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Abstract

This paper presents a feedback control algorithm for ATM congestion control in which ABR source rates are throttled
according to VC queue levels at intermediate nodes along the path. The goal is to “fill in” the residual bandwidth, without
exceeding a specified queue threshold. In order to obtain this, we propose a simple and classical proportional controller, plus
a Smith Predictor to overcome instabilities due to large propagation delays. As a result, each queue behaves as a simple first-
order dynamic system with a delay in cascade. The delay is out of the feedback loop, and therefore does not affect stabilitity.
Moreover, since the system dynamic is a first-order one, it is not only stable but it does not even have damped oscillations.
We show that this rate-based control scheme can actually be interpreted as a type of an end to end credit scheme. Finally, we
propose an effective EPRCA implementation in which each source computes its input rate based on the maximum queue level
along the path. Theoretical and experimental results show the fairness of the proposed control scheme, its efficiency under
the constraints of the EPRCA implementation, as well as its cell loss free property. © 1997 Elsevier Science B.V.
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1. Introduction

In an ATM network, in order to avoid congestion it is expected that the ABR traffic input rate be
regulated so that all entering cells can be completely delivered using the existing network resources (i.e.
queues, processing power and link transmission capacity). A classical control approach to deal with this
problem consists in monitoring the level of the unused resources and in feeding back the measured levels
to a controller which adjusts the ABR traffic input rates so that congestion is avoided.

The input rate control approach is known in literature as rate-based [4] in contraposition to the credit
approach [7] which, instead of the rate, aims at regulating the number of incoming cells. Many rate-based
algorithms can be found in literature. However, none of these is completely satisfactory either for its com-
plexity or for lack of stability properties, as is well reported in the excellent paper by Benmoharned and
Meerkov [3]. In fact, due to transmission and propagation delay, most algorithms exhibit persistent oscil-
lations. Furthermore, they have not been analyzed from the stability point of view, and so cannot guarantee
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the boundedness of the queues. Considering, for example, the well-known additive increase/multiplicative
decrease PRCA [2], it is neither possible to state its stability nor to guarantee cell loss avoidance. To our best
knowledge, the paper by Benmohamed and Meerkov [3] is the first attempt to develop an analytic method
for the design of congestion controllers which ensure good dynamic performance along with fairness in
bandwidth allocation. However, the control law proposed in that paper requires a complex adjustment of
control parameters in order to maintain stability and damp oscillations. Moreover, these parameters must be
dynamically tuned to the specific input traffic and network condition. Finally, it is difficult to prove global
stability, due to the complexity of the control strategy.

This paper presents a simple and effective rate-based congestion control algorithm capable of “filling
in” quickly the unused bandwidth with ABR traffic. The main appeal of the proposed congestion control
algorithm consists in the use of a simple, first-order dynamic model (for the queue levels) in cascade with
a delay. This yields the following properties: (a) the queue occupancy never exceeds maximum queue
capacity (i.e. no cell loss); (b) the queue occupancy dynamic is always stable for any positive proportional
gain K, thus relaxing the need to dynamically adjust this parameter in order to stabilize queues or damp
oscillations.

The paper is structured as follows: In Section 2, the network model, the queue model and the input rate
control law are presented along with an analytical study of the resulting dynamics; in Section 3 a discretized
version of the algorithm is developed and an interpretation in terms of credit based end to end flow control
is given. In Section 4 some further modifications are introduced to take into account the constraints of the
ATM Forum specifications [8] and a steady state input rates analysis is outlined. In Section 5 a comparison
with the PRCA algorithm is carried on, in Section 6 simulations results are reported, while conclusions are
addressed in the last section.

2. The model

In this section first the network and the queue model are presented. Next the input rates control law is pro-
posed along with an analysis of the transient and steady state behaviour of the continuous controlled system.

