
1

ELASTIC: a Client-side Controller for Dynamic

Adaptive Streaming over HTTP (DASH)
Luca De Cicco, Member, IEEE, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo, Senior Member, IEEE

Abstract—Today, video distribution platforms use adaptive
video streaming to deliver the maximum Quality of Experience
to a wide range of devices connected to the Internet through
different access networks. Among the techniques employed to
implement video adaptivity, the stream-switching over HTTP is
getting a wide acceptance due to its deployment and implemen-
tation simplicity. Recently it has been shown that the client-side
algorithms proposed so far generate an on-off traffic pattern
that may lead to unfairness and underutilization when many
video flows share a bottleneck. In this paper we propose ELAS-
TIC (fEedback Linearization Adaptive STreamIng Controller),
a client-side controller designed using feedback control theory
that does not generate an on-off traffic pattern. By employing
a controlled testbed, allowing bandwidth capacity and delays to
be set, we compare ELASTIC with other client-side controllers
proposed in the literature. In particular, we have checked to what
extent the considered algorithms are able to: 1) fully utilize the
bottleneck, 2) fairly share the bottleneck, 3) obtain a fair share
when TCP greedy flows share the bottleneck with video flows.
The obtained results show that ELASTIC achieves a very high
fairness and is able to get the fair share when coexisting with
TCP greedy flows.

I. INTRODUCTION

The Internet traffic due to video applications is increasing
thanks to the diffusion of new devices such as tablets, smart
phones, Smart TVs which are connected to the Internet through
broadband wired and wireless connections. Video streaming,
in the form of user-generated video distribution – such as in
the case of Youtube – or to deliver movies and TV series –
such as in the case of Netflix – is the application that is driving
this growth.

Even though the TCP has been regarded in the past as
unsuitable to transport video flows, today videos are streamed
through HTTP with the TCP, and web browsers implementing
the HTML5 standard are now able to reproduce videos without
the use of any external plug-in.

The most common approach to distribute video is the
progressive download streaming: the video content is encoded
at a given bitrate and it is sent to the user as any other file
through a HTTP connection. The issue with this approach
is that, even though TCP connections are elastic, the video
content transported through the TCP socket is not elastic; thus,

L. De Cicco, V. Palmisano, and S. Mascolo are with the Dipartimento di
Ingegneria Elettrica e dell’Informazione at Politecnico di Bari, Via Orabona
4, 70125, Bari, Italy Emails: l.decicco@poliba.it, vpalmisano@gmail.com,
mascolo@poliba.it

V. Caldaralo is with CRAT Bari, Via Orabona 4, 70125, Bari, Italy, Email:
vito.caldaralo@gmail.com

a persistent mismatch between the encoding bitrate and the net-
work available bandwidth may result in playout interruptions.
Another drawback of such an approach is that mobile devices,
such as tablets or smart phones, may not be able to play a high
definition video due to their limited computational resources.

To tackle these issues, the video content must be made
adaptive. Among the approaches proposed so far, the stream-
switching is gaining momentum due to its deployment and
implementation simplicity. With this approach, the video is
encoded at different bitrates and resolutions, the video levels,
and the encoded videos are logically or physically divided into
segments of fixed durations. The stream-switching controller
decides, for each video segment, the video level to be streamed.

From the architectural standpoint, two different approaches
can be used to implement a stream-switching algorithm: the
client-side, that places the controller at the client, and the
server-side, that implements the controller at the server. It
has been shown that the client-side algorithms proposed so far
generate an on-off traffic pattern at steady-state that can lead to
unfairness when many video flows share a bottleneck [1], [2],
[9]. Moreover, in [7] it has been established that the adaptive
video players of three popular video streaming services were
not able to get a fair share when coexisting with a TCP greedy
flow. Authors name this issue the “downward spiral effect”
and ascribe its cause to the on-off traffic pattern described
above; authors suggest to increase the segment size and filter
bandwidth estimates to tackle this issue.

In this paper we show that it is possible to implement a
client-side player that does not generate an on-off traffic pattern
and avoids the “downward spiral effect” without increasing the
segment size, and without using large player buffers.

