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Abstract

Congestion control is a fundamental building block in packet switching networks such as the Internet due to the fact that commu-
nication resources are shared. It has been shown that the plant dynamics is essentially made of an integrator plus time delay and
that a proportional controller plus a Smith predictor defines a simple and effective controller. It has been also shown that the today
running TCP congestion control can be modelled using a Smith predictor plus a proportional controller. Due to the importance of
this control structure in the field of data network congestion control, we analyze the robust stability of the closed-loop system in
the face of delay uncertainties that in data networks are present due to queuing. In particular, by applying a geometric approach,
we derive a bound on the proportional controller gain which is necessary and sufficient to guarantee the closed-loop stability for a
given bound on the delay uncertainty.
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1. Introduction

Time delays are often present in feedback control systems
due to reasons such as the transport of material or information.
From the control theoretic point of view, it is well-accepted that,
quite often, an increase of the time delay may lead to instabil-
ity of the closed-loop system and to performance degradation
as well (see, e.g. Niculescu (2001), Niculescu and Michiels
(2007), Zhong (2006) and the references therein). In such cases,
the design of a finite-dimensional controller, such as the clas-
sical PID, is very challenging since the closed-loop system has
an infinite number of characteristic roots and the resulting con-
troller could provide an unacceptable sluggish closed-loop dy-
namics (Astrom and Hagglund, 1995).

The Smith principle (Smith, 1959) is a classical ap-
proach which is often employed to design effective infinite-
dimensional controllers for time delay systems using an appro-
priate transformation of the control scheme which takes the de-
lay out of the loop (see, for instance, Niculescu and Michiels
(2007) for further details). Such a controller design proved
its interest in various applications covering congestion mech-
anisms in communication networks (Mascolo, 1999), motion
synchronization in various network configurations (Cheong
et al., 2009a) or collaborative simulations in ring-like networks
(Cheong et al., 2009b). It is known that, by assuming the exact
knowledge of both the plant model and time delay, controllers
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designed using a Smith predictor are very effective in counter-
acting the effect of time delays. It is worth to mention that
such a method is less effective in the presence of modelling
errors in the delay terms. Therefore, robustness issues of the
Smith predictor with respect to uncertainties in the knowledge
of the time delay have been extensively studied since 1980 see,
for instance, Palmor (1980), Yamanaka and Shimemura (1987),
Gudin and Mirkin (2007).

Indeed, the Internet represents a challenging case study in the
context of time delay systems due to the presence of delays that
are caused by the propagation of the information, which is sent
in form of data packets, from a source to a destination through
a series of communication links and router queues.

A cornerstone component of the Internet protocol stack is the
end-to-end congestion control which has been implemented in
the Transmission Control Protocol (TCP) by Van Jacobson in
order to avoid congestion and preserve network stability (Ja-
cobson, 1988).

Basically, the goal of a network congestion control algo-
rithm is to adequately throttle the input rate at each source of
a connection so that router buffer overflows are avoided. The
congestion control proposed by V. Jacobson, and introduced in
the TCP, proposes to address this problem implementing a dis-
tributed end-to-end algorithm that closes the loop at the end-
point of the connection and does not require any explicit feed-
back from the routers. The only (implicit) feedback signal con-
sidered by TCP is represented by packet loss events that are in-
terpreted by the congestion control algorithm as a synonymous
of network congestion.

In the last decade, the issue of modelling the TCP congestion
control algorithm has gained a great deal of attention in the sci-
entific community. Indeed, fluid flow models play an important
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role in investigating the dynamics of the TCP flows subject to
the Van Jacobson algorithm (see Hollot et al. (2002)).

In Mascolo (1999), a simple model of the plant made of an
integrator (modelling the bottleneck queue) plus two time de-
lays (modelling forward and backward delays), has been pro-
posed along with a Smith predictor plus a proportional con-
troller to design a congestion control algorithm. An important
contribution of the paper is the proof that a Smith predictor con-
troller with a proportional gain models the congestion control
law which is employed in the today running TCP congestion
control algorithm. Moreover, the model presented in Mascolo
(1999) has been employed in Grieco and Mascolo (2004) to de-
sign and implement a rate-based congestion control algorithm
which has been found to produce flows that are TCP-friendly.

