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Abstract. TCP NewReno is the standard transport protocol originally
designed to transport bulk data over the Internet. During the years it
has been very successful to provide Internet stability due to its conges-
tion control scheme. However TCP is not very suitable for multimedia
streaming applications, that are time sensitive, because of its retransmis-
sion and multiplicative decrease mechanisms. The alternative to TCP is
the User Datagram Protocol (UDP) which works as a simple packet mul-
tiplexer/demultiplexer and does not implement any congestion control
scheme or retransmission mechanism. However, it has been pointed out
that applications that don’t use congestion control schemes are danger-
ous for the stability of the Internet [1]. The TCP Friendly Rate Control
(TFRQ) is currently been discussed within the IETF as a possible leading
standard for streaming multimedia flows. This paper aims at investigat-
ing the performances of TCP and TFRC congestion control schemes in
wired public Internet and in mixed wired/wireless Internet using a com-
mercial UMTS card. The experiments carried out have shown that TFRC
exhibits smoother rate dynamics in all wired scenarios, whereas in the
case of UMTS scenario its burstiness is comparable to that of TCP.

1 Introduction

Nowadays Wireless Internet allows users to achieve ubiquitous access to the
Internet. Moreover the new standards for broad band wireless networks such as
IEEE 802.16, 802.16a, 802.11a/g and the new 3G UMTS networks enable users
to access rich audiovisual contents.

TCP NewReno is the standard transport protocol originally designed to
transport bulk data over the Internet, which has been very successful to provide
Internet stability due to its congestion control scheme. TCP is not very suitable
as a transport protocol for multimedia streaming applications because of its re-
transmission and multiplicative decrease features that are not useful with delay
sensitive flows. The alternative to TCP is the User Datagram Protocol (UDP)
which works as a simple packet multiplexer/demultiplexer and does not imple-
ment any congestion control scheme or retransmission mechanism. However it

* This work was supported by the MIUR-PRIN project no. 2005093971 "FAMOUS
Fluid Analytical Models Of aUtonomic Systems"



has been pointed out that applications that don’t use congestion control schemes
to adapt their rate in order to avoid congestion collapse, are dangerous for the
stability of the Internet [1]. Many efforts have been carried out to the purpose of
designing new end-to-end protocols able to efficiently stream multimedia flows
over wired/wireless scenarios and to assure network stability such as TFRC [2]
and RAP [7]. When a new protocol is proposed it has to satisfy the following
requirements: i) the rate of generated flows should be smooth, i.e. rates should
exhibit contained oscillations in order to keep the receiver buffer as small as pos-
sible; ii) it has to be TCP friendly i.e. competing TCP flows should gain similar
long term throughput; iii) it has to be fair i.e. flows using the same congestion
control should gain the same long term throughput; iv) it has to be responsive
i.e. flows should quickly react to network condition changes.

The TCP Friendly Rate Control (TFRC) is currently discussed within the
IETF as a possible leading standard for streaming multimedia flows [2].

This paper aims at investigating the performances of TCP and TFRC con-
gestion control schemes in wired public Internet and in mixed wireless/wired
Internet using a commercial UMTS card.

The paper is organized as follows. In section 2 we will briefly describe TCP
Reno congestion control and TFRC basics. Section 3 describes the tools we
developed and used to collect experimental analysis; moreover we describe the
testbed used in our experiments. In section 4 we report results obtained over
both wired Internet and using a commercial UMTS card provided by a telecom
operator. Section 5 reports burstiness indices measures for each scenario we
tested. In the final section we report conclusions and open issues.

2 TCP and TFRC congestion control basics

The version of the TCP (TCP NewReno) congestion control algorithm which
is currently implemented in TCP/IP stacks is largely based on [6] and on its
modifications. TCP congestion control is made of two main different phases: the
probing phase and the decreasing phase. In the probing phase the channel is
probed by exponentially increasing the congestion window (slow start phase)
until the slow start threshold ssthresh is hit. At this point the congestion
window cwnd is linearly increased (Additive Increase or congestion avoidance
phase).