The contribution of this paper is two fold: firstly, we pro-
pose ELASTIC (fEedback Linearization AdaptIve STreamIng
Controller), a client-side stream-switching controller designed
using feedback control theory that avoids the generation of on-
off traffic pattern and is able to fairly share the bottleneck with
other videos and TCP greedy flows; secondly, we compare the
performances of ELASTIC with 1) a conventional client-side
algorithm, 2) PANDA [11], and 3) FESTIVE [8].

To quantitatively evaluate the performances of the consid-
ered algorithms, we have used a controlled testbed allowing
bandwidth capacity and delays to be set. In particular, we have
considered two scenarios: 1) a number of video flows using
the same control algorithm sharing a bottleneck; 2) Nv video
flows sharing the bottleneck with NTCP TCP greedy flows.

The paper is organized as follows: Section II reviews
the state of the art of adaptive video streaming proposals;
in Section III ELASTIC is presented; Section IV describes
the employed testbed; Section V presents the results of the



2

experimental evaluation and Section VI concludes the paper.

II. RELATED WORK

Today, adaptive streaming is employed by major commercial
services such as NetFlix, Hulu, Vudu, Akamai, Livestream, and
YouTube.

The leading architectural approach to implement adaptive
streaming places the controller at the client so that standard
HTTP servers can be used for video distribution [15] and
scalability can be easily obtained using CDNs. Typically,
adaptive players work as follows: at the beginning of the
connection the player requests the video segments, of fixed
duration τ , through consecutive HTTP GET requests in order
to build the buffer; then, when a certain amount of video is
stored in the playout buffer, the buffering-phase is completed
and the player enters in the steady-state phase; while in this
state, the player strives to maintain the playout buffer level
constant by issuing the HTTP requests each τ seconds. Thus,
the player generates a on-off traffic pattern during the steady-
state: the video segments are downloaded during the ON phase
and then, during the OFF phase, the player remains idle until
the next download is started [9], [1], [3].

Recently, several studies have analyzed the issues of client-
side adaptive streamers. In [7] it has been shown that three
commercial services, Hulu, Vudu, and Netflix, employing
client-side adaptation were not able to obtain the fair share
when competing with long-lived TCP connections and, as a
consequence, videos did not receive the maximum possible
video quality. Authors have ascribed this issue to the on-off
traffic pattern described above. In [1] authors find that the on-
off traffic pattern is the key factor causing the following three
issues: unfair bandwidth utilization, server bandwidth underuti-
lization, flickering of the player requested video level. Similar
observations regarding the server bandwidth underutilization
have been reported in [9].

To tackle those issues, several adaptive streaming algorithms
have been proposed so far. FESTIVE has been the first adaptive
video streaming algorithm specifically designed to address the
fairness issues arising in a multi-client scenario [8]. Another
recent proposal can be found in [11], where authors design
PANDA, an algorithm that dynamically computes the segment
inter-request time to address fairness issues, and video bitrate
oscillations. A different approach has been followed in [2],
where authors propose to place a traffic shaper at the server
with the goal of eliminating the OFF phases when the player
is in steady-state.

In [4] it has been shown that the automatic stream-switching
system of a major CDN operator employs a different approach
wrt the classic client-side architecture. In particular, such
streamer employs a hybrid sender-side/client-side architecture
with two controllers running at the client: one for selecting
the video level, the other that throttles the sending rate at the
server for controlling the playout buffer length at the client.
Moreover, the system does not issue many HTTP GET requests
to download the segments, but controls the video level to be
streamed through commands sent via HTTP POST requests
to the server. This feature makes this system interesting and
unique wrt those which entirely rely on client control.

HTTP
Server

Measurement
Internet

Player

Controller

Client

Playout
Buffer

l(t−T )

b̂(t)

q(t)

l(t) l(t−Tf )

r(t)

Figure 1. Client-side adaptive video streaming

In [5] a sender-side only video stream switching algorithm
is designed by using feedback control theory. The algorithm
has been experimentally compared with the adaptive streamer
described in [4].