A similar plant model is employed in Quet et al. (2002) to
design a rate-based congestion control algorithm implemented
at the router that is robust to uncertain time-delays by employ-
ing the H∞ technique. With respect to Mascolo (1999), the
controller parameters in Quet et al. (2002) are quite complex
to derive and, at the best of authors’ knowledge, no real imple-
mentations are currently available to assess the effectiveness of
the proposed solution.

It is well-known that the measurement of the plant time delay
to be used in the Smith predictor can be affected by uncertain-
ties due to the fact that the time delay is made of a constant
propagation delay plus time-varying queuing delays. To the
purpose, the TCP estimates the Round Trip Time (RTT) in order
to set the retransmission timeout (RTO) which is needed for de-
tecting heavy congestion episodes in the network. The RTT is
defined as the time that elapses from when a segment is sent un-
til the corresponding acknowledgment segment is received by
the sender. In the standard TCP implementation (Postel, 1981),
the RTT is measured each RTT seconds, whereas no measure-
ments are taken on retransmitted segments in order to avoid
spurious timeouts (see Karn and Partridge (1987)). For these
reasons the standard TCP provides a measurement of RTT that
may be affected by errors. In order to overcome this issue an
optional scheme has been proposed and standardized in Jacob-
son et al. (1992) which makes use of timestamps in an optional
field of the TCP header. However, even if the timestamp option
is employed by both peers of the communication, the granu-
larity chosen for TCP timestamps is implementation-dependent
and can be itself a source of significant errors. In a recent work,
Veal et al. (2005) carried out an extensive measurement cam-
paign on RTTs. Authors used 500 servers and found that 76%
of the servers had timestamping option enabled, and out of these
servers 37% used a 100 ms granularity, 55% a 10 ms granularity
and only 7% of them had a granularity of 1 ms.

A preliminary study on robust stability of the proportional
Smith predictor used for congestion control in data networks
(Mascolo, 1999) has been carried out by using the Nyquist cri-
terion in Mascolo (2003). It revealed that in order to guarantee
asymptotic stability it is sufficient that ∆ < 1/k where ∆ repre-
sents the delay uncertainty and k is the gain of the proportional
controller.

The goal of this paper is to provide a complete characteri-
zation of the robust stability of congestion control model intro-

duced in Mascolo (1999) by applying the geometric approach
idea developed in Gu et al. (2005). In the following we will
show that the geometric approach is very simple to apply and
is able to give an easy to understand “picture” of the robustness
of the system in the case delay uncertainties are present. The
parameter-space to be considered is represented by the nomi-
nal delay and the corresponding delay error, which can be both
positive and negative (Morarescu et al., 2007). It is worth to
mention that the particular structure of the closed-loop scheme
allows an appropriate re-scaling of the system’s parameters that
will be explicitly exploited in the robustness analysis improving
thus the bound proposed in Mascolo (2003).

The rest of the paper is organized as follows: in Section 2
we briefly review the model of the closed loop congestion con-
trol in a generic packet switching network presented in Mas-
colo (1999); in Section 3 we apply the geometrical approach
developed in Morarescu et al. (2007) in order to find the stabil-
ity crossing curves of the system; in Section 4 we present the
robust stability analysis; in Section 5 some simulations are pre-
sented to support the theoretical results obtained; finally Sec-
tion 6 concludes the paper.

2. Congestion Control Model

A network connection is basically made by a set of com-
munication links and store-and-forward nodes (routers) where
packets are enqueued before being routed to the destination.
Congestion can arise when packets arrive at the router at a rate
r(t) which is above the capacity of the output link so that the
router queue builds up until it is full and it starts to drop pack-
ets.