The decreasing phase, also called Multiplicative Decrease, is instead triggered
when a congestion episode is experienced. TCP assumes that a congestion takes
place when three duplicate acknowledgment packets (3DUPAK) are received
by the sender or a timeout expires. When such an event occurs the congestion
window is halved in order to quickly react to the congestion episode.

The pseudo code of TCP according to [3] is the following:

1. On ACK reception:
— cwnd is increased according to the Reno algorithm
2. When 3 DUPACKs are received:



— ssthresh = max(FlightSize/2, 2);
— cwnd = ssthresh;

3. When coarse timeout expires:

— ssthresh = 1;
— cwnd = 1;

One of the main drawbacks of classic TCP congestion control is experienced
when accessing lossy links such as 802.11b/g and 2G/3G network. In fact TCP
triggers the Multiplicative Decrease even if the loss is due to interference on the
wireless channel and not to congestion.

The TCP Friendly Rate Control (TFRC) is a rate based congestion control
which aims at obtaining a smooth rate dynamics along with ensuring friendli-
ness towards Reno TCP [5]. To provide friendliness, a TFRC sender emulates
the long term behavior of a Reno connection using the equation model of the
Reno throughput developed in [4]. In this way, the TFRC sender computes the
transmission rate as a function of the average loss rate, which is sent by the
receiver to the sender as feedback report.

3 Experimental testbed and measurement tools

Figure 1 shows the wired and wireless scenarios we tested. In both the wired
and wireless scenarios TCP and TFRC senders were located at University of
Uppsala (Sweden), whereas the receivers were located in Bari (Italy) accessing
the wired Internet through a host located at Politecnico di Bari or the public
wireless Internet on UMTS from a commercial telecom operator. The reverse
traffic flows have been generated running TCP or TFRC senders at Politecnico
di Bari and TCP or TFRC receivers at Uppsala.

In order to generate TCP flows we used iperf which has been modified to
incorporate libnetmeas (see below) and to automatically produce log files. As
for the TFRC flows we used experimental code at sender and receiver side [12].
We have no control of other competing flows on the network as we evaluated
protocols over the public Internet so we can’t isolate them from other flows. In
each scenario we have measured goodputs, fairness indices and burstiness indices
we report in the following sections.

When conducting and collecting live Internet experiments one of the most
difficult task is to log TCP variables such as congestion window, slow start thresh-
old, round trip time and so on. Since TCP is implemented in the kernel of the
operating system those variables are kept hidden to user space application mak-
ing their logging from the user space an impossible task. In order to work around
this issue researchers have proposed several solutions: instrumenting the kernel
code, developing TCP user space implementation [9] and using packet sniffers
along with tcptrace application. Each of these solutions are not well suited be-
cause it is difficult to validate instrumented implementations and it is even more
difficult to verify a user space TCP implementation. Using a packet sniffer is not
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Fig. 1. Experimental testbed for wired (a) and wired/wireless (b) scenarios

suitable as well because sniffed packets don’t contain any information about the
TCP internal state.

In [8] authors describe a new and less intrusive solution which consists of a
kernel patch and a library (1ibweb100) which exposes to the user space variables
of each TCP flow. The interface between the kernel-space and the user-space is
the virtual proc filesystem where statistics about flows are kept. Each flow is
associated to a file in /proc/web100/CID where CID is a number incremented
on the establishment of a new TCP flow. In order to log a TCP flow, it is
necessary to know the CID and then it is possible to use one of the web100 tools
(i.e. readvars) in a loop. This is a really difficult task because the CID is not
known and the user has to manually find the CID matching the right connection.

In order to log TCP flows we developed a library which is able to overcome
the aforementioned issues [11]. The library depends on 1ibweb100, it is written
in C language using glib and it is shipped with a very simple API (Applica-
tion Program Interface) in order to be easily integrated in existing applications.
The library is initialized using a function of the API which starts an internal
thread that will automatically log flows matching a string creating or using a
specified socket in a file called tep  <CID> _ <timestamp>.txt where CID is the
connection ID and timestamp is the UNIX timestamp of the first data logged.
Moreover the API offers a way to select the congestion control algorithm to
use. The integration of the library in an existing application is really trivial: the
application must call the initialization function on the ports (or on the socket)
it wants to listen on and must link the library to the application (see library
documentation for further details).



