
Making Google Congestion Control robust over Wi-Fi
networks using packet grouping

Gaetano Carlucci
Politecnico di Bari, Italy

gaetano.carlucci@poliba.it

Luca De Cicco
Politecnico di Bari, Italy

luca.decicco@poliba.it
Stefan Holmer
Google, Sweden

holmer@google.com

Saverio Mascolo
Politecnico di Bari, Italy

saverio.mascolo@poliba.it

ABSTRACT
Google congestion control (GCC) has been proposed for
the case of delay sensitive traffic (i.e. video-conference)
in the WebRTC framework. In this paper we analyze
the effect of wireless channel outages on the GCC. We
have observed that, when a channel outage ends, there
are packets that arrive at the receiver as a burst. This
behavior impairs the delay-based controller employed by
GCC, resulting in throughput degradation. We propose
a solution to make GCC robust with respect to channel
outages. In particular, by grouping packets that arrive in
a burst, the delay-based controller avoids to misinterpret
a burst as network congestion. In order to prove the
effectiveness of the proposed solution we have carried out
a trace-driven experimental evaluation in a loaded Wi-Fi
scenario.

CCS Concepts
•Networks→Network protocol design; •Information
systems → Web conferencing;

Keywords
WebRTC, congestion control, Wi-Fi

1. INTRODUCTION
Wireless networks have become an increasingly popular

mode of Internet access today due to the diffusion of
mobile devices. At the same time, mobile devices
have enough processing resources to support high quality
real-time video communication. As a consequence, seamless
media communication has become commonplace today
and popular applications, such as Facebook Messenger
and Whatsapp, are implementing such services on their
platforms. Two IETF working groups, the RTCWeb
and the RMCAT, are standardizing a set of protocols

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANRW ’16, July 16 2016, Berlin, Germany
c© 2016 ACM. ISBN 978-1-4503-4443-2/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2959424.2959431

to allow real-time communication among users through
Web browsers. In particular, the aim of the RMCAT
working group is to standardize a congestion control
algorithm designed to deliver real-time audio/video flows.
Such algorithms are designed with the goal of minimizing
queuing delays and maximizing the throughput in order to
respectively enhance interactivity and provide high media
quality.

In this context, several congestion control algorithms
aiming at improving performance over mobile and Wi-Fi
networks have been recently proposed [10, 11, 3, 8]. The
effects of wireless link-level mechanisms on end-to-end
transport protocols have been well studied in the
literature [5] and they can be summarized in terms of
rapid variation of the link capacity and variable channel
outage periods [10]. In this paper we focus on the issue
of the channel outages which remarkably affect the time
required to deliver packets. The investigation of the causes
of wireless channel outages (i.e. time slotting, lower layer
retransmissions) are out of the scope of the paper. The
goal here is to analyze the effect of channel outages on
the delay-based controller of the Google Congestion Control
(GCC) [1] algorithm proposed in the WebRTC framework
which runs at the application layer.

The Google Congestion Control (GCC) employs a hybrid
loss-based/delay-based and it is particularly interesting
since it is already deployed on Google Chrome which
is at the time of writing the most popular browser
implementing the WebRTC stack1. Based on experimental
results conducted in a loaded Wi-Fi environment we have
measured that channel outages were misinterpreted by the
Google Congestion Control as congestion events resulting in
sending rate reduction and overall throughput degradation.
Moreover, we have observed that when a channel outage
ends, all the packets queued in the buffer arrive at the
receiver in a burst. To cope with this issue we propose
an approach to filter out the detrimental effect of channel
outages. By filtering out channel outages events, we have
obtained an improvement in terms of throughput without
increasing the end-to-end latency.

The reminder of the paper is organized as follows:
Section 2 reviews the literature related to recent congestion
control for low-delay communication specifically optimized
for wireless networks; Section 3 briefly describes the GCC
algorithm; Section 4 explains how the channel outages

1http://www.w3schools.com/browsers/browsers stats.asp

http://dx.doi.org/10.1145/2959424.2959431
http://www.w3schools.com/browsers/browsers_stats.asp

impair GCC performance showing the results of trace-driven
experiments collected in a loaded Wi-Fi environment;
Section 5 presents the proposed solution which is tested
and evaluated with the same Wi-Fi traces and Section 6
concludes the paper.