In Mascolo (1999), a model of the Internet flow and conges-
tion control as a time delay system is provided. In particular,
the model consists of a feedback loop in which two time delays
are present as it is shown in Figure 1: T1 models the propaga-
tion time of a packet from source to the bottleneck queue and T2
models the propagation time from the bottleneck to the destina-
tion and then back to the sender. The round trip time of the con-
nection is T = T1+T2. It has to be noted, that considering a con-
stant RTT is a modelling simplification that is often employed
in the literature to make the model more tractable. Throughout
the rest of the paper constant time-delays are considered, and in
Section 5 simulation results, obtained when time-varying time-
delays are present in the feedback loop, are shown to validate
the theoretical findings discussed in this paper.

The simple integrator 1/s models the bottleneck queue that
is filled (or drained) by the rate mismatch r(t)− b(t), where b(t)
is the bottleneck available bandwidth.

The controller is a proportional Smith predictor with gain k
that computes the rate r(t) to match the available bandwidth b(t)
and to produce a stable output. The reason for using a simple
proportional controller is that in this way the closed-loop dy-
namics can be made that of a first-order system with time con-
stant 1/k delayed by T1. Thus, the step response of the system
can be made faster by increasing the proportional gain k provid-
ing an always stable system without oscillations or overshoots.
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Figure 1: Functional block of the congestion control model

This choice provides a controller in which only one design pa-
rameter, i.e. the gain k, has to be tuned having a direct influence
on the dynamics of the output. It is worth noting that in Palmor
and Blau (1994), by following optimal control arguments, a pri-
mary controller that inverts the plant model and that adds a pole
in the origin is proposed, with the aim of making the closed-
loop transfer function a first order system plus dead time that is
stable for any positive value of the gain. In the case of the inte-
gral plant that is considered in this paper, this means that the pri-
mary controller is a simple gain k. Finally, the input signal w(t)
models the congestion window (cwnd) or the advertised win-
dow, that is used by the congestion control algorithm to bound
in-flight packets (Mascolo, 1999). A remarkable feature of this
model is that different variants of TCP congestion control algo-
rithms can be modelled in a unified framework by proper input
shaping of the proportional Smith predictor controller (Mas-
colo, 2006). Moreover, in Mascolo (1999) it has been shown
that the Smith predictor models the self-clocking property of
TCP congestion control that is essential for the implementa-
tion of an effective congestion control algorithm (Bansal et al.,
2001). Finally, we remark that a Smith predictor controller is
recommended when designing a congestion control algorithm
for data networks, since using PID controllers would provide
an unacceptable sluggish system due to large delays involved
in communication networks (see Astrom and Hagglund (1995)
and Mascolo (1999)).

An issue that affects a general system modelled by Figure
1 is that the system is not internally stable. Thus, if the inner
loop is affected by a numerical noise or a mismatch between the
initial conditions of the integrator modelling the plant and the
integrator employed in the Smith predictor exists, then the out-
put of the inner loop would diverge. However, in the considered
system, the algorithm that realizes the inner loop is not affected
by such issues. In the time domain the output x(t) of the inner
loop is given by:

x(t) =

∫ t

0
u(ξ)dξ −

∫ t

0
u(ξ − T )dξ. (1)

However, the difference between the two integrals in (1) is not
numerically computed in the algorithm, since this quantity is
actually the difference between the data sent up to time t and
the data sent up to time t − T . This quantity is already known
without any error (because data are sent as packets of known in-
teger size), whereas the input rate u(t) is the variable that could

be computed as ratio of the data sent over a certain time interval,
but this variable is never used or computed in the algorithm.

