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Abstract— Congestion control is a cornerstone component of
the Internet. The plant dynamics can be modelled by means
of an integrator, modelling a bottleneck queue, a time delay,
modelling the propagation of the information from a source
to a destination along with queuing, and a load disturbance,
which models the time-varying available bandwidth. It has been
shown that a Smith predictor plus a proportional gain is an
effective controller, even though, it is not able to reject the
load disturbance. To overcome this issue, which is particularly
relevant in the case of multimedia delay-sensitive traffic, we
consider the modified Smith predictor proposed by Matausek
and Micic as a candidate for the design of a congestion
control algorithm. By taking a geometric approach, we quantify
the trade-off between disturbance rejection property of the
modified Smith predictor and the achievable stability robustness
with respect to delay uncertainty, which in data networks is
due to queuing. Finally, we propose some guidelines to tune
the additional parameter introduced by the modified Smith
predictor.

Index Terms— Time-delay systems, Robust stability, conges-
tion control, Smith predictor

I. INTRODUCTION

Integrative plants with time-delays represent an important
class of systems which can be frequently encountered in
several domains such as industrial plants, communication
networks, and supply chain management [1], [2]. The design
of an effective controller for such systems is particularly
challenging, since the plant is not asymptotically stable and
it contains a time-delay which may have adverse effects
on the stability of the closed-loop system [3]. Among the
approaches proposed in the literature, the Smith predictor
has been widely studied and applied due to its effectiveness
in compensating the time-delay [4]. However, it is well-
known that the Smith predictor is affected by two main draw-
backs, namely 1) it is not able to reject a load disturbance
for processes containing integrator dynamics [5] and 2) it
requires the exact knowledge of both the plant model and
the time delay to provide effective delay compensation [6].
Regarding the first issue, several modifications to the Smith
predictor scheme were proposed. In the case of processes in
which disturbance is not measurable, the idea is to design
a disturbance estimator such that the set-point response can
be decoupled by the disturbance response [5], [7]. Recently
a two-degree of freedom modified Smith-predictor (MSP)
controller has been proposed and its robustness properties
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have been studied [8]. In the case of measurable delays,
feed-forward techniques may be used with the classic Smith
predictor controller [9].

In this paper we consider computer networks, whose most
relevant example is the Internet, which can be modelled as
time-delay systems since the information, which is sent in
the form of packets, propagates from a source through a
number of communication links and queues before reaching
its destination [1]. A fundamental building block of the Inter-
net is the end-to-end congestion control algorithm that was
designed and implemented in the 80s in the Transmission
Control Protocol (TCP), and which has been able, since then,
to avoid network congestion and provide network stability.

A large body of literature is available on the mathemat-
ical modelling and design of congestion control algorithms
employing different approaches, namely fluid models, hybrid
systems, H∞ design [1], [10], [11], [12]. The plant dynamics
can be modelled by means of an integrator, modelling a
bottleneck queue, a time delay, modelling the propagation
of the information from a source to a destination along
with queuing, and a load disturbance, which models the
time-varying available bandwidth [1]. In [1] it has been
shown that a Smith-predictor plus a proportional gain is an
effective controller, even though it is not able to reject the
load disturbance (i.e. the available bandwidth) and the queue
matches the set-point with a steady-state error.

In this paper we explore the possibility of using the
modified Smith predictor controller described in [7] to obtain
a zero steady-state error. We employ the approach taken in
[7] since the introduced disturbance estimator block has only
one parameter to tune having a clear physical interpretation.
Even though it is not the main goal of a congestion control
algorithm, having zero steady state error is an interesting
feature, since such a controller could provide full link
utilization with small queues. Reducing the queuing delay
is particularly important for delay-sensitive traffic, such as
the one generated by video conference applications, which
require packet delivery delay to be kept low.