2. RELATED WORK
It is well know that TCP performance are remarkably

affected in scenarios characterized by lossy links or high
bandwidth-delay product. A comprehensive survey of
TCP limitations is provided by [3] which also proposes
a utility-based algorithm to overcome such limitations.
However, the choice of the utility function is still considered
an open issue in [3]. TCP congestion control is not
able to efficiently handle rapid variation of link capacity
or channel outages [3] which are typical of wirelesses
links. Additionally, TCP is also prone to the bufferbloat
phenomenon [6] due to its probing mechanism originating
periodic cycles during which network queues are first filled
and then drained. These queue oscillations provoke a
time-varying stochastic delay component that adds to the
propagation time and make time-sensitive communications
problematic. Consequently, delay sensitive applications
typically do not employ TCP, but favor the implementation
of congestion control on top of UDP as in the case of
WebRTC [1].

Sprout [10] has reawakened the interest of scientific
community towards the design of congestion control
algorithms for interactive applications over wireless network
in order to address the aforementioned TCP limitations.
Sprout employs a stochastic-based algorithm which
explicitly computes the sending rate to contain delays while
maximizing the throughput; it has been experimentally
evaluated in a wireless emulated environment showing that
it provides improvements compared to Skype, Facetime,
and Hangout in a single flow scenario. However, intra and
inter-protol fairness of Sprout has not been investigated.
Moreover since it relies on a model to compute the sending
rate, uncertainty in the model may degrade performance [8].

Verus [11] shares the same goal with Sprout. The
algorithm employs delay gradient measurements to detect
congestion and computes the sending window. Authors have
performed a performance comparison with Sprout over 3G
and 4G networks, showing that Versus generally performs
similarly to Sprout in terms of induced delay with slightly
higher throughput.

CQIC [8] proposes a cross-layer congestion control which
exploits physical layer information exchanged between nodes
of wireless network to predict the capacity of the underlying
layer. The algorithm has been implemented in the Google
QUIC framework [2] showing that, when the bottleneck is
the wireless link, CQIC outperforms TCP CUBIC in terms
of throughput and latency.

The closest manuscript to ours is Rebera [7] which
is a congestion control algorithm designed for sending
real-time video content with the aim of maximizing the video
transmission rate while keeping the queuing delays as low
as possible. Authors deal with burst arrivals by discarding
these measurements if packets inter-arrival time is lower
than 10ms.

In this work we propose an approach to deal with
channel outages and video-frame burst arrivals. We
have implemented such solution in GCC, a congestion

Figure 1: Google congestion control architecture

control algorithm today employed in the Google Chrome
WebRTC framework and Google Hangouts to transport
video conferencing traffic on top of RTP/UDP protocols. It
has already been shown that GCC is able to contain queuing
delays and at the same adapts its sending rate to match the
link capacity providing intra and inter-protocol fairness [1].
At the best of our knowledge this is the first work that
analyzes the behavior of GCC over wireless links.

3. GOOGLE CONGESTION CONTROL
This Section briefly describes the Google Congestion

Control (GCC) which is used in Google Chrome browsers to
implement congestion control functionalities in the WebRTC
stack and in Google Hangouts.

Figure 1 shows the architecture of the end-to-end GCC
algorithm [1]. The sender employs a UDP socket to send
RTP packets and receive RTCP feedback reports from
the receiver. The algorithm has two components: (i) a
delay-based controller, placed at the receiver, that computes
a rate Ar that is fed back to the sender with the aim of
keeping the queuing delay small; (ii) a loss-based controller,
placed at the sender, that computes a rate As and it sets
the target sending bitrate A equal to min(Ar,As).

Sending rate actuation. Before starting to provide
details on the two controllers we briefly describe how the
target bitrate is actuated by the sending engine. Figure 1
shows that the sender sets the target sending bitrate A equal
to the minimum between Ar and As. The target bitrate A
is fed both to the Pacer and to the Encoder. The Encoder
strives to produce a bitrate as close to this target as possible.
When a video frame is produced it is fed into a Pacer queue.
The Pacer divides the video frame into groups of packets and
sends them to the network every ∆T which in our case is
set equal to 5ms. The delay-based controller at the receiver
operates every time a group of packets arrives. Pacing is
used by rate-based algorithms to actuate the sending rate
computed by the congestion control. Moreover, pacing helps
the network to better absorb packets as opposed to the
case of using a window-based sender which would send data
bursts.