III. ELASTIC

In this section we propose ELASTIC, a client-side adaptive
streaming algorithm designed using feedback control theory.
In Section III-A we present the design requirements; Section
III-B describes the control system model; in Section III-C the
control algorithm is presented, and Section III-D provides the
controller implementation details.

A. Design requirements

The main goal of a stream-switching controller is to dynam-
ically select the video level l(t) ∈L = {l0, . . . , lN−1} for each
video segment to achieve the maximum Quality of Experience
(QoE). Even though a widely accepted QoE metric for adaptive
video streaming is still not available, recently several authors
have studied the key factors impairing user engagement [6],
[13]. Indeed, re-buffering events, occurring when the player
buffer gets empty, have been identified to be one of the major
causes impairing user engagement [6]. Moreover, it has been
shown that frequent quality switches may be annoying to the
user [13], thus limiting video level switches is considered a
design requirement by several proposed algorithms [8], [11].

A key factor that may improve the QoE is the video level
received by the client: in principle the higher the bitrate
and resolution, the better the perceived quality. Indeed, the
quantification of how the video level affects the perceived QoE
is subject of ongoing research efforts [14], [6], [12].

Summarizing, we consider the following design goals for
ELASTIC: 1) minimize the re-buffering ratio; 2) maximize
the obtained video level; 3) contain the video level switches;
4) provide fair sharing of the bottleneck when coexisting with
other video or long-lived TCP flows.

B. The control system model

Figure 1 shows the block diagram of a client-side adaptive
video streaming system: the HTTP server sends the video to
the client through an Internet connection with an end-to-end
bandwidth b(t) and a round-trip-time (RTT) equal to T . The
client receives the video segments at a rate r(t), bounded



3

– on average – by b(t), and temporarily stores them in a
playout buffer that feeds the player decoder. The controller
dynamically decides, for each video segment, the video level
l(t) to be downloaded sending a HTTP GET request to the
HTTP server. The measurement module feeds the controller
with measurements such as the estimated bandwidth b̂(t) and
the playout buffer level q(t).

C. The adaptive streaming controller

The conventional approach to implement a stream-switching
system is to design two controllers [3], [4], [7], [11]: the
first one throttles the video level l(t) to match the measured
available bandwidth b(t), the second one controls the playout
buffer length q(t) by regulating the idle period between two
segment downloads. In Section II we have reported that the on-
off traffic pattern is the key factor causing 1) unfair sharing
of bottleneck when multiple video flows coexist, and 2) low
channel utilization when in the presence of long-lived TCP
flows.

Differently from the conventional approach, ELASTIC only
uses one controller that throttles the video level l(t) to drive
q(t) to a set-point qT . This means that we do not require to
idle between segment downloads to regulate q(t). Indeed, by
reaching the controller goal, i.e. q(t)→ qT , the video level l(t)
also matches the available bandwidth b(t), i.e. the maximum
possible video level is obtained.

The playout buffer length q(t) can be mathematically mod-
elled by the following non-linear time-delay differential equa-
tion:

q̇(t) =
r(t)

l(t−T)
− d(t) (1)

where d(t) is the player draining rate (dimensionless) which
can be modelled as follows:

d(t) =

{

1 playing

0 paused or q(t) = 0
(2)

The rationale of (1) is simple: the term r(t)/l(t−T ), the ratio
between the received rate and the received video level, models
the playout buffer filling rate, i.e. how many seconds of video
are stored in the buffer per second; the second term d(t) is the
draining rate, i.e. how many seconds of video are played per
second. When the video is playing the draining rate is 1, since
the player drains one second of video per second, whereas
when the player is paused, d is zero allowing video segments
to be buffered.

The video level l(t) is the output of the controller, q(t) is the
output of the control system, whereas r(t) can be modelled as a
disturbance. It is important to notice that l(t) can only assume
values in the discrete set L , i.e. the output of the controller
is quantized.