A look at the algorithm employed to compute the integral of
u(t) shows why no computational error can be introduced by
the inner loop:

At t0 = 0 : data sent← 0

At time tk : data sent(tk)← data sent(tk−1) + pk

In the algorithm, data sent is the integral computed in the in-
ner loop which is updated each time a packet of size pk is sent
at time tk. No error can be introduced here since packet sizes
are exactly known, i.e. packet size pk is precisely known and
it is stored in an integer variable, so that its machine represen-
tation is not affected by any inaccuracy. For what concerns the
mismatch on the initial conditions of the integrators, this case
cannot occur since the integrator models the connection buffer
that, at the time of starting the connection (i.e. t = 0−), is al-
ways zero since no data has been sent yet.

Thus, the only practical issue due to the pole in the origin
is that step-like disturbances cannot be rejected at steady state
(see Astrom et al. (1994)). Nevertheless, in the case of net-
work congestion control rejection of the disturbance is not the
primary issue. The goal of the control is to guarantee that the
queue reaches a steady state and the input rate r(t), that is the
output of the Smith-Predictor, matches the available bandwidth
with a zero steady state error.

Another issue of the model depicted in Figure 1 is that, when
a Smith predictor controller is employed, model mismatches
are known to affect the closed loop dynamics. In this case, the
only source of mismatch between the model and the actual plant
is the entity of the delay (see Section 1), whereas the model
of the bottleneck queue is an integrator and does not add any
uncertainty. In the next sections we will give simple tuning
rules for the design parameter k in order to retain asymptotic
stability when the measurement of time delay T is uncertain.

3. Stability Crossing Curves in the Parameters Space

3.1. Review of the geometrical approach
We start by briefly reviewing the geometrical approach devel-

oped in Morarescu et al. (2007) which we will employ to ana-
lyze the robust stability of the considered system. The reader is
advised to refer to Gu et al. (2005) for a complete description of
the method. We denote with a(s; τ1, τ2) the characteristic func-
tion of the closed-loop system where τ1 represents the nominal
delay used in the Smith predictor and τ2 = τ1 +∆ represents the
actual plant delay affected by a bounded mismatch ∆. It is easy
to show that the characteristic function in this case is given by:

a(s; τ1, τ2) = 1 − h(s)e−τ1 s + h(s)e−τ2 s (2)

where h(s) is the transfer function of the closed loop system
when no delays are present in the loop:

h(s) =
C(s)G0(s)

1 + C(s)G0(s)
3
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with G0(s) being the delay free plant and with C(s) being the
controller transfer function.

In order to analyze the stability of the system, we look for the
solutions of the characteristic equation:

a( jω; τ1, τ2) = 0. (3)

In this way, we are able to find all the conditions under which
the closed-loop system has at least one pole on the imagi-
nary axis. The geometrical approach relies on the observation
that the three terms of the characteristic function (2) can be
seen as vectors in the complex plane. Therefore, the equality
a(s; τ1, τ2) = 0 can be represented in the complex plane via an
isosceles triangle as it is shown in Figure 2. Thus, equation (3)
is equivalent to the following three conditions:

1. The triangular inequality must hold for the triangle shown
in Figure 2, which implies that:

|h( jω)| ≥
1
2

(4)

2. Equation (3) must satisfy the phase rule;
3. The sum of the internal angles of the isosceles triangle

must be equal to π;

The solution of (4), which does not depend on time de-
lays τ1 or τ2, forms the frequency crossing set Ω which is
the union of a finite number N of intervals of finite length
Ω1,Ω2, . . . ,ΩN (Gu et al., 2005). It has to be noted that, when
limω→∞ |h( jω)| ≥ 1/2, the closed-loop system would be prac-
tically unstable even if h(s) is asymptotically stable, i.e. in-
stability arises for any given delay mismatch ∆ (see Palmor
(1996)). For an extensive study about the practical stability is-
sues of Smith predictor controllers the reader is advised to refer
to Niculescu and Michiels (2007). Finally, if (4) is not satisfied
for any ω and limω→∞ |h( jω)| < 1/2, the frequency crossing set
Ω is empty and the closed-loop system would be asymptotically
stable independent of the entity of the time delays.