The sender-side congestion control. It is a loss-based

congestion control algorithm that acts every time t
(k)
r the

k-th RTCP report message arrives at the sender or every

time t
(k)
r the k-th REMB2 message, which carries Ar,

arrives at the sender. The RTCP reports include, among
other feedback information, the fraction of lost packets

2http://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03

http://tools.ietf.org/html/draft-alvestrand-rmcat-remb-03

Figure 2: One way delay variation measurement

fl(t
(k)
r) computed as described in [9]. Based on fl(t

(k)
r),

the controller computes the rate As(t
(k)
r), measured in kbps,

according to the following equation:

As(t(k)r) =

As(t

(k−1)
r)(1− 0.5fl(t

(k)
r)) fl(t

(k)
r) > 0.1

1.05(As(t
(k−1)
r)) fl(t

(k)
r) < 0.02

As(t
(k−1)
r) otherwise

(1)
The rationale of (1) is simple: (i) when the fraction of lost

packets is considered small (0.02 ≤ fl(t(k)r) ≤ 0.1), As is kept

constant, (ii) if a high fraction lost is estimated (fl(t
(k)
r) >

0.1) the rate is multiplicatively decreased (3) when the

fraction lost is considered negligible (fl(t
(k)
r) < 0.02), the

rate is multiplicatively increased. After As is computed
through (1), the target bitrate is set as A ← min(As, Ar)
to avoid that As exceeds the last received value of Ar.

The receiver-side controller. This controller is made
of the three components shown in Figure 1. Each time t

(i)
r

the i-th group of packets is received, the one way queuing

delay variation m(t
(i)
r) is estimated by the arrival-time filter

(ATF). The goal of this block is to produce an estimate

m(t
(i)
r) of the one way delay variation. For this purpose,

we employ a Kalman filter [1] that estimates m(t
(i)
r) based

on the measured one way delay variation dm(t
(i)
r) which is

computed as follows (see Figure 2):

dm(t(i)r) = (t(i)s − t(i−1)
s)− (t(i)r − t(i−1)

r) (2)

where t
(i)
s is the time at which the first packet of the i-th

group has been sent and t
(i)
r is the time at which the last

packet of the group has been received.
The one way delay variation is considered as the sum

of two components [1]: (i) the one way queuing time

variation m(t
(i)
r), and (ii) the network jitter n(t

(i)
r) modeled

as Gaussian noise. The following mathematical model of the
one way delay variation is assumed [1]:

d(t(i)r) = m(t(i)r) + n(t(i)r) (3)

the one way queuing time variation m(t
(i)
r) accounts also

for the contribution of the transmission time variation due
to the different size of consecutive groups of packtes, since
it can be considered negligible with respect to the queuing
delay variation.

Then, the over-use detector compares the estimated

one way queuing delay variation m(t
(i)
r) with an adaptive

Figure 3: Remote rate controller

threshold γ(t
(i)
r) proposed in [1]: when m(t

(i)
r) gets above

γ(t
(i)
r), the network is considered congested and the overuse

signal is generated; on the other hand, if m(t
(i)
r) decreases

below −γ(t
(i)
r) , the network is considered underused and

the underuse signal is generated; when m(t
(i)
r) falls back in

[−γ(t
(i)
r), γ(t

(i)
r)] a normal signal is produced.

Finally, the signal s is fed to the remote rate controller
which drives the finite state machine (FSM) shown in
Figure 3 whose goal is to empty the queues along the
end-to-end path. The rationale is the following: when
the bottleneck buffers start to build-up, the estimated one

way delay variation m(t
(i)
r) becomes positive. The overuse

detector detects this variation and triggers an overuse signal,
which drives the machine into the “decrease” state. As a
result, the sending rate is reduced and the bottleneck buffer
starts to be drained, up to the point that the estimated one

way delay variation m(t
(i)
r) becomes negative. An underuse

signal is then triggered, which drives the machine into the
“hold” state. The machine remains in the “hold” state until
the bottleneck buffer is emptied. When this occurs, m(t

(i)
r)

approaches 0 and the overuse detector generates a normal
signal, which drives the machine into the “increase” state.
Ar is increased, decreased or kept constant depending on its
state. In particular Ar is set according to the equations
shown in the states of Figure 3, where η ∈ [1.005, 1.3],

α ∈ [0.8, 0.95], and R(t
(i)
r) is the receiving rate measured in

the last 500ms. It is worth noticing that Ar cannot exceed

1.5R(t
(i)
r). The computed rate Ar is sent to the sender

through REMB messages.