In the following we employ the feedback linearization
technique to compute a control law that linearizes (1) and that
steers q(t) to the set-point qT . To this end, we impose the
following linear closed-loop dynamics for the queue:

1: On segment download:
2: ∆T ← getDownloadTime()
3: S← getSegmentSize()
4: d← isPlaying()
5: q← getQueueLength()
6: r← h(S/∆T)
7: qI ← qI +∆T · (q− qT )
8: return Quantize(r/(d− kpq− kiqI))

Figure 2. ELASTIC controller pseudo-code

Sender
TCP

Server
HTTP

Receiver
TCP

Internet

Measurement
point

Adaptive

Client Host
Player
Video

Server Host

NetShaper

Figure 3. Testbed setup.

q̇(t) = −kpq(t)− kiqI(t) (3)

q̇I(t) = q(t)− qT (4)

where qI is an additional state that holds the integral error,
kp ∈R+ and ki ∈R+ are the two parameters of the controller.

Now, by equating the right-hand sides of (1) and (3), it turns
out:

l(t− τ) =
r(t)

d(t)− kpq(t)− kiqI(t)
(5)

that is the control law employed for the stream-switching
controller.

D. Implementation

Figure 2 shows the pseudo-code of the controller. When a
segment is downloaded, the following quantities are measured:
1) the time spent to download the segment ∆T (line 2); the
last downloaded segment size S in bytes (line 3); state of the
player d (line 4); the playout buffer length (line 5); the received
rate r is estimated by passing the last segment download rate
S/∆T through a harmonic filter h(·) over the last 5 samples of
r (line 6). Then, the integral error qI is updated (line 7) and
the control law is computed using (5) (line 8).

IV. TESTBED

In this Section we provide the details of the testbed, the
scenarios, and the metrics employed to carry out the experi-
mental evaluation of the considered adaptive video streaming
algorithms.

A. The testbed

Figure 3 shows the testbed that we have employed to carry
out the experimental evaluation: the HTTP, and the TCP
servers are installed on a Debian Linux server, whereas a



4

Table I. DISCRETE SET OF VIDEO LEVELS L .

Video level l0 l1 l2 l3 l4
Bitrate (kbps) 300 700 1500 2500 3500

Resolution 320x180 640x360 640x360 1280x720 1280x720

Ubuntu Linux client machine runs the Adaptive Video

Player (AVP) and the TCP receiver. We employ Apache
as the HTTP server and IPerf as the TCP server and receiver.
At the receiver we have used a tool developed by us called
NetShaper that performs bandwidth shaping and allows
propagation delays to be set. This tool uses the nfqueue

library provided by Netfilter1 in order to capture and
redirect the packets arriving at the client host to a user space
drop-tail queue, where traffic shaping and measurement are
performed.
AVP is implemented using the GStreamer2 libraries and

supports the HTTP Live Streaming (HLS) format3. We imple-
mented several client-side algorithms as AVP plugins, which
can be selected from a command line option. The AVP has been
designed to be as light as possible to allow the same receiving
host running a large number of video player instances at the
same time. The player logs 1) the playout buffer length q(t), 2)
the video level l(t), 3) the cumulative downloaded bytes D(t),
4) the cumulative re-buffering time Trb(t), 5) the number of re-
buffering events nrb(t), 6) the number of level switches ns(t).

To run the experiments, we have employed the video se-
quence “Elephant’s Dream”4 encoded at five different bitrates
as shown in Table I. The video is encoded at 30 frames
per second (fps) using the H.264 codec with a fixed group
of picture (GOP) of length 30, so that two consecutive I-
frames are 1s apart and time-aligned between different levels;
the audio is encoded using MP3 codec at 128 kbps bitrate.
Moreover, in order to provide the HLS support for testing the
client side algorithms, we have produced a set of fragmented
videos for each level using the MPEGTS container, with a
fragment duration of 2s, and for each set we have stored the
m3u8 playlist accordingly. All the HLS files (.ts fragments
and .m3u8 playlists) are served by the Apache server config-
ured with a KeepAliveTimeout of 60s to support HTTP
persistent connections. It is worth mentioning that we have
also run the experiments without using persistent connections
and we have recovered the poor results presented in [10]
particularly when video flows shared the bottleneck with TCP
greedy flows. Due to space limitations, we only present the
results using HTTP persistent connections in this paper.