2.1. Network model

We mainly follow the notation reported in [3]. The network consists of N = {1, ..., n} nodes and
L ={1,...,1}links. Each link i is characterized by: transmission capacity ¢; = 1/, (cells/s); propagation
delay #d;; processing capacity 1/tpr; (cell/s), where tpr; is the time the switch i needs to take a packet
from the input and place it on the output queue. We assume that the processing capacity of each node is
larger than the total transmission capacity of its incoming links so that congestion is caused by transmission
capacity only. The network traffic is contributed by source/destination pairs (S, D), where S, D € N. To
each (S, D) connection is associated a virtual circuit (VC) mapped on the path p(S, D). Each source is
characterized by its maximum transmission speed, cs = 1/1;.

Each link maintains a separate queue for each virtual circuit VC passing through it. We indicate with
x;, j (¢) the occupancy at time ¢ of the queue associated with link ; and VC j»and with X? i the corresponding
queue threshold level. The control law computes the source input rate u(t) (cell/s). A key parameter for
this system is the bandwidth delay product 7d;/t; which represents the number of cells “in flight” on the
transmission link.
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Fig. 1. Queue dynamic model with a proportional controller.

2.2. Model of the queue behavior

In this section we present a model of the dynamic behavior of each queue in response to input and output
rate changes. We assume a deterministic fluid model approximation of cell flow. Each link maintains a
separate queue for each virtual circuit (VC) passing through it. The reason for this choice is to ensure,
through a round robin service discipline, the fair sharing of the link by each VC. Considering the queue
associated with the virtual circuit VC; at link i, the level of occupancy x;,j () at time ¢, starting at ¢ = 0
with x; ;(0) = 0, is the integral over the time (0, ¢) of the difference between the rate of packets entering
the queue (say u; j(¢)) and rate of packets leaving the queue (say d;, ;(1)):

!
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where T4 is the transmission delay from the input source to the i, j queue.
2.3. The rate control law

In this section, we present the control algorithm to regulate source rates. We propose a closed-loop control
based on feeding back the bottleneck queue occupancy. The feedback mechanism requires that each traffic
source emits one control cell (RM cell) every N data cells. Switches are required to write in the RM cells
the queue occupancy if this value is greater than the one already stored. In this way, at the destination,
each RM cell carries the maximum queue level over all the encountered switches and it comes back to the
source. Upon receiving of this value, the source updates the input rate. In order to control the queue level
x(t) ! for a specific VC, we initially use a simple proportional controller. Letting X° be a set point for the
queue level, we compute the difference between it and the current queue level x(¢). This difference, the
error e(t), is amplified by a positive constant gain K, so that Ke(#) is the input rate imposed to the vC
source. The proposed control implements the reasonable idea of enforcing an input rate proportional to the
room available in the queue. This mechanism tends to “fill the queue”, thus keeping link utilization high.

The calculated input rate Ke(z) at time ¢ will have effect on rate adjustments only after the round trip
delay along the path, i.e. the time that the computed rate needs to reach the source, change the rate value,
and finally returns to the queue as an inflow rate Ke(t). Fig. 1 depicts the block diagram of this system,
where Try, Tp, are the respective propagation delays involved, and RTD = Ty, + Ty is the round trip delay.
Note that, in wide area networks, the round trip delay is mostly determined by the propagation delay, so
we assume that this quantity is fixed and known in advance to the controller at source site. Notice that,

! From now on we drop the i, j subscripts, for the sake of simplicity.
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Fig. 2. Equivalent model of the queue dynamic in response to the threshold level.
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Fig. 3. Queue dynamic model using a proportional controller plus a Smith Predictor.

in Fig. 1, a generic controller X (s) is depicted where s stands for Laplace variable, rather than a simple
proportional controller X .

Let us first use a simple proportional controller, K (s) = K. Then, due to the large delay, the dynamic
behavior of the queue level might exhibit oscillations, and even become unstable. In order to reduce
oscillations it is necessary to reduce the amplification gain K, but this carries the drawback of a very long
transient, i.e. the input rate is not able to fill in rapidly the queue, making the outgoing link underutilized [6].

To stabilize this system, still preserving the ability of quickly “filling in” the available queue space, we
propose a classical Smith Predictor [9]. Following Smith’s principle, we substitute the controller X (s) in
Fig. 1 with a controller K*(s) (see Fig. 3) such that the resultant system dynamic is that of a first-order
system in cascade with a pure delay (Fig. 2), in the absence of the input d(r).