4. PERFORMANCE ISSUES OVER WI-FI
NETWORKS

In this Section we illustrate the performance issues of the
algorithm described in Section 3. We focus on the impact of
Wi-Fi channel outages on the delay-based controller. The
delay-based algorithm dominates the control action since it
strives to react before a loss is induced.

4.1 Problem statement
Figure 4 shows the effect of channel outages on the arrival

time t
(i)
r of groups of packets. The goal is to analyze the

effect of such an issue on the delay-based controller. For
the sake of simplicity Figure 4 shows that a video frame fits
exactly in one group of packets. During channel outages
packets are queued up in the network buffers and when the
outage ends they arrive at the received in a burst. The
delay-based controller at the receiver measures the one way

delay variation dm(t
(i)
r) according to (2). From Figure 4

we can distinguish three different patterns of dm: (i) in the

absence of channel outages dm(t
(2)
r) = t

(2)
r −t(1)r −(t

(2)
s −t(1)s)

Figure 4: Effect of a wireless channel outage on the
arrival time of groups of packets (in this example a
video frames fits in one group of packets)

Figure 5: Groups of packets inter-arrival time and
temporal zoom in the time interval [33, 34]s. Channel
outages are highlighted in grey

is roughly equal to 0; (ii) right after the channel outage

dm(t
(3)
r) = t

(3)
r − t(2)r − (t

(3)
s − t(2)s) is large and positive and

(iii) when the outage ends dm(t
(4)
r) = t

(4)
r − t(3)r − (t

(4)
s −

t
(3)
s) is negative and roughly equal to the opposite of the

inter-departure time (t
(i)
s − t

(i−1)
s), since we can consider

(t
(i)
r − t(i−1)

r) ' 0, i.e. the inter-arrival time during the burst
arrivals is negligible. These patterns might be interpreted as
congestion events by the delay-based controller resulting in
throughput degradation. In Section 5 we propose a solution
to this issue.

4.2 Experimental Validation
To reproduce the issue presented in Section 4.1, we have

collected traces over a high loaded 802.11n Wi-Fi network
which was shared among several users. Traces have been
collected sending 1200byte large packets at a constant
bitrate equal to 3Mbps. The traces contain the time at which
the Wi-Fi network has forwarded the packet to the receiver

Figure 6: Density function of the measured one way
delay variation among group of packets on a loaded
Wi-Fi network

and are available on-line3 in the open-source Chromium
Simulation Framework. We reproduce a video conference
session delivering the RTP packets at the time reported
in the trace. We have employed a video encoder which
generates 30 video frames per second which can produce
a bitrate in the range [50, 2500]kbps based on the value
requested by the congestion control algorithm.

Figure 5 shows the inter-arrival time of the groups
of packets, that have been sent through Wi-Fi network,
measured at the receiver. Figure 5 (a) shows the
measurements in the first 100 seconds of a video call,
whereas Figure 5 (b) shows a temporal zoom in the interval
[33, 34]s. The inter-arrival time of groups of packets
experiences a high variance due to the effect of outages.
Figure 5 (b) shows in grey the channel outages which are
time-varying and are followed by burst of arrivals. This
pattern repeats throughout all the video call.

To better understand the effect of channel outages on the
one way delay variation dm, Figure 6 shows the probability
density function of dm for the experiment of Figure 5. The
density function can be approximated as the superposition of
three Gaussian-like distributions centered around to−20 ms,
0 ms, and 100 ms. This confirms the expected patterns of dm
described in Section 4.1. The distribution with mean equal
to 0 accounts for pattern case (i) in which groups of packets
are delivered without delay variations. The distribution
centered at 100ms accounts for pattern case (ii). Finally,
the distribution centered at −20ms account for pattern case
(iii) due to the burst; as we stated in Section 4.1, when
burst of arrivals occur, dm is negative and roughly equal

to the opposite of the inter-departure time (t
(i)
s − t

(i−1)
s).