The main contribution of this paper is the quantification
of the trade-off between the disturbance rejection property of
the modified Smith predictor [7] and the achievable stability
robustness with respect to delay uncertainty, which in data
networks is due to queuing. From the design point of view,
this also allows us to give some guidelines for the tuning
of the additional parameter introduced by the disturbance
estimator. It is worth noting that even though comparison
between Smith predictor control schemes was done in the
past, the robustness issue wrt delay mismatches was not
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Fig. 1: Block diagram of the considered congestion control
algorithm model

sufficiently explored in comparing the corresponding control
schemes and, to the best of the authors knowledge, our
contribution opens interesting perspectives in this direction.

II. THE CONGESTION CONTROL ALGORITHM

A network connection is made by a set of communication
links, through which the information is sent, and a set of
routers, where the information is temporarily stored in a
queue before being forwarded to the next link. Congestion
occurs when the total incoming rate at a router exceeds the
capacity of its output link and, consequently, its queue builds
up until the point packets start to be dropped.

Fig. 1 shows the block diagram of the considered conges-
tion control algorithm model, that is made of the following
blocks: 1) two time delays, T1 which models the propagation
delay of a packet from the source to the bottleneck queue,
and T2 which models the delay for propagation from the
queue to the destination and back to the sender; T1+T2 = T
is the round-trip time of the connection; 2) an integrator 1/s,
modelling the bottleneck queue, which is filled (or drained)
by the rate mismatch between the input rate r(t − T1) and
the bottleneck available bandwidth b(t); 3) a Smith predictor,
using a proportional controller with gain k, which computes
the control action rr(t); the nominal delay used in the Smith
predictor is T that is an estimate of the actual round-trip time
T ; 4) a disturbance estimator, as proposed in [7], which
produces an estimate b̂(t) of the disturbance b(t).

With respect to the model presented in [1], the one shown
in Fig. 1 includes the disturbance estimator proposed in [7],
which adds a second parameter to tune, i.e. k0. In [1] it
has been proved that, when the disturbance estimator is
not used (k0 = 0), the Smith predictor models the TCP
congestion control and the signal w(t) models the congestion
window (cwnd) or the advertisement window (awnd) that is
used by the TCP to limit the outstanding packets [13], [1].
Moreover, it is well-known that, when k0 = 0, the general
system shown in Fig. 1 is not internally stable due to integral
mode. However, in [14] it has been shown that the fact
that the system is not internally stable does not pose any
implementation issues in the case of the congestion control
of computer network. Thus, the only drawback is that, when
k0 = 0, a step disturbance cannot be rejected at steady state.

III. REVIEW OF THE GEOMETRIC APPROACH

In this Section we provide a brief review of the geometrical
approach [15] that will be employed to analyze the robust

stability of the system shown in Fig. 1. Let us consider an
LTI system with two independent time delays τ1 and τ2:

ẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ2). (1)

The stability of (1) can be studied by looking at the associ-
ated characteristic function:

p(s; τ1, τ2) = p0(s) + p1(s)e−sτ1 + p2(s)e−sτ2 .

We aim at finding the couples (τ1, τ2) ∈ R2
+ such that the

solutions of the characteristic equation p(s; τ1, τ2) = 0 are on
the imaginary axis. By excluding some trivial cases (see [15])
we can refer to the following equation:

a(s; τ1, τ2) = 1 + a1(s)e−sτ1 + a2(s)e−sτ2 = 0. (2)

The geometrical approach stems from the observation that
the three terms of (2) can be considered as vectors in
the complex plane. The equality a(s; τ1, τ2) = 0 can be
represented in the complex plane via a triangle.