Thus, equating the transfer functions of the systems in Fig. 3 and in Fig. 2 one can verify that the Smith
Predictor controller K*(s) is given by

K
14+ K((1 — e RIDs)/5)’

where s is the Laplace transform variable. The Smith Predictor shown in Fig. 3 gives the following input
rate control equation:

K*(s) =

t I7TD
u@)=K | X°—x@t —Tp) — | u(t)dt' + u(t) dz’}
_ [rs+ )

t
=K |X°—x(t — Tp) — / u(@Hde'|. )
t—RTD

Note that this equation implements a simple proportional control action with the difference that the actual
queue level is increased by the number of cells transmitted during the last round trip delay. Thus the physical
interpretation is that the controller reacts as if all the “in flight” cells were in the bottleneck queue.

To describe the dynamic of the system it is helpful to look at the equivalent system shown in Fig. 2. In
this figure we can observe two parts:
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(a) The first one, containing the integrator, the constant gain K, and the delay free feedback loop is a
first-order system, and thus is stable for any positive value of the parameter K. This parameter affects
the transient behavior only. Namely 1/K is the system time constant 7 (meaning that after 47 intervals
the system reaches stationary condition). Moreover, the dynamic response to a step function does
not exhibit oscillations in reaching the stationary state. This implies that the queue occupancy never
overshoots the set point level X°, and hence the set point can be set equal to the queue capacity without
ever incurring cell loss,

(b) The second part consists of a pure delay block that causes a shift in time of the queue level x (7).

Concluding, the resulting behavior of the queue occupancy, starting at + = 0 with an empty queue,
is given by the first-order system response to a step function delayed by the round trip RTD, that is:
x(t) = X°[1 —exp(—(t — Tyw)/T)] % 1(t — Try) where 1(t — Tty) is the delayed step function (see Fig. 4).
Finally, note that since the calculated input rate cannot be greater than the maximum source transmission
speed 1/t5, K X° = 1/t;. Thus the system time constant is 7 = X°f;.

The system shown in Fig. 3 has a behavior equivalent to the system depicted in Fig. 2, in response to
the input X°. Now we consider the behavior of the queue level x,4(#) in response to the output rate da(),
where d(¢) can be modeled as a step function a * 1(¢), and a is the fraction of bandwidth, normalized to
one, given to each connection.

Using Laplace transform method, after some calculations, we find

xg(t) = —alt % 1(t) — (t — RTD) x 1(t — Tyy)] — %[1 — e K= 5 1(t — Tiw)
+x(0) * 1(t) — x(O)[1 — e XU=T)] 5 1(t — Tpy),
where x(0) > 0 is the queue level at t = 0. The overall response to d() and X © therefore, is given by
xtot (1) = x4 (1) + x(2) (3)

and the steady state (+ — oc) queue level is

X101 (00) = X° — aRTD — % @)

Fig. 4 shows the transient behavior x(¢) in response to X°, the transient behavior in response to d(t) =
1(r) — 0.5 x 1(¢ — offset) (where 1(¢) is the step function), and the overall transient xtot (). The initial offset
is the time when the bandwidth d(¢) drops below the input rate of the corresponding VC queue.

“

3
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Fig. 4. Queue level transient dynamic.
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Fig. 5. Discrete time notation.

3. Discrete time rate-based control

So far we have dealt with continuous time models only. However, in ATM networks, feedback information
is relayed in cells, and thus not available in continuous time, but rather in sampled form. Fortunately, the
discrete time implemention of the Smith Predictor is simpler than the continuous one [1].