In our case the inter-departure time is determined by two
factors: (i) the time interval of the Pacer ∆T = 5 ms and
(ii) the time interval at which video frame are generated
which is 33ms (30fps). These two factors originates to two
density functions: (i) one with mean around 5ms which is
not distinguishable from the one with mean equal to 0ms
and (ii) one with mean roughly equal to −20ms which is
determined by the difference between the departure time

3https://chromium.googlesource.com/external/webrtc/+/
master/webrtc/modules/remote bitrate estimator

https://chromium.googlesource.com/external/webrtc/+/master/webrtc/modules/remote_bitrate_estimator
https://chromium.googlesource.com/external/webrtc/+/master/webrtc/modules/remote_bitrate_estimator

Figure 7: Application of Algorithm 1 in the case
depicted in Figure 4

of the last group of packets of a video frame and the first
group of packets of the next video frame. All of these density

functions are affected by jitter noise modeled as n(t
(i)
r) in (3)

which accounts for their variance.
Based on this analysis we conclude that the density

function of dm needs to be pre-filtered before feeding the
arrival time filter.

5. PROPOSED SOLUTION
In this Section we propose a pre-filtering mechanism to be

placed before the ATF block of Figure 1.

5.1 Pre-filtering
In order to filter out the effect of the channel outages

on the density function of dm, the pre-filtering mechanism
merges groups of packets that arrive in a burst. Algorithm 1
shows the pseudo-code of the pre-filtering.

Algorithm 1 operates at the receiver every time an RTP
packet arrives. It decides if the arriving packets should
be merged in one group of not. First it verifies if packets
belong to a burst arrival. To this purpose it checks if the

inter-arrival time (t
(i)
r −t(i−1)

r) is smaller than ∆T and if the

measured one way delay variation dm(t
(i)
r) = (t

(i)
s − t(i−1)

s)−
(t

(i)
r −t(i−1)

r) is negative. In this case it assumes that packets
belong to a burst arrival. If it is not the case Algorithm 1
verifies if a new group is arriving by checking their departure

time. If inter-departure time (t
(i)
s − t(i−1)

s) is greater than
or equal to ∆T (the minimum inter-departure time among
groups), a new group is arriving; at this point the ATF can
be updated, using the arrival and the departure time of the
previous group.

In order to clarify how Algorithm 1 works, Figure 7 shows
the same example of Figure 4 when Algorithm 1 is used; in
this case we measure only 2 samples for dm instead of 4. In

particular we measure: (i) dm(t
(2)
r) = t

(2)
r −t(1)r −(t

(2)
s −t(1)s)

and (ii) dm(t
(5)
r) = t

(5)
r −t(2)r −(t

(5)
s −t(2)s) which accounts the

arrival and departure time of the merged group (t
(5)
r , t

(5)
s)

and the arrival and departure time of the last received the

group (t
(2)
r , t

(2)
s). As a consequence the filter ATF will be

fed with only 2 samples.

(tr, ts)← on RTP packet arrival;
if ((tr − tr old) < ∆T) and (dm(tr) < 0) then

Merge packet in the current Group;
else

if (ts − ts old) ≥ ∆T then
New Group is arriving;
Update ATF with (tr old, ts old);

else
Merge packet in the current Group;

tr old ← tr;
ts old ← ts;

Algorithm 1: Pre-filtering approach

5.2 Validation and comparison
To validate the solution and prove its effectiveness, in this

Section we have carry out a trace-driven comparison using
the Wi-Fi traces described in Section 4.1.

First of all Figure 8 shows the PDF of the one way
delay variation dm when pre-filtering is used. We observe
that, when Algorithm 1 is used, the two distributions
respectively centered at −20ms and 100ms have been filtered
out, obtaining only one distribution centered at 0ms. This
signal will be fed to arrival time filter ATF shown in Figure 1.

In order to quantitatively assess the effectiveness of this
solution we carry out a comparison considering QoS metrics
such as average sending bitrate and one way delay, which
are known to be well correlated with video QoE metrics [4].
In particular, we consider: (i) Throughput, computed as
the sending rate of the video flow and (ii) One Way Delay,
measured as the difference between the departure time of a
group of packets and its arrival time. Then we compare the
results with respect to the case in which pre-filtering is not
used.