Therefore, (2) is equivalent to the following conditions:
1) The triangular inequality must hold for the triangle:

|a1(jω)|+ |a2(jω)| ≥ 1, (3)

−1 ≤ |a1(jω)| − |a2(jω)| ≤ 1. (4)

2) Equation (2) must satisfy the phase rule;
3) The sum of the internal angles of the triangle must be

equal to π;
The solution of (3) and (4) does not depend on the time
delays τ1 and τ2 and forms the frequency crossing set Ω.
In [15] it has been shown that Ω is the union of a finite
number of intervals of finite length Ω1,Ω2, . . . ,ΩN . For any
ω > 0 belonging to Ω there exists at least a pair (τ1, τ2)
in the parameters space such that the system has at least
one imaginary pole. By employing the conditions 2 and 3,
it is possible to parametrize all the couples (τ1, τ2) ∈ R2

+

satisfying a(jω; τ1, τ2) = 0 using the following equations:

τu±1 =
∠a1(jω) + (2u− 1)π ± θ1

ω
≥ 0, (5)

τv±2 =
∠a2(jω) + (2v − 1)π ∓ θ2

ω
≥ 0, (6)

where ω ∈ Ω, u and v are integers such that τu±1 , τv±2 are
positive, and θ1, θ2 are the internal angles of the triangle
given by:

θ1(ω) = arccos

(
1 + |a1(jω)|2 − |a2(jω)|2

2|a1(jω)|

)
,

θ2(ω) = arccos

(
1 + |a2(jω)|2 − |a1(jω)|2

2|a2(jω)|

)
.

To better understand the meaning of (5) and (6) let us fix
u = u and v = v: when ω varies in Ωi and (5) and (6) are
evaluated for both positive and negative signs, two curves in
the parameter space (τ1, τ2) are obtained. We denote these
curves with T i+

u,v and T i−
u,v respectively. In order to find

out how each T i−
u,v is connected to T i+

u,v at the ends of the
interval Ωi, we observe that the end points of the intervals,



denoted with ωli and ωri , must satisfy only one of the three
following equations that we have to solve for (3) and (4) to
hold:

|a1(jω)|+ |a2(jω)| = 1, (7)

|a1(jω)| − |a2(jω)| = 1, (8)

|a2(jω)| − |a1(jω)| = 1. (9)

It is possible to classify all these end points ωli and ωri in
one of the following categories: 1) Type 1. Equation (8) is
satisfied; in this case it can be shown that θ1 = 0 and θ2 = π
so that T i+

u,v is connected to T i−
u,v−1 at this end; 2) Type 2.

Equation (9) is satisfied; in this case θ1 = π and θ2 = 0 and
T i+
u,v is connected to T i−

u+1,v at this end; 3) Type 3. Equation
(7) is satisfied; in this case it turns out θ1 = θ2 = 0 and
T i+
u,v is connected to T i−

u,v at this end; 4) Type 0. ωli = 0; in
this case as ω → 0 both T i+

u,v and T i−
u,v approach to ∞.

We define the stability crossing curves T in the τ1, τ2
plane as the union of all the curves T i

u,v for i ∈ {1, . . . , N},
and u ∈ N, v ∈ N. All the couples (τ1, τ2) ∈ T can be
associated to a couple of poles on the imaginary axis which
we call crossing point. Finally, when a stability crossing
curve is crossed in the τ1, τ2 plane, two poles cross the
imaginary axis on the complex plane [15].

IV. ROBUSTNESS ANALYSIS

Let us consider Fig. 1 which shows the block diagram of
the considered system: k is the proportional controller gain,
τ and τ are respectively the nominal and the actual RTT, and
k0 is the gain of the disturbance estimator proposed in [7].

It is easy to show that the characteristic equation associ-
ated to the system shown in Fig. 1 is:

a0(s; k, k0) = 1− ke−τs

(s+ k)
+

(k0 + k)s+ k0k

s(s+ k)
e−τs = 0.

(10)
We are interested in characterizing the stability of the system
when τ , τ , k, and k0 vary in R+. By making the change of
variable z = s/k, and by denoting α = k0/k, we obtain:

a0(z;α) = 1− 1

z + 1
e−h1z+

(α+ 1)z + α

z(z + 1)
e−h2z = 0. (11)

In (11) we have made the change of variable h1 = kτ and
h2 = kτ , which reduces the free parameters from four to
three. It is worth noting that, when α = 0, the disturbance
estimator is not effective and the standard Smith predictor is
obtained.