From Nyquist sampling theorem and from control theory it is known that, in order to have a “continuous
like” performance of the system under digitized control, the ratio of the time constant of the system over
the sampling time must fall within the interval (2, 4) [1]. Indicating by A the sampling time and recalling
that T = X°, it follows:

0
A

To write the discrete time version of the control equation (2) we must consider two cases:
(i) RTD > A: The ratio RTD/A = m + €, where m is an integer and € € [0, 1). Rewriting the continuous
time equation (2) in its discrete version, we obtain the input rate at time #; = kA2

s _ [2,4]. (5)

ukA) =K I:XO —x(kA —T) —ukA — (m + 1)A)eA — Zu((k - i)A)A:l . 6)
i=1
(i) RTD < A:
ukA) = K[X° — x(kA — Tp) — u((k — 1) A)RTD]. @)

The notation used in the previous equations is illustrated in Fig. 5 and will be followed throughout the
paper. It results: 1 = 1 + A.

3.1. End to end credit based interpretation of the control equation

For the sake of simplicity, we consider the case in which the ratio RTD/A is an integer (¢ = 0)3. The
summation on the right-hand side of Eq. (6) can be rewritten as the sum of two parts:

IT=u(t — Tty — A)A 4+ u(t — Ty —2A)A + --- + u(t — RTD) A,
H=ult—A)A+u(t —280)A-- +u(t — Try) A.

2 Note that k should not be confused with the gain K.
3 The extension of this section to the case ¢ # 0 is trivial.
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The first one represents the number of cells that have already arrived at the bottleneck queue but are not
yet known at the source due to the feedback propagation delay Tf,. The second one represents the number
of cells that are traveling from the source to the queue. Therefore the input rate computation at time ¢ can
be rewritten as: u(t) = K[X° — x(t — Tpy) — (I) — (II)]. We can interpret x(t — Trp,) + (I) + () as
an “effective queue level at time 7. So the calculation of the input rate u(t) is made as if all “in flight”
cells were already at the queue. In this way the dynamic is delay free, which results in stability and lack of
oscillations.

Finally we would like to interpret the difference between the queue capacity and the “effective queue
level” as the number of cells that can be transmitted by the source without causing overflow to the bottleneck
queue.

4. From periodic to aperiodic feedback

To implement the proposed discrete time control algorithm we need to supply the controllers located
at the sources with periodic feedback information (every A units of time, with A satisfying Eq. (5)).
This can be obtained if the upstream node of a congested link sends the feedback information, at ev-
ery sampling time, to all the sources in the upstream direction, as in the backward congestion notifi-
cation (BCN) scheme. This is what is assumed in [3]. We call this type of scheme “periodic feedback
control”. In systems where forward congestion notification (FCN) scheme is used, like in the PRCA
scheme, the source is responsible for transmitting a resource management (RM) cell every NRM data
cells. The control cell itself has to complete for bottleneck link bandwidth, since it has to reach the
destination node before being relayed back to the source through either the same or an alternative re-
verse path. Clearly, under this scheme, it is not possible to guarantee the periodic feedback informa-
tion used in the discrete-time control equation. Due to the sharing of the congested link, the rate of
the feedback cells that can be received by the sources is Bay/[Nve x (1 + NRM)], where Nyc is the
number of VCs sharing the same bottleneck link and B,y is the available bandwidth. Thus the interar-
rival time of the feedback cells increases with Ny x (1 + NRM). In order to guarantee the minimum
sampling time prescribed by Eq. (5), we need a control algorithm capable of operating well even if
no RM cells are received for a large period of time. If the source receives the feedback information,
the control algorithm will adjust the rate accordingly. Otherwise it will compute the rate by estimating
the missing feedback information in a conservative way. We call this type of control “virtual feedback
control”.

4.1. An EPRCA control algorithm

We now propose a version of the previous discrete time control algorithm suitable for the FCN feedback
relay scheme. The feedback information is provided by RM cells which collect the maximum buffer level
along the path. Note that, regardless of the bottleneck location along the VC path, RTD is always the same.
The system will still be cell loss free even if we are not able to guarantee the required periodicity of feedback
information.

The basic idea is to update the source rate at least after each A sampling interval, regardless whether the
source gets the feedback information or not. Let #x, fx+1 be the instants at which the source receives the
last and actual feedback information, respectively. Two cases need to be considered:
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(i) t+1 — tx < A. The source stores the rate u(z), as well as its duration Ak, so that u(#) A; becomes
one of the terms of the summation in the control equation. Thus, the rate updating equation is:

m m
u(t + Ar) = K{X" —x(tk + Ak = Tip) — D utimi) Ap—i — U(tk—m—1) (RTD -3 Ak_.-)],
i=0 i=0

where Z?:O Ap_; <RTD < Z;’:&l Ap—i, Api S AVI, ty =ty + Ap_y.