B. Scenarios and metrics

We have considered two scenarios: (S1) two total connec-
tions (video and TCP) sharing a bottleneck link whose avail-
able bandwidth is set to b = 4Mbps; this scenario is aimed at
showing the dynamic behaviour of the considered algorithms;
(S2) a variable number of total connections (video and TCP)

1http://www.netfilter.org/
2http://gstreamer.freedesktop.org/
3http://tools.ietf.org/html/draft-pantos-http-live-streaming-07
4http://orange.blender.org/

Table II. METRICS DEFINITION

Symbol Name Definition

r Received rate
downloaded bytes

time interval
U Channel utilization r/b

JFI Jain Fairness Index (∑n
i=1 ri)

2 /
(

n∑
n
i=1 r2

i

)

RB Re-buffering ratio
total re-buffering time
experiment duration

ns video level switches

over a bottleneck link whose available bandwidth is set to
b = 40Mbps. For each scenario the round-trip propagation
delay is set to 50 ms.

For the scenario (S1) we will show the dynamics of the
following variables: the received video level l(t) and the
received video bitrate r(t). In the scenario (S2) we employ
the metrics defined in Table II to compare the performances
of the considered algorithms. In order to evaluate the fairness
in the case n video flow share the bottleneck, we measure the
Jain Fairness Index (JFI):

JFI =
(∑n

i=1 ri)
2

n∑
n
i=1 r2

i

where ri is the average received rated obtained by the i-th
video flow.

C. The considered algorithms

To carry out the experimental evaluation, we have imple-
mented the following algorithms in the Adaptive Video Player:

1) ELASTIC according to the description given in Section
III with kp = 1/100,ki = 1/1000;

2) FESTIVE according to [8];
3) PANDA according to the implementation details given

in [11, Table II];
4) the conventional controller as described in [11]; the

parameters have been set with the values specified in
[11, Table II];

All the players employed a threshold for the playout buffer
length equal to 15s.

V. RESULTS

A. Two total connections sharing a 4 Mbps link

In this scenario we investigate the dynamic behaviour of the
considered algorithms when sharing a 4Mbps bottleneck link
in two cases: 1) two videos using the same control algorithm
sharing the bottleneck; 2) one video and one TCP flow share
the bottleneck. The experiment duration is 300s. The fair share
in this experiment is 2 Mbps, that corresponds to a video level
between l2 (1.5 Mbps) and l3 (2.5 Mbps).

Figure 4 shows the dynamics of the received video bitrate
for each algorithm in the case two video flows share the
bottleneck. Both the video connections start at t = 0 s. The
figure shows that the Conventional player and PANDA exhibit
similar dynamics: in both the cases the two video flows obtain
the same video level and exhibit very few video level switches;
however, the steady-state received rate obtained by the two
competing flows is below the fair share, indicating that the



5

channel is not fully utilized. On the other hand, the other two
controllers provide a received video rate that oscillates around
the fair share, but with an increased number of video level
switches.

Let us now consider the case of a video flow sharing the
bottleneck with a long-lived TCP flow starting at t = 100s.
Figure 5 shows the dynamics of the received video bitrate and
the TCP bitrate for each of the considered algorithms. The
figure clearly shows that Conventional, PANDA, and FESTIVE
are not able to obtain the fair share when coexisting with a
TCP flow showing the “downward spiral effect” shown in
[7]. In particular, the steady-state video levels obtained by
Conventional, PANDA, and FESTIVE are respectively l0, l1
and l1. On the other hand, ELASTIC obtains a bitrate very
close to the fair share, with a video level oscillating between
l2 and l3.

The ELASTIC flow is able to get the fair share when
coexisting with a long-lived TCP flow because it does not
produce an on-off traffic pattern thus behaving as a TCP flow.

Conv. PANDA FESTIVE ELASTIC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

 

 
video 1 video 2 TCP

Figure 6. Channel utilization in the case of two flows (either two videos or
one video and one TCP) sharing a 4Mbps link

Figure 6 shows the channel utilization for each flow of all
the experiments presented above. ELASTIC obtains the best
results in both the scenarios, obtaining the highest channel
utilization (0.95) and a fair utilization of the bottleneck. In
the case two video flow share the bottleneck, Conventional,
PANDA, and FESTIVE obtain a total channel utilization
respectively equal to 0.82, 0.85, and 0.93. When a conventional
flow shares the bottleneck with a TCP flow, it obtains only
10% of the bottleneck capacity. Finally, PANDA and FESTIVE
obtain roughly 20% of the bottleneck capacity when coexisting
with a TCP flow.