In the following we shall consider separately the case α =
0 (Section IV-A) and the case α > 0 (Section IV-B) which
corresponds to the modified Smith predictor (MSP) proposed
in [7]. The method for finding a delay-dependent asymptotic
stability condition for the closed loop system shown in Fig. 1
is first developed in the case of α = 0 and then it is applied
in the case of α > 0.

A. The standard Smith predictor (α = 0)

When α = 0 (11), (5), and (6) turn out to be respectively:

a(z) = 1− 1

z + 1
e−h1z +

1

z + 1
e−h2z = 0, (12)

hu±1 (ω) =
− arctanω + 2uπ ± arccos

(√
1+ω2

2

)
ω

, (13)

hv±2 (ω) =
− arctanω + (2v − 1)π ∓ arccos

(√
1+ω2

2

)
ω

.

(14)
By solving (3) and (4), the frequency crossing set Ω =

(0,
√

3] is obtained. It can be shown that the stability crossing
curves are a family of open ended curves with both ends
approaching ∞ when ω → 0 [14].

The following delay-independent necessary and sufficient
condition for the asymptotic stability of (12) can be estab-
lished:

Proposition 1: A necessary and sufficient condition for
the asymptotic stability of the system independent of the
value of the nominal delay τ is:

|∆| < a

k
, (15)

where ∆ = τ − τ is the delay uncertainty, a ' 1.4775 and
k is the proportional gain of the controller.

Proof: The proof is given in [14].
Nevertheless, when an estimate of the nominal delay τ

is known, the delay-independent condition (15) could be
conservative. A delay-dependent tuning rule that is often
considered in the literature is k = γ/τ (γ > 0), i.e. the
gain is inversely proportional to the nominal value of the
delay: in [16] a value of γ = 3 is proposed, whereas in [17]
a more conservative tuning rule is considered, i.e. γ = 1.

With the purpose of quantifying the robustness of the
tuning rule k = γ/τ , we compute δ(γ) which we define
as the maximum value of k∆ such that (12) has all its root
in the left half complex plane. With the purpose of finding
δ(γ), we fix γ and, by considering (13), we solve

hu±1 (ω) = γ (16)

for u ∈ N. For a fixed value of γ, (16) admits at least one
solution for u ∈ U ⊂ N, and it exists u ∈ N such that for
u > u (16) does not admit solutions, i.e. U in not equal to N.
Moreover, it is possible to show that for a fixed u, hu+1 (ω) =
γ and hu−1 (ω) = γ admit at most two solutions each, that
we denote with ωu+A , ωu+B and ωu−A , ωu−B respectively. Hence,
we conclude that (16) has a finite number of solutions. Then,
if we denote with χγ the set of the frequencies that solves
(16), we can find δ(γ) as follows:

δ(γ) = min
ω∈χγ ,u∈U,v∈V

|hv±2 (ω)− hu±1 (ω)|. (17)

Fig. 2 shows δ(γ) and the corresponding values in the
cases of the tuning rules proposed in [17] and [16]. The
figure shows that for increasing values of γ, δ(γ) increases
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until a maximum is obtained for γ = γ∗ and then it abruptly
decreases for γ > γ∗. To give an explanation of such phe-
nomenon, Fig. 3 shows hu±1 (ω) for u = 0, 1, 2 and hv±2 (ω)
for v = 1, 2, 3. By looking at Fig. 3, (16) corresponds in
finding all the intersections of the line parallel to the the ω
axis and ordinate γ with the family of curves hu±1 (ω). The
figure shows that for 0 ≤ γ < γ∗ the line and the curve h0+1 ,
intersect only in one point, i.e. χγ = {ω0+

