally affected.

5.3. LEO satellite model

Another environment where the improvement introduced by
TCPW is likely to be valuable is the LEO satellite system.

Figure 17. Throughput versus average duration of blackout.

Figure 18. Throughput versus link capacity of the satellite link.

LEO Satellites present an environment with varying link qual-
ity and relatively long propagation delay [11]. Also, in the fu-
ture, higher transmission speeds are expected. That is where
TCPW would be most beneficial.

We considered for this study a scenario where a single hop,
up to the satellite and down to an earth terminal, connects a
terminal to a gateway and from there to the terrestrial net-
work. The one-way (e.g., terminal to gateway) propagation
time is assumed to be 100 ms. The error rate is assumed 0.1%
in normal operating conditions. Occasionally, if the LEO sys-
tem supports satellite diversity, a handoff to a different LEO
satellite (different orbit) becomes necessary to overcome the
blocking due to buildings, thick foliage etc. During handoff,
we assume all packets are lost. In our model, the handoff
from one satellite to another needs 100 ms to complete, and
the period between handoffs is 4 s. Figure 18 shows the major
improvements of TCPW over Reno and SACK, especially at
high speeds.

6. Internet measurements

To test TCPW in an actual Internet environment, we have
carried out a set of Internet experiments using the configu-
ration depicted in figure 19. The sources are at UCLA, while



TCP WESTWOOD 477

Figure 19. Internet measurement scenario.

Table 1
Internet throughput measurements.

Destination Italy Taiwan Brazil
RTT 170 ms 250 ms 450 ms

Protocol TCPW Reno TCPW Reno TCPW Reno
Throughput (KB/s) 78.66 73.93 167.38 152 22.16 15.4

the destinations are chosen in three different continents (Eu-
rope, South America, and Asia). The destination hosts are,
of course, unaware whether the source host runs TCPW or
Reno.

Tests were scheduled during normal working hours at the
destination sites. Experiments included either single or mul-
tiple file transfers. Throughput results were obtained by aver-
aging repeated single file transfers. Multiple file transfer ex-
periments were used to assess TCPW fairness. A rather large
file size was used (10 Mbytes) to capture only steady state be-
havior. A standard FTP client (ncftp-3.0.2) was used as testing
software with additional code for obtaining detailed logging
at 1 s intervals. We measured application throughput in terms
of user data/s as reported by ncftp. The average throughput
achieved by Reno and TCPW on the various intercontinental
connections is shown in table 1. Tests were repeated about
200 times throughout the day. The results show that TCPW
performs marginally better that Reno on the Italy and Tai-
wan connections. It performs significantly better on the Brazil
connection.

This result motivated further examination of the paths in
question using the traceroute Linux tool. We found that Italy
and Taiwan are connected using standard wired technology.
In this case, link errors are expected to be minimal, thus,
TCPW does not introduce much improvement over Reno. On
the other hand, the Brazil path has a “lossy” satellite link pro-
vided by Teleglobe. The lossy link accounts for the TCPW
improved performance.

In a second set of experiments, we compared the fairness
of TCPW and Reno by injecting 20 connections simultane-
ously between UCLA and University of Bologna, Italy. The
experiments were repeated 50 times over a 24 h period. The

throughputs corresponding to the 20 flows are shown in fig-
ure 20. The results show excellent fairness across different
TCP Westwood flows. The results show excellent fairness in
Reno as well.

7. Conclusions and future research

In this paper we have proposed a new version of the TCP
protocol, TCP Westwood (TCPW for short), aimed at im-
proving performance under random or sporadic losses. TCPW
has been tested through simulation, showing considerable
throughput gains in almost all wireless scenarios.

In retrospect, the new scheme can be viewed as one more
step in the TCP evolution. TCP Tahoe resets cwin to one af-
ter a loss. TCP Reno halvescwin after three duplicate ACKs.
TCP Westwood introduces a “faster” recovery mechanism
to avoid over-shrinking cwin after three duplicate ACKs. It
does so by taking into account the end-to-end estimation of
the bandwidth available to TCP. The use of bandwidth esti-
mation to control the congestion window has an effect that
goes beyond faster recovery. Namely, TCP window conges-
tion control is based not solely on packet loss (which itself
is an ambiguous congestion indicator in presence of wireless
links), but also on the bandwidth estimate at the time of loss.
The benefits of using bandwidth estimation (in addition to
packet loss) have been amply demonstrated in a very broad
range of wireless scenarios.

The issue of fairness and friendliness has been addressed.
A proof of fair behavior (within TCPW flows) under equal
propagation delay conditions has been provided. Friendli-
ness to TCP Reno is more difficult to establish. “Unfriendly”
trends due to TCPW “aggressiveness” have been detected in
our experiments, but were shown to be contained and never
severe enough to lead to starvation.

The code modifications required to implement TCP West-
wood are comparable to the ones implemented in the transi-
tion from TCP Tahoe to TCP Reno. As in the Tahoe to Reno
transition, a major advantage of the TCP Westwood modifi-
cation is that it affects only the source TCP (as opposed to
other variants such as TCP SACK that also require destina-
tion modifications). This allows a TCP Westwood source to
“interwork” with arbitrary destinations in the Internet.

Work is in progress in many directions. The comparison
of TCPW with link level techniques such as Snoop deserves
further study. It is clear that link level recovery is in general
much more powerful than end to end recovery since it isolates
and corrects the loss “in loco”. For instance, suppose that the
bottleneck is in the wired network and one of the connections
sharing the bottleneck goes over a wireless, lossy link. With
end-to-end recovery (TCPW and TCP Reno alike) the wire-
less connection is heavily penalized with respect to the others.
With link layer recovery (e.g., Snoop) fair sharing is enforced.
Next, TCPW performs poorly when random packet loss rate
exceeds a few percent. Snoop, on the other hand, is quite
robust to high error rates. We are now investigating TCPW
enhancements that will in part correct these deficiencies. We
plan to further refine our bandwidth estimation and filtering
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Figure 20. TCPW and Reno connections throughput (Internet measurements).

method, in order to improve TCPW “friendliness”. Finally,
we intend to pursue the development of control theoretical
models that will enable us to study the stability of TCPW as
a function of the various systems parameters.
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