To summarize, this scenario has shown that the proposed
controller is able to get the fair share when coexisting with a
concurrent TCP flow due to the fact that it does not generate
an on-off traffic pattern.

B. Nv videos sharing a 40Mbps link with NTCP long-lived TCP
flows

In this scenario we investigate the behaviour of the con-
sidered algorithms when a 40 Mbps bottleneck link is shared
among a variable number of video flows and TCP connections.

N = 11 N = 15 N = 25 N = 50

(l4) (l3) (l2) (l1)

Nv NTCP Nv NTCP Nv NTCP Nv NTCP
NTCP

N

11 0 15 0 25 0 50 0 0

8 3 11 4 18 7 38 12 1/4

5 6 7 8 12 13 25 25 1/2

3 8 4 11 6 19 12 38 3/4

Table III. EXPERIMENTS SETUP WITH A VARIABLE NUMBER OF

CONNECTIONS

11 15 25 50
0.7

0.8

0.9

1

Video flows

U

 

 
Conv. FESTIVE PANDA ELASTIC

(a) Channel utilization

11 15 25 50
0.9

0.95

1

Video flows

JF
I

 

 
Conv. FESTIVE PANDA ELASTIC

(b) Jain Fairness Index

Figure 7. A variable number of video flows sharing a 40Mbps link (NTCP = 0)

The video flows start at t = 0s, whereas the TCP flows start
at 100s. The total duration of the experiment is 300s. The
total number N of flows varies in the set N = {11,15,25,50}
so that for each N ∈ N the fair share can be computed as
F = 40Mbps/N.

For each N ∈N we vary the number of TCP flows NTCP

such that the fraction of TCP flows NTCP/N is equal to 0, 1/4,
1/2, 3/4. Table III shows the values of Nv and NTCP employed
in each experiment. The table also shows for each N ∈N the
optimal video level that each flow should get. It is important
to notice that all the reported metrics have been evaluated for
t > 100s, after all the TCP flows are started.

We start by considering a variable number of videos Nv

without concurrent TCP flows (NTCP = 0) with the aim of
investigating the fairness and the efficiency in utilizing the
bottleneck.

Figure 7 (a) shows the channel utilization U function of
Nv. ELASTIC provides the best results: the channel utilization
does not depend on Nv and it is roughly equal to 0.96. On



6

0 100 200 300
0

1

2

3

4

Le
ve

l

time(sec)

0 100 200 300
0

L0=300
L1=700

1000
L2=1500

2000
L3=2500

L4=3500
4000

5000
Conventional

kb
ps

0 100 200 300
time(sec)

0 100 200 300

PANDA

0 100 200 300
time(sec)

0 100 200 300

FESTIVE

0 100 200 300
time(sec)

0 100 200 300

ELASTIC

 

 

video 1 video 2 fair share b

Figure 4. Two video flows sharing a 4Mbps bottleneck link.

0 100 200 300
0

L0=300
L1=700

1000
L2=1500

2000
L3=2500

L4=3500
4000

5000
Conventional

kb
ps

0 100 200 300
0

1

2

3

4

Le
ve

l

time(sec)

0 100 200 300

PANDA

0 100 200 300
time(sec)

0 100 200 300

FESTIVE

0 100 200 300
time(sec)

0 100 200 300

ELASTIC

 

 

video TCP flow fair share b

0 100 200 300
time(sec)

Figure 5. One video flow sharing a 4Mbps bottleneck link with a TCP flow

the other hand, the other algorithms exhibit a lower channel
utilization for Nv = 11 that increases with Nv. Figure 7 (b)
shows that the JFI obtained by all the considered algorithms
is in the range [0.96,1].

Figure 8 shows the average video rate function of N ∈
{11,15,25,50} and of NTCP/N ∈ {0.25,0.5,0.75} along with
the fair share drawn with a dashed line.