For any ω > 0 which belongs to the frequency crossing set
there exists at least a pair (τ1, τ2) in the parameters space such
that the system has at least one imaginary pole. The conditions
2 and 3 imply that for all ω ∈ Ω all the couples (τ1, τ2) ∈ R2

+

satisfying a( jω; τ1, τ2) = 0 can be found using the following
equations:

τu±
1 =

∠h( jω) + 2uπ ± q(ω)
ω

, (5)

τv±
2 =

∠h( jω) + (2v − 1)π ∓ q(ω)
ω

, (6)

where u and v are integers such that the corresponding τu±
1 , τv±

2
are non negative and q(ω) represents the internal angle of the
isosceles triangle:

q(ω) = arccos
(

1
2|h( jω)|

)
.

In order to understand the meaning of equations (5) and (6) let
us fix u = u, v = v and consider the set Ωi ⊆ Ω : if ω varies
in Ωi and we evaluate (5) and (6) for both positive and nega-
tive signs we obtain two curves in the parameter space (τ1, τ2)
which we denote T i+

u,v and T i−
u,v respectively. It is worth noting

that the curves T i
u,v = T i−

u,v ∪ T
i+
u,v can be either open curves or

closed curves depending on the set Ωi we are considering. In
particular, it is easy to show that if the left end of Ωi is 0 then
the associated curve is an open curve with both ends approach-
ing ∞ when ω → 0. On the other hand, if the left end of Ωi is
not 0 then T i

u,v is a closed curve (Gu et al., 2005).
We define the stability crossing curves T in the τ1, τ2 plane

as the union of all the curves T i
u,v when i ∈ {1, . . . ,N}, and u

and v vary in the set of integers.
Finally, it is important to point out that when a stability cross-

ing curve is crossed in the τ1, τ2 plane, at least one pair of poles
cross the imaginary axis of the complex plane Gu et al. (2005).

3.2. Stability crossing curves of the computer network conges-
tion control model

In order to characterize the impact of the delay uncertainty
on the stability of the considered feedback system we apply the
geometric approach we have reviewed in Section 3.1. It is worth
to notice that the delay-free model of the plant is G0(s) = 1/s
and the controller transfer function is C(s) = k.

We suppose that the system described in Section 2 is affected
by a delay uncertainty ∆ which is bounded by δ > 0, i.e. |∆| < δ.
By considering the delay uncertainty, the characteristic equa-
tion of the system can be rewritten as follows:

1 +
k
s
−

k
s

e−τ1·s(1 − e−∆·s) = 0, (7)

where τ1 = T1 + T2 represents the nominal round trip time
(RTT) of the considered connection, which is used in the Smith
predictor, and τ2 = τ1 + ∆ is the actual plant time delay.

By multiplying by s/(s + k) both sides of (7) we obtain:

1 −
k

s + k
e−τ1 s +

k
s + k

e−(∆+τ1)s = 0, (8)

so that by considering h(s) = k/(s + k) (8) is in the form of (2).
We are interested in characterizing the stability of the system
when τ1, τ2 and k vary in R+.
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Figure 3: Stability crossing curves for the considered system

By making the change of variable z = s/k we obtain:

1 −
1

z + 1
e−h1z +

1
z + 1

e−h2z = 0, (9)

where h1 = kτ1 and h2 = kτ2, which reduces the free parameters
to two. It is worth to notice that the transformation from (8) to
(9) simply involves a scaling of the closed-loop eigenvalues by
1/k, thus indicating a natural trade-off between gain and delay
since when k increases the closed loop poles approach to the
imaginary axis Niculescu and Michiels (2004).

We are now ready to study the stability of the original system
in the h1, h2 plane regardless the value of the proportional gain
k.