(i) The interval A expires before the source receives its control packet. In this case, the algorithm has
to estimate the queue level x(ty + A — Ty,). In order to be conservative, and to prevent cell loss, we
propose the following “worst case” estimate of the missing queue level. We conservatively assume
that in the time interval [, t; + A] (with A = Ay) the queue has zero output rate. Thus the “worst
case” queue level is the last value x(f; — Tpp) plus what has been received in the interval [#, #; + A].
The accrued term corresponds to the number of cells pumped into the network during the interval
[tx — RTD, #; — RTD + A]. Therefore, the “worst case’’estimate of the queue level at time #; + Ay is:

m+1
x(tk + Ax — Tpp) = x(tx — Tpp) + u(tg—m—2) (RTD - Z Ak—i)

i=1

m+1
+ultiom—1) | A= |RTD = 3 a4 | ].
i=1

We call “virtual feedback” this worst case estimation of the queue level. Note that this is equivalent to
storing the last received feedback value, x(t — Tf,), and adding the new term u (#;) A to the last sum of “in
flight” cells, say sum F, i.e.

m+1 m+1
sum F = ) u(te—i) M—i + u(te—m—2) [RTD — 3 A_;

i=1 i=1

and the rate is
u(ty + Ax) = K[X° — x(tx — Try) — u(tx) Ag — sum Fl.

In this proposed EPRCA algorithm, the sources at the edge nodes of the network update their input rates
at least every A units of time. If they do not get information about the occupancy of the congested queue,
they decrease their rates based on a “worst case” estimate of the congested queue level. When they get
the next feedback information they will increase their rates because the actual queue level cannot be larger
than the conservative estimate. In other words, the algorithm behaves as a “positive feedback”, decreasing
the rate when feedback is not available and increasing it when feedback information resumes. Note that
this is a very important aspect to guarantee stability in any feedback congestion control because, due to
congestion, it is not possible to guarantee the rate at which feedback cells are received.

4.2. Steady state analysis and full link utilization

Under stationary conditions equation (2) or (6) reduces to:

us = K(X° — xs — us - RTD), 8)
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where u and xs stand for the stationary values of u(¢) and x(¢), respectively. It results
xs = X° — us(T + RTD), 9)

where T = 1/K is the system time constant. To guarantee full link utilization it is sufficient that a link has
always data to send, that is x; > 0 which gives

X° > uy(T + RTD).

In other words full link utilization is guaranteed by using queue capacities of the order of magnitude of
bandwidth-delay product.

5. PRCA scheme and the proposed EPRCA: a comparison

In the ATM Forum PRCA proposal [2], an additive increase/multiplicative decrease rate control is
exercised at the sources. Binary feedback information (congested/not congested) is received at the sources,
and rate increase (additive) is performed in case a “not congested” feedback is received. Failure to receive
the “not congested” notification causes multiplicative rate decrease at the source after each time interval
4, thus making the scheme conservative.

Our proposed EPRCA uses the delayed queue occupancy as the feedback information. Like in the PRCA
scheme, if no feedback is received, the source calculates the rate at fixed intervals A related to the system
time constant. The calculation is performed using a “worst case” estimate of the queue level.

In the following, we study the dynamic behavior of the rate when the source lacks feedback information.
Let u(0) = (1/X°t)(X® — x(t — Tr) — >_gyp #(#:) A;) be the rate computed based on the last received
feedback cell. If no feedback information is received since then, the rate must be updated every A unit of
time, using the “worst case” estimate. It follows

u(l)= Xits [Xo —x(t —Tp) —u(@A— ) “(fi)Ai] St (X°t; — A),

RTD XOts
2= WD xor _ 4y
u( _Xots s
uk=1 o (X°t, — A) )
uto =252 -y = w0 | 2]

i.e. the rate decreases exponentially. When the source resumes receiving feedback information, the rate
jumps to K(X°® — x(t — Tpp) — Y _rrp u(ti) Ai).