The figure shows that, regardless of the total number of
flows N and of the fraction of TCP flows NTCP/N, ELASTIC
always obtains an average video rate that is very close to the

fair share and to the optimal video level.

The average video rate obtained by FESTIVE does not
depend on the fraction of TCP flows but it is affected by
the total number of connections. In particular when N = 11,
FESTIVE obtains an average video rate of around 2500kbps
which corresponds to roughly 70% of the fair share, whereas
when N increases the average rate approaches to the fair share.

Let us now consider Conventional and PANDA that achieve
similar results: Figure 8 clearly shows that the efficiency in
sharing the bottleneck decreases when the fraction of TCP



7

0.25 0.5 0.75

N = 25 flowsN = 15 flowsN = 11 flows

N
TCP

/N

kb
ps

0.25 0.5 0.75
1600

1800

2000

2200

2400

2600

2800

N
TCP

/N
0.25 0.5 0.75

800

1000

1200

1400

1600

1800

N
TCP

/N
0.25 0.5 0.75

300

400

500

600

800

900
N = 50 flows

N
TCP

/N

Conv. FESTIVE PANDA ELASTIC

l4=3500

4000

3000

2500

2000

1500

l2=1500
l3=2500

l1=700

Figure 8. Average video rate when Nv videos share a 40 Mbps bottleneck with NTCP TCP flows

flows increases, meaning that each video flow leaves to the
TCP flows an increasing share of bandwidth when NTCP is
large. When N = 25 and NTCP/N = 0.75 both the algorithms
obtain an average video rate of 800 kbps which is close to l1 =
700kbps and well below the fair share 1600kbps that would
allow a video level l2 = 1500kbps.

Figure 9 shows the average number of switches provoked
by the considered algorithms. PANDA always provides the
best results, provoking on average less than 2 switches per
video flow. ELASTIC produces roughly the same number of
video switches in all the considered experiments. A maximum
of 8 switches per flow is obtained for N = 15 flows. The
number of switches exhibited by FESTIVE increases with
N but does not depend on the number of concurrent TCP
flows. The worst performance is obtained for N = 25 where
FESTIVE provokes around 20 level switches. The number
of level switches provided by the Conventional algorithm is
lower than the one provoked by ELASTIC for N ≥ 15 and it
decreases with the number of concurrent TCP flows.

To conclude the performance evaluation, we consider the
re-buffering ratio. Figure 10 only shows the re-buffering ratio
in the case N = 50, since for N < 50 we have measured re-
buffering ratios always less than 1% for all the considered
algorithms. The figure shows that both ELASTIC and Con-
ventional provide re-buffering ratios that are less than 5%.
On the other hand, FESTIVE and PANDA exhibit increasing
re-buffering ratios when the number of TCP flows increases.
In particular, when NTCP/N = 0.75 FESTIVE and PANDA
provoke respectively 17% and 12% rebuffering ratios.

VI. CONCLUSIONS

In this paper we have proposed ELASTIC, a client-side
stream-switching controller for dynamic adaptive streaming
over HTTP designed using feedback control theory. Differently
from the conventional approach, which employs two con-
trollers, one to throttle the video level, the second to regulate
the playout buffer, ELASTIC only uses one controller that
computes the video level l(t) to drive the playout buffer to

0 0.25 0.5 0.75
0

0.05

0.1

0.15

0.2
N = 50 flows

R
eb

uf
fe

rin
g 

ra
tio

N
TCP

/N

 

 
Conv. FESTIVE PANDA ELASTIC

Figure 10. Rebuffering ratio in the case of a variable number of video flows
sharing a 40Mbps link.

a set-point. With the conventional approach an on-off traffic
pattern is generated which is known to be the cause of
underutilization when coexisting with long-lived TCP flows
[7], whereas ELASTIC always generates a traffic pattern that
is identical to any long-lived TCP flow.