Figure 9 shows a comparison between the dynamics of
the throughput and the one way delay of a GCC flow over
wireless link when pre-filtering is used (b) and when is not
used (a). Figure 9 clearly shows that, with pre-filtering, the
average sending rate is higher without remarkably worsen
the one way delay dynamics. In order to get a better insight
from this comparison, Figure 10 shows the average sending

Figure 8: Density function of the measured one way
delay variation among group of packets on a loaded
Wi-Fi network when pre-filtering is applied

(a) w/o pre-filtering (b) w/ pre-filtering

Figure 9: Throughput and one way delay dynamics of a GCC flow over wireless link with (a) and without
(b) pre-filtering

Figure 10: Average throughput with standard
deviation and one way delay percentiles with (a) and
without (b) pre-filtering

rate with the standard deviation and the one way delay using
a box and whisker plot: the bottom and top of the box
are respectively the 25-th and 75-th percentile, whereas the
red band in the box is the median; the end of the whiskers
represent the 5-th and 95-th percentile. Overall we observe
more than 20% improvement of the average value of the
sending bitrate; the standard deviation is roughly equal in
both cases. In terms of delay we observe that only the 95th
percentile is higher in the case pre-filtering is used.

6. CONCLUSIONS
In this paper we have investigated the effect of wireless

channel outages on the Google Congestion Control used in
the WebRTC framework. In particular we have carried
out a trace-driven evaluation employing traces collected
in a loaded Wi-Fi network. We have observed that the
channel outages might lead to throughput degradation due
to the fact that delay-based controller interprets these events
as congestion signal. To this purpose we have designed
a pre-filtering mechanism which, by merging packets that
arrive as a burst, provides roughly 20% improvement of
the average throughput without remarkably increasing the
queuing delay.

7. ACKNOWLEDGMENTS
This work has been partially supported by the Google

Faculty Award entitled “Congestion Control for WebRTC”
and the Future in Research project no. ACYBEH5 funded
by the Apulia Region, Italy.

8. REFERENCES
[1] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo.

Analysis and Design of the Google Congestion Control
for Web Real-time Communication (WebRTC). In
Proc. of the ACM Multimedia Systems Conference,
Klagenfurt, Austria, May 2016.

[2] G. Carlucci, L. De Cicco, and S. Mascolo. Http over
udp: an experimental investigation of quic. In Proc. of
30th ACM/SIGAPP Symposium On Applied
Computing (SAC 2015), Salamanca, Spain, April 2015.

[3] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and
M. Schapira. PCC: Re-architecting Congestion Control
for Consistent High Performance. In Proc. of USENIX
NSDI, pages 395–408, Oakland, CA, May 2015.

[4] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A generic
quantitative relationship between quality of experience
and quality of service. IEEE Network, 24(2):36–41,
2010.

[5] A. Gurtov and S. Floyd. Modeling wireless links for
transport protocols. ACM SIGCOMM CCR,
34(2):85–96, Apr. 2004.

[6] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling
bufferbloat in 3G/4G networks. In Proc. of ACM IMC,
pages 329–342, 2012.

[7] E. Kurdoglu, Y. Liu, Y. Wang, Y. Shi, C. Gu, and
J. Lyu. Real-time Bandwidth Prediction and Rate
Adaptation for Video Calls over Cellular Networks. In
Proc. of the ACM Multimedia Systems Conference,
Klagenfurt, Austria, May 2016.

[8] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren,
and A. Terzis. CQIC: Revisiting Cross-Layer
Congestion Control for Cellular Networks. In Proc. of
the HotMobile, Workshop on Mobile Computing
Systems and Applications, pages 45–50, Feb. 2015.

[9] H. Schulzrinne, S. Casner, S. Frederick, and
V. Jacobson. RTP: A Transport Protocol for Real-Time
Applications. RFC 3550, 2003.

[10] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic Forecasts Achieve High Throughput and
Low Delay over Cellular Networks. In Proc. of USENIX
NSDI, Apr. 2013.

[11] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and
C. Görg. Adaptive congestion control for unpredictable
cellular networks. In Proc. of ACM SIGCOMM,
volume 45, pages 509–522, Aug. 2015.

	Introduction
	Related Work
	Google Congestion Control
	Performance Issues over Wi-Fi Networks
	Problem statement
	Experimental Validation

	Proposed Solution
	Pre-filtering
	Validation and comparison

	Conclusions
	Acknowledgments
	References