First of all, by applying (4) we find that the crossing set is
made by the single interval Ω = [0,

√
3] which means that the

stability crossing curves in the h1, h2 plane are open curves
which extend to infinity when ω → 0. By using (5) and
(6) the stability crossing curves of the considered system are
parametrized as follows:

hu±
1 (ω) =

− arctanω + 2uπ ± arccos
( √

1+ω2

2

)
ω

, (10)

hv±
2 (ω) =

− arctanω + (2v − 1)π ∓ arccos
( √

1+ω2

2

)
ω

. (11)

Figure 3 shows the stability crossing curves of the considered
system. We start by considering the h2 axis (h1 = 0), which
means that we are employing a simple proportional controller
without the Smith predictor. By starting from the origin and
increasing the value of h2 the first curve is crossed at h2 = π/2
which means that the system becomes unstable for h2 > π/2 as
expected. On the other hand, the axis h1 represents the system

in which no delay affects the plant, but the Smith predictor is in
the controller. Figure 3 shows that the system is stable for all
the delays in the Smith predictor.

It is worth to mention that points below (above) the bisec-
tor represent the case of negative (positive) delay mismatch,
whereas points lying on the positive bisector represent the case
of perfect matching of nominal delay τ1 with the actual delay
τ2. Indeed, if we move on this line no curves will be crossed
since the Smith predictor in this case provides a stable system
regardless the value of the proportional gain k.

4. Robust Stability Analysis

In this Section, we will develop an analysis of the robust sta-
bility of the considered system by using the stability crossing
curves we have shown in the previous Section. We already
know that the considered system is always asymptotically stable
for any delay τ1 and any proportional gain k as far as the delay
uncertainty is zero due to the perfect compensation of the time
delay τ1 provided by the Smith predictor. In the h1, h2 plane
this condition simply means that the system is asymptotically
stable on all the positive bisector.

In order to characterize the robustness of the system in the
face of delay uncertainties, we compute the maximum delay
mismatch which still preserves stability. Thus, the problem here
is to look for the maximum deviation δwith respect to a generic
point (τ∗1, τ

∗
1) with τ∗1 ≥ 0 which lies on the positive bisector

such that the system is stable for any (τ1, τ2) which satisfies:∣∣∣τ2 − τ
∗
1

∣∣∣ < δ
We remark that solving the maximum admissible delay uncer-
tainty problem is equivalent to find the minimum distance be-
tween the stability crossing curves and a generic point on the
positive bisector of the h1, h2 plane.

Thus for any τ∗1 > 0 we have to solve:

δ(τ∗1) = min
u,v

min
τv±

2 ∈T
|τv±

2 − τ
∗
1| (12)

so that the maximum delay to retain stability is:

δ = min
τ∗1∈R+

δ(τ∗1) (13)

Proposition 1. A necessary and sufficient condition for the
asymptotic stability of the system independent of the value of
the nominal delay τ1 is:

|∆| <
α

k
(14)

where ∆ is the delay uncertainty, α � 1.4775 and k is the pro-
portional gain of the controller.

Proof. We start by considering the stability crossing curves in
the parameters space h1, h2. In order to find the minimum dis-
tance between the stability crossing curves and a generic point
of positive bisector of the h1, h2 plane we evaluate the tangent
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Figure 4: Stability regions for the considered system. Stability
region found in Proposition 1 is marked in gray.

to the crossing curves with direction parallel to the positive bi-
sector:

dh2

dh1
= 1⇔

dh2

dω
dω
dh1

= 1⇔
dh1

dω
=

dh2

dω
(15)

To the purpose we look for a subset T of the stability crossing
curves T that are the “closest” curves to the positive bisector.
By considering a generic curve Tu,v and by applying (10) and
(11) it turns out that for all u and v and for all ω ∈ Ω it holds
hv+

2 − hu+
1 < hv−

2 − hu−
1 so that it is sufficient to consider only

the curves T +
u,v in the region h2 > h1 and the curves T −u,v in the

region h2 < h1, since they are the closest ones to the positive
bisector. Thus, we can refer without loss of generality to the
generic curves of T as Tu,u+i for all i and u in the integers.
Straightforward computations on (10) and (11) give:

hu+i
2 − hu

1 > hu+i−1
2 − hu

1

which means that when i decreases the curves Tu,u+i will move
downwards in the h1, h2 plane.