We have experimentally compared the performance of
ELASTIC with three client-side algorithms in a controlled
testbed: 1) FESTIVE [8], 2) PANDA [11], and 3) a conven-
tional player. We have found that all the considered algorithms
provide high channel utilization and fairness when multiple
video flows share a bottleneck in the absence of concurrent
TCP flows. However, when a mix of video flows and TCP
flows share the bottleneck we have found that FESTIVE,
PANDA, and the conventional player are not able to always
get the fair share. On the other hand, the proposed controller
has been able to obtain the fair share in all the considered
scenarios, while providing a continuous reproduction of the
video and mitigating the video level switches.

Our future work will aim at carrying out a sensitivity
analysis of the performance of the control system wrt the
chosen video levels set L , on the controller parameters kp and
ki, and on the duration of the video segment. Finally, we aim at



8

0 0.25 0.5 0.75
0

1

2

3

4

5

6

7
N = 11 flows

N
TCP

/N

A
ve

ra
ge

 n
um

be
r 

of
 s

w
itc

he
s

0 0.25 0.5 0.75
0

2

4

6

8

10

12

14
N = 15 flows

N
TCP

/N
0 0.25 0.5 0.75

0

5

10

15

20
N = 25 flows

N
TCP

/N
0 0.25 0.5 0.75

0

2

4

6

8

10

12
N = 50 flows

N
TCP

/N

Conv. FESTIVE PANDA ELASTIC

Figure 9. Average number of switches in the case Nv videos share a 40 Mbps bottleneck with NTCP TCP flows

deriving fundamental properties of the control system, such as
the stability of the equilibrium as function of the parameters.

VII. ACKNOWLEDGEMENTS

This project has been made possible in part by the gift
CG #574954 from the Cisco University Research Program
Fund, a corporate advised fund of Silicon Valley Community
Foundation. This work has been also partially supported by
the Italian Ministry of Education, Universities and Research
(MIUR) through the PLATINO project (PON01 01007).

REFERENCES

[1] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. What
happens when http adaptive streaming players compete for bandwidth?
In Proc. of ACM NOSSDAV ’12, 2012.

[2] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. Server-
based traffic shaping for stabilizing oscillating adaptive streaming
players. In Proc. of ACM NOSSDAV ’13, 2013.

[3] S. Akhshabi, A. Begen, and C. Dovrolis. An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP. Proc.

of ACM MMSys 2011, pages 157–168, 2011.

[4] L. De Cicco and S. Mascolo. An adaptive video streaming control
system: Modeling, validation, and performance evaluation. IEEE/ACM

Transactions on Networking, in press.

[5] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback control for
adaptive live video streaming. In Proc. of ACM MMSys 2011, pages
145–156, 2011.

[6] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang. Understanding the impact of video quality on user
engagement. In Proc. of ACM SIGCOMM 2011, pages 362–373, 2011.

[7] T. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari.
Confused, timid, and unstable: picking a video streaming rate is hard.
In Proc. of ACM Internet Measurement Conference, pages 225–238,
2012.

[8] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive. In Proc.

of CoNEXT ’12, pages 97–108, 2012.

[9] T. Kupka, P. Halvorsen, and C. Griwodz. Performance of On-Off Traffic
Stemming From Live Adaptive Segmented HTTP Video Streaming. In
Proc. of IEEE Conference on Local Computer Networks, pages 405–
413, Oct. 2012.

[10] S. Lederer, C. Müller, and C. Timmerer. Dynamic adaptive streaming
over http dataset. In Proc. of ACM MMSYS ’12, pages 89–94, 2012.

[11] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran.
Probe and adapt: Rate adaptation for http video streaming at scale.
arXiv preprint arXiv:1305.0510, 2013.

[12] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang.
A case for a coordinated internet video control plane. In Proc. of ACM

SIGCOMM 2012, SIGCOMM ’12, pages 359–370, 2012.

[13] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen. Flicker effects
in adaptive video streaming to handheld devices. In Proc. of 19th ACM

international conference on Multimedia, pages 463–472. ACM, 2011.

[14] A. B. V. Sekar, A. Akella, S. S. I. Stoica, and H. Zhang. Developing
a predictive model of quality of experience for internet video. In Proc.

of ACM SIGCOMM ’13, 2013.

[15] I. Sodagar. The mpeg-dash standard for multimedia streaming over the
internet. IEEE MultiMedia, 18(4):62–67, 2011.