A }. This means that,
when 0 ≤ γ < γ∗, the maximum delay uncertainty δ is given
by the distance between the curve h1+2 and the curve h0+1 for
ω = ω0+

A , i.e. δ(γ) = h1+2 (ω0+
A )− h0+1 (ω0+

A ). The situation
drastically changes when γ = γ∗: for this value of γ the
line becomes tangent to h1−1 (ω) and thus another solution
appears, i.e. χγ∗ = {ω0+

A , ω1−
A }. In order to compute γ∗ we

find the minimum of the function h1−1 (ω). By computing
dh1−1 (ω)/dω = 0 we obtain:

2π − arctan (ω)− arccos

(
1

2

√
ω2 + 1

)
+

ω

ω2 + 1
− ω2

√
ω2 + 1

√
3− ω2

= 0 (18)

which has a unique solution for ω1−
A ' 1.7114 rad/s.

By plugging ω1−
A into (13) it turns out γ∗ = h1−1 (ω1−

A ) '
2.9844. Moreover, by solving h0+1 (ω) = γ∗ the unique
solution ω0+

A = 0.2594 rad/s is obtained and the maximum
delay uncertainty at the left of γ∗, i.e. δ(γ∗−), can be found
as follows:

δ(γ∗−) = h1+2 (ω0+
A )− h0+1 (ω0+

A ) ' 4.1856.

0 2 4 6 8 10 12 14 16

10

8

6

4

2

0

−2

−4

−6

−8

−10

kτ̄

kτ = β/α

τ < 0

k
∆ δβ(α)

(a) α = 0.1

4

3

2

1

0

−1

−2

−3

−4

−5

5

0 1 2 3 4 5 6 7 8 9 10

k
∆

kτ

kτ = β/α

τ < 0

δβ(α)

(b) α = 1
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Finally, it is simple to show that

δ(γ∗+) = |h1−2 (ω1−
A )−h1−1 (ω1−

A )| = |h1−2 (ω1−
A )−γ∗|. (19)

Thus, by plugging ω1−
A in (19), it turns out δ(γ∗+) ' 1.6783.

Fig. 3 shows how δ(γ∗−) and δ(γ∗+) can be computed.

B. The modified Smith predictor (α > 0)

The modified Smith predictor proposed in [7] adds b̂(t),
the output of the disturbance estimator, to the Smith predictor
action rr(t), resulting in the control law r(t) = rr(t) + b̂(t)
(see Fig. 1). In [7] authors show that, assuming a perfect
knowledge of the delay, i.e. ∆ = 0, the closed-loop system
is asymptotically stable as long as 0 ≤ k0 < π

2τ . This means
that, unlike the standard Smith predictor (see Proposition 1),
a delay-independent bound on the uncertainty, similar to that
of Proposition 1, cannot be established.

In [7] the authors proposed to tune the additional parame-
ter k0 of the disturbance estimator as k0 = 1/(2τ). The paper
does not provide a robust stability analysis with respect to
the delay uncertainty. Here we generalize the tuning rule
proposed in [7], by setting k0 = β/τ for β ∈ (0, π), and we
compute the bound on k∆ to retain the stability as function
of kτ and β.