Figure 4 shows the values of u and v for the curves Tu,u and
Tu,u+1. It is then easy to show that if we set v = u we obtain
the closest curves to the positive bisector in the region h2 < h1
whereas the curves with v = u + 1 are those which are closest
to the positive bisector in the region h2 > h1 . In conclusion we
can restrict our search to the set :

T = T −u,u ∪ T
+
u,u+1

for all u in the integers. Let us consider the region h2 > h1
i.e. we consider the subset T +

u,u+1. By considering (15) after
straightforward computations we get the following equation:

arccos

 √ω2 + 1
2

 +
ω2

√
ω2 + 1

√
3 − ω2

+

+π(v − u −
1
2

) = 0 (16)

with ω ∈ Ω. By letting v = u + 1 the equation (16) can be
numerically solved to find the unique solution ω � 1.3483 rad/s
in Ω which is independent of u. If we substitute this value in
(10) and (11) we obtain:

h1(ω) = h1 = 4.6601u − 0.2654

h2 (ω) = h2 = 4.6601v − 3.4480

Thus, all the points belonging to the the curves T +
u,u+1 having a

tangent which is parallel to the positive bisector, lie on the line:

h2 = h1 + 1.4775 (17)

For this reason we can conclude that the maximum uncertainty,
in the h1, h2 coordinates is 1.4775. The proof is completed by
recalling that h1 = kτ1 and h2 = kτ2 and that τ2 = τ1 + ∆. Thus,
we finally obtain:

h2 − h1 < 1.4775⇒ k∆ < 1.4775⇒ ∆ <
1.4775

k
(18)

It is worth to notice that the same procedure can be followed in
the case v = u which leads to the inequality:

h1 − h2 < 1.4775⇒ −k∆ > 1.4775⇒ ∆ > −
1.4775

k
(19)

Thus, by considering both (18) and (19) we obtain (14). In order
to prove the necessity of the condition (14) let us consider the
curves Tu,u+1. The points of the curve Tu,u+1 that correspond
to the frequency ω = 1.3483 rad/s lie on the line described
by (17) so that the maximum delay uncertainty admissible for
those points is exactly α/k. If we select a larger value for δ
the system will become unstable at least on those points. This
concludes the proof.

Remark 1. The fact that the maximum uncertainty allowed
does not depend on the nominal delay τ1 is a nice feature of
the Smith predictor based controller. This makes the controller
effective even with large delays. It is important to notice that
Proposition 1 is a necessary and sufficient condition for the ro-
bust stability of the system that is valid independent of the value
of the nominal delay τ1. This does not prevent that, for a spe-
cific value of τ1, the system is stable for a value of ∆ that is
greater than α/k. Nevertheless, Proposition 1 guarantees that
if the maximum entity of the delay error ∆ is known, the con-
troller gain k can be tuned so that for any value of the nominal
delay τ1 the stability of the system is guaranteed.

Figure 5 shows k∆ as function of kτ1 and can be obtained
by employing equations (10) and (11). The two curves shown
in black delimit the stability region in the case kτ1 is vari-
able, whereas the two black dashed lines represent the stability
boundary independent of τ1, i.e. the robust stability condition
(14). It is worth to notice that the stability bounds as function
of kτ1 shown in Figure 5 recover the results found in Gudin
and Mirkin (2007), where a Nyquist approach was employed.
Finally, we remark that, although (14) can be conservative for
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Figure 5: Maximum delay uncertainty to retain asymptotic sta-
bility as function of kτ1 (continuous black curves) or indepen-
dent of τ1 (dashed black lines)

some values of the nominal delay (see Figure 5), it represents
a simple and practical rule that does not require the designer to
make difficult assumptions regarding the nominal delay. In fact,
the nominal delay, i.e. the RTT of the connection, can vary in a
range between 0.01s in the case of a wired connection up to 1s
and more in the case of wireless connections such as in the case
of satellite paths.