4 Experimental results

4.1 Experiments over wired Internet

In this section we report results obtained testing TCP and TFRC in the fol-
lowing scenarios (see Figure 1 (a)): i) single TCP vs single TFRC flow without
reverse traffic; ii) Single TCP vs single TFRC flow with reverse traffic; iii) Single
TCP vs single TFRC flow with parallel UDP connection; iv) 3 TCP flows vs 3
TFRC flows without reverse traffic.

In all tests the receiver is located at Politecnico di Bari, Italy and the sender
is located at University of Uppsala, Sweden. In each of the considered scenario
we will report goodputs, and instantaneous throughput of the most interest-
ing experiments. In each test we run consecutively TCP and TFRC flows for
two minutes in order not to have inconsistent results due to different network
conditions.

Single TCP vs Single TFRC flow without reverse traffic. Figure 2 (a)
shows goodput achieved by TCP and TFRC flows that were run at different
times and in different days. It is worth noticing that in 10 out of the 12 tests
TCP achieves higher throughput with respect to TFRC. In some experiments
(number 5 and number 10) the gap between TCP and TFRC is noticeable.

n [E—) [ —
e

Goodput (kbyters)
Goodput (kbytels)

Fig. 2. Goodputs of single TCP vs single TFRC flow (a) without reverse traffic (b) in
the presence of reverse traffic

Figures 3 (a) and (b) show instantaneous throughput of a TCP and a TFRC
connection. By comparing the two figures we can conclude that TFRC flows are
smoother than TCP flows in this scenario but TFRC achieves a lower goodput
than TCP.

Single TCP vs single TFRC flow with reverse traffic. In this scenario
we evaluate TCP and TFRC performances in the presence of a TCP flow in the
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Fig. 3. Instantaneous throughputs of (a) TCP; (b) TFRC

backward path. Figure 2 (b) shows the TCP and TFRC achieved throughputs.
By comparing Figure 2 (a) and (b) we can see that the TCP goodput is sensitive
to the congestion on the backward path whereas TFRC is not due to the fact
that feedback reports are much less frequent than ACK packets (one packet
every RTT). In the considered scenario TCP flows achieve a higher throughput
with respect to TFRC in 6 tests over 12.
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Fig. 4. Instantaneous throughputs of: (a) TCP; (b) TFRC (b)

Figures 4 (a) and (b) show instantaneous throughputs for a TCP and a TFRC
connection. Also in this scenario TFRC exhibit a smoother throughput dynamics
respect to TCP.

Single TCP vs single TFRC flow with parallel UDP connection. In
this scenario we report results obtained testing TCP and TFRC with one con-
current UDP flow generated by the Uppsala Host in order to force a 20 Kbyte/s



bandwidth limitation at the receiver. Figure 5 shows goodputs for the TCP and
TFRC flows: the TCP provides better link utilization.

Fig. 5. Single TCP vs Single TFRC flow with parallel UDP connection

Figures 6 (a) and (b) depict the dynamics of TCP and TFRC instantaneous
throughputs respectively in the considered scenario. Again, TFRC exhibit a
smoother dynamics with respect to TCP.
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Fig. 6. Instantaneous TCP (a) and TFRC (b) goodput

Three TCP flows vs three TFRC flows without reverse traffic. In this
scenario we test intraprotocol friendliness using the Jain Fairness index [13] when
three TCP flows or three TFRC flows share the same link. Figures 7 (a) and (b)
report the TCP and TFRC goodputs respectively.
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Fig. 7. Goodput for: (a) 3 TCP flows; (b) 3 TFRC flows without reverse traffic
Figures 8 (a) and (b) depict the behaviour of TCP and TFRC instanta-

neous throughput of all flows in the considered scenario. Again, TFRC exhibit
a smoother dynamics with respect to TCP.
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Fig. 8. Instantaneous TCP (a) and TFRC (b) goodput

The Jain Fairness index has been evaluated. Each protocol achieves a JF
index near to 1, which is the maximum possible value for the index.

4.2 Experiments over the UMTS link

Single connection without reverse traffic. In this section we describe results
obtained when a single TCP or TFRC connection uses an UMTS downlink.
Figure 9 (a) depicts throughput as measured at the receiver. It is worth noticing
that, nor TCP neither TFRC, reach the nominal downlink capacity of 384 Kbps.