For a fixed β ∈ (0, π), we denote with δβ(α) the
maximum delay uncertainty k∆ that can be allowed to
retain asymptotic stability. By considering the characteristic
equation (11) for a fixed value of α > 0, and solving
the inequalities (3) and (4), it is possible to show that the
frequency crossing set is Ωα = [ωa(α), ωb(α)] and that the
stability crossing curves are a series of spiral-like curves [15].
By using the same approach shown in Section IV-A, and
for a fixed α, we are able to draw the stability crossing
curves (SCC) in the kτ, k∆ parameter space. Fig. 4 (a)
and Fig. 4 (b) show the SCC in the case of α = 0.1 and
α = 1 respectively. Both the figures show a vertical line
with abscissa kτ = β/α. Since α = k0/k, it turns out that
kτ = βk/k0 which gives k0 = β/τ , that is the tuning rule we
are employing for k0. This means that δβ(α) is the minimum
distance between the point (β/α, 0) and a generic SCC along
the vertical line with abscissa β/α.
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To show the effect of β on δβ(α), let us consider Fig. 4 (a):
the vertical line is shown for β = 0.5, which is the tuning
rule proposed in [7]; it is clear that, when β increases, the line
moves to the right and eventually, for values of β close to π,
δβ(α) decreases. This situation is more evident in the case of
α = 1 (Fig. 4 (b)) where increasing β results in decreasing
δβ(α) almost linearly. It is possible to numerically compute
δβ(α) as follows: for a fixed β ∈ (0, π), we let α to vary in
(0, α) and, by using the same geometric arguments we have
described in Section IV-A, we can compute δβ(α). Then,
once δβ(α) has been computed, it is possible to easily get
δβ(kτ) by observing that kτ = β

α .
Fig. 5 shows the curves δβ(kτ), marked with the value of

β, for β ∈ {0.1, 0.2, . . . , 1.5} and for kτ ∈ [0, 15]. The
figure also shows the maximum delay uncertainty of the
standard Smith predictor, marked with the label “SP+K”.
The figure shows that the standard Smith predictor is more
robust with respect to the modified Smith predictor proposed
in [7]. Also, as expected, the robustness of the modified
Smith predictor degrades when β increases, i.e. when the
disturbance estimator is made faster.

To conclude this section, we consider the robust stability
with respect to relative mismatches, i.e. ∆/τ , which are
particularly important in the case of congestion control for
data networks, since the delay mismatch is due to queuing
time. The maximum queuing time can be modelled as Tq '
B/b, where B is the maximum queue length (in bytes) and
b is the capacity of the bottleneck link (in bytes/s) [10].
Typically, the maximum queue length B is tuned using the

TABLE I: Maximum kτ as function of β to ensure stability
wrt 100% relative delay mismatch

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7
kτ 2.90 2.49 1.09 0.6 0.37 0.23 0.11

bandwidth delay product rule of thumb, i.e. B = b ·τ . Using
such tuning rule the maximum queuing time turns out to
be Tq = τ , and thus the maximum relative delay mismatch
∆/τ = 1. Thus, it is important to tune the parameters k0 and
k such that the closed loop system is asymptotically stable
for ∆/τ ≤ 1.

Fig. 6 shows the maximum relative mismatch ∆max/τ to
retain stability in the case of 1) the standard Smith predictor,
marked as “SP+K”, and 2) the modified Smith predictor1 [7]
for β ∈ {0.1, 0.2, . . . , 1.5}. The dashed line in the figure
represents the 100% delay mismatch: it is clear that when β
increases, i.e. the disturbance is rejected faster, the maximum
kτ value that can be used to be robust to a 100% delay
mismatch decreases, which means that k has to decrease,
which results in a slower step-response.

Table I shows the maximum value of kτ as function of
β to ensure stability with respect to 100% relative delay
mismatch2: the tuning rule proposed in [7], i.e. k0 = 1/(2τ),
imposes to use a maximum value of k = 0.37/τ , whereas the
standard Smith predictor ensures ∆max/τ > 1.4025 when
k < 2.9844/τ .

V. NUMERICAL RESULTS

In this Section we provide the simulation results obtained
by employing a Matlab SIMULINK model of Fig. 1, where
two saturation blocks have been included to avoid that both
the input rate r(t) and the queue length q(t) get negative. The
set-point queue w(t) is a step function starting at t = 0s and
with a final value of 150packets. The available bandwidth
b(t) varies as a step-function starting at t = 1s, and having
a final value equal to 100packet/s. The nominal RTT of the
connection is τ = 0.25s. We consider a constant relative
delay uncertainty ∆/τ equal to either 0%, 50%, or 100%.
The gain k in the case of the standard Smith predictor (SSP)
has been set equal to k = γ∗/τ ' 11.938s−1 which is the
maximum value of k ensuring robustness up to 140.25%
relative delay mismatch. It is worth noting that it is not
possible to find a value of k which ensures a maximum
relative delay mismatch equal to 100% since, as it is shown
in Fig. 6, ∆max/τ is discontinuous at kτ = γ∗ and jumps
from 1.4025 to 0.5479.