Remark 2. The condition (14) expresses a trade-off between
the maximum delay mismatch δ and the proportional gain that
can be used to tune the controller gain k.

Remark 3. This result improves the robust stability condition
|∆| < 1/k found in Mascolo (2003) and in Morari and Zafiriou
(1989), by using different approaches and related analytical ar-
guments.

Proposition 2. The system is stable, independent of the value
of τ1, if the delay uncertainty ∆ satisfies the following inequal-
ity:

−τ1 < ∆ < −τ1 +
β

k
(20)

with β = 1.1188.

Proof. The proof follows the same arguments of Proposition 1,
therefore it is omitted.

Remark 4. The condition (20) implicitly requires the delay un-
certainty ∆ to be negative, i.e. the nominal delay τ1 should be
always below the actual delay of the plant τ2. Thus, condition
(20) has no particular meaning for the characterization of con-
troller robustness, since the sign of the uncertainty is not known
a priori.
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Figure 6: Queue length (a) and input rate evolution (b) when
τ1 = 1 sec, k = 4 sec−1, b(t) = 100 packets/sec, w = 150 packets

5. Simulation results

In this Section we report simulation results obtained by using
a SIMULINK model that implements the system depicted in
Figure 1. The bottleneck available bandwidth has been set to
vary as a step function starting at time t = 1 sec and having
a final value of b = 100 packets/sec. The queue set-point is
a step function starting at t = 0 sec with a final value of w =

150 packets. The gain of the controller has been set to k =

4 sec−1 corresponding to a maximum delay uncertainty of δ �
0.37 sec. The nominal RTT of the connection is 1 sec. Figure 6
reports the queue evolution q(t) and the input rate r(t) when the
delay uncertainty is either zero, δ/2 � 0.185 sec or δ � 0.37 sec.

The figure shows, as expected, that the performance of the
closed loop response degrades when the delay uncertainty in-
creases. In particular, oscillations are present when the de-
lay uncertainty is δ/2 still providing an acceptable response,
whereas when the delay uncertainty increases to the maximum
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allowed value persistent oscillations occur.
In order to check if the bound on the gain k expressed in

Proposition remains valid when time-varying round trip times
τ2 are present, we show simulation results obtained when the
time delay varies as follows (Shustin and Fridman, 2007):
1) slowly-varying delay τs

2(t) = τ1 + δ(1 + 1/2 sin 0.1t); 2)
moderately-varying delay τm

2 (t) = τ1 + δ(1 + 1/2 sin 10t); 3)
fast-vaying delay τ f

2 (t) = τ1 +δ(1+1/2 sin t2). It is worth to no-
tice that to each of the three delays defined above corresponds a
delay mismatch whose average values is δ, maximum value of
3/2δ and minimum value 1/2δ. The settings of k, w, and b(t)
remain unvaried.

Figure 7 shows the queue dynamics in the three considered
cases. The case of slow-varying delay, shown in Figure 7(a)
shows the most remarkable oscillations due to the fact that the
signal τs

2(t) is above the maximum allowed time delay for π/0.1
seconds. After a transient that last about 40 s, the queue length
eventually reaches the steady state.

The queue dynamics obtained for moderate and fast-varying
delays, shown in Figure 7(b) and Figure 7(c), exhibit similar
behaviour. In particular, even if the average value of the delay
is equal to the critical one, the queue reaches a steady state after
around 20 s.

6. Conclusions

In this paper we have analyzed the robust stability of an im-
portant class of congestion control algorithms when delay un-
certainties are present. By using the geometrical approach de-
veloped in Morarescu et al. (2007) a strict stability bound on
the parameter of the controller has been found. Such a result
suggests that congestion control algorithms that employ con-
trollers made by a Smith predictor plus a proportional gain can
be easily tuned in order to be robust with respect to a bounded
delay uncertainty.
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