Figure 10 depicts the TCP and TFRC received throughput during two consec-
utive tests. Both protocols show remarkable oscillations in throughput. Moreover



it is worth noticing that the TFRC transient is long (approximately 20s) if com-
pared to the TCP transient time. It seems that using TFRC for video streaming
in UMTS scenarios would require a longer buffering phase if compared to TCP
behaviour. Moreover, by comparing Figure 3 (a) and Figure 10 (a) we can ob-
serve different behaviour of TCP in the wired and wireless scenario respectively.
In fact in the UMTS scenario the TCP burstiness is clearly mitigated and it is
comparable to that of TFRC. We have obtained similar results by repeating the
experiments many times over different days.
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Fig. 9. TCP vs TFRC goodputs (a) without reverse traffic (b) with reverse traffic

70000 70000

60000 60000

is)

& 50000)

is)

50000

ughput oyt

3 40000

voughout oy
&

= 30000 £ 30000

nrol

20000 20000

10000 10000)

Fig. 10. Instantaneous throughput of (a) TCP and (b) TFRC without reverse traffic

Single connection with reverse traffic. In this scenario the TCP and TFRC
have been tested in presence of homogeneous reverse traffic in order to evaluate
if the protocols are sensitive to congestion on the backward path. For what



concerns TCP, we run iperf in bidirectional mode on both the UMTS clients in
Bari and the wired host at Uppsala, whereas to test TFRC in this scenario we
run both the sender and receiver on UMTS client in Bari and on Uppsala client.

By comparing Figure 9 (b), which shows goodputs in the present scenario,
and Figure 9 (a), we can notice that goodputs suffer a dramatic drop when using
TCP or TFRC in presence of reverse traffic. This results are quite disappointing if
an UMTS connection has to be used in a peer to peer system when a bidirectional
communication is set up. Figure 11 reports instantaneous rates of a TCP and
a TFRC flow. Both TFRC and TCP provide a very low link utilization in the
presence of reverse traffic (around 25 Kbps on average).
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Fig. 11. Instantaneous throughput of (a) TCP and (b) TFRC in the presence of reverse
traffic
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Fig.12. TCP and TFRC accessing the same link; (a) goodputs, (b) Jain Fairness
index.
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Fig.13. TCP (a) and TFRC (b) instantaneous throughput when simultaneously ac-
cessing the link

One TFRC flow and one TCP flow sharing the downlink. Here we
collect results obtained when one TCP and one TFRC flow share the UMTS
downlink. Examining Figure 12 (a) we can notice that the throughput of each
connection is not affected from the other flow and the downlink capacity is
not underutilized. In order to produce a quantitative measurement of the inter-
protocol fairness we evaluated the Jain Fairness Index. Figure 12 (b) shows
fairness indices which are near to the maximum value of 1 in most of the tests.
Figure 13 shows instantaneous throughputs of a TCP flow and a TFRC flow
which simultaneously access the UMTS link. It is worth noticing that even if the
channel utilization is quite good each flow exhibits pronounced oscillations.

5 Burstiness of received data

In order to evaluate the smoothness of the data transfer rate we have evaluated
the burstiness index of each transfer. The burstiness index is defined as b = %([:%
where o(r) represents the standard deviation of the received rate r and E[r] is
the average value [14].

Figure 14 shows that TFRC halves the burstiness index with respect to TCP
in all wired scenarios. However in the UMTS scenario TCP and TFRC provide
similar burstiness indices, except in the case with reverse traffic where TCP is
less bursty than TFRC.

6 Conclusions

We conducted several experiments testing TCP and TFRC behaviour both in
wired and UMTS networks measuring goodputs and fairness indices. TFRC ex-
hibits smoother rate dynamics in all wired scenarios, whereas in the case of
UMTS scenario its burstiness is comparable to that of TCP. Moreover exper-
imental results have shown that when TFRC and TCP flows are accessing an
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Fig. 14. Burstiness Indices

UMTS link they both are not able to provide full link utilization in the presence
of reverse traffic, which could be a severe limitation in peer-to-peer applications.
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