In the case of the modified Smith predictor (MSP), the
disturbance estimator gain k0 employs the tuning rule k0 =
β/τ with three values for β, i.e. 0.2, 0.3, and 0.5. In this
case, the gain k has been tuned for each of the considered
value of β by means of Table I which ensures robustness up
to 100% relative delay mismatch. Table II summarizes the
tuned parameters used in the simulations.

1The tuning rule proposed in [7], corresponds to the curve marked with
0.5 in Fig. 6.

2The table does not consider the case with β ∈ {0.8, 0.9, . . . , 1.5} since
for such values of β it does not exist a value of kτ such that the maximum
relative mismatch is greater than 100%.
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Fig. 7: Input rate r(t), error w(t)−q(t), and estimated disturbance b̂(t), in the case of the standard Smith predictor (“SP+K”)
and the modified Smith predictor with β ∈ {0.2, 0.3, 0.5}

TABLE II: k and k0 used in the simulations

Gains
β 0 (SP+k) 0.2 0.3 0.5

k 11.938 9.96 4.36 1.48
k0 0 0.8 1.2 2

Fig. 7 shows the input rate r(t), the error w(t)−q(t), and
the estimated disturbance b̂(t), obtained in the case of ∆/τ
equal to 0% (Fig 7 (a)), 50% (Fig. 7 (b)), 100% (Fig. 7 (c)).

Fig. 7 (a) shows the results in the case of zero delay
mismatch: the input rate r(t) in the case of the standard
Smith predictor (“SP+K”) reaches the steady-state without
overshoots since the closed loop system is equivalent to a
first-order system with time constant 1/k delayed of τ sec-
onds. The figure also shows that, as expected, the disturbance
b(t) is not rejected and a positive steady state error is present.
Regarding the MSP, the figure shows that with higher values
of β the estimated disturbance b̂(t) tracks b(t) faster, at the
expense of larger overshoots of the input rate r(t). Finally,
the SSP provides a settling time much lower with respect
to the one obtained by the MSP. Fig. 7 (b) shows that,
when the relative delay mismatch is 50%, oscillations of r(t)
get more pronounced, with the SSP controller providing a
smaller overshoot and a lower settling time. Fig. 7 (c) shows
that when ∆/τ = 1, the closed loop system in the case
of the modified Smith predictor is marginally stable. This is
expected, since we have tuned k and k0 to ensure asymptotic
stability for ∆/τ < 1. In the case of the SSP, the system is
still asymptotically stable since, as we already mentioned,
the tuned gain provides asymptotic stability up to 140.25%.

VI. CONCLUSIONS

In this paper we have considered the modified Smith
predictor (MSP) proposed in [7] as a candidate for the
implementation of a congestion control algorithm for com-
puter networks which is able to reject the disturbance,
i.e. the bottleneck available bandwidth, at steady state. By
employing the geometric approach proposed in [15], we have
quantitatively assessed the trade-off between disturbance
rejection and robustness of the controller in the face of delay
uncertainty.

In particular, for the standard Smith predictor (SSP) it
is possible to establish a delay-independent necessary and
sufficient condition that can be used to tune the proportional
gain k, but the disturbance cannot be rejected; on the other
hand, the MSP rejects the disturbance at steady state at the
expense of being less robust with respect to the SSP. Finally,
a guideline for the tuning of the additional parameter k0 used
in the disturbance estimator is also given.
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