Therfore, we note that our EPRCA scheme, developed from a precise and simple mathematical model,
operates according to a “positive feedback” mechanism, much like the PRCA scheme. The important
difference is that the dynamic behavior of our regulation is related to the network state and parameters. In
fact, the rate decreases exponentially with a base related to the sampling time/time constant ratio. More
importantly, the increasing jumps are related to the queue level and to the number of cells released from
the source during the last round trip interval. As a consequence, our EPRCA scheme does not drop cells.
In constrast, the conventional PRCA scheme does not use precise information on the queue level and does
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Fig. 6. Network topology.

Table 1

VC connections activity

Connection 1 2 3 4 5

Start time 500 2500 1000 4000 5500
End time 7000 10000 8500 10000 10000

not take into account the number of cells released during the last round trip delay. Consequently, it cannot
perform the correct rate increase so as to prevent congestion and cell loss.

6. Simulation results

In this section, we present results of a discrete event simulation of the proposed control scheme. We first
show the performance of the periodic control algorithm under the same scenario considered by Benmohamed
and Meerkov [3]. Then we compare the proposed EPRCA scheme with the conventional PRCA scheme
[2].

The network topology, shown in Fig. 6, is the same presented in [3]. Links have uniform speeds, normal-
ized to 1 cell per unit of time [cell/s]. Links to the right of the bottleneck have a bandwidth-delay product
of 10 cells, while the links to the left of the bottleneck have zero propagation delay (similar to [3]).

Five VC connections compete for bandwidth resources of a bottleneck link. VC connection activity (i.e.
start and end time) is described in Table 1. We assume infinite backlog at each source. We set a queue level
X° = 40 for each queue, in order to have a sampling time of the system of 40/4 = 10, i.e., one fifth of the
interarrival time of the feedback cells under the FCN scheme, with NRM = 10 and Ny. = 5.

6.1. Periodic feedback

We first show the performance of a periodic feedback version of the control scheme, in conditions similar
to [3].

According to Eq. (5) we choose a sampling time A = 10. Fig. 7(a) shows the behavior of the five
input rates, corresponding to connections §1-S5, at source nodes. For the sake of comparison with PRCA,
we assume an initial cell rate of 0.1 [cells/s], equal to the PRCA minimum cell rate. After the start/end
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Fig. 7. Periodic feedback: (a) VCs input rates; (b) bottleneck queue levels.

of a connection, each rate rapidly settles to the new fair stationary value % . Fig. 7(b) shows the dynamic
behavior of the five queues at the bottleneck link, corresponding to VC1-VCS5 bottleneck queues. As can
be noted, no queue overflow occurs. Moreover, each stationary level is in accordance with Eq. (9). The
overall performance is similar to the periodic control of Benmohamed and Meerkov [3], without having
dynamic tuning of control parameters.

6.2. Aperiodic feedback

The aperiodic control scheme, with A = 10, requires NRM = 1 (i.e. one control cell every data
cell) in order to guarantee the minimum feedback frequency rate. The value NRM = 1 derives from
the fact that, under the heaviest traffic condition (five connections), the feedback cell interarrival time is

4 When there are three active connections, the figure shows small oscillations, due to the fact that the control equation tries
to regulate the queue occupancy to a value between two integers.
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Fig. 8. Aperiodic feedback: (a) VCs input rates; (b) bottleneck queue levels.

A = Ny.(NRM + 1). Since the minimum feedback rate is maintained, simulation results are identical to
the ones under periodic control, as expected, and hence are omitted.

We next show performance degradation in case Eq. (5) is not respected. By setting NRM =: 10, under
the heaviest traffic condition, the feedback interarrival time is 55 > 10. We see from Fig. 8(a) that rates
does not reach rapidly the stationary condition anymore. Moreover, Fig. 8(b) shows that overflow occurs
in VC4 and VCS queues. Other simulation results, not reported here, show that the greater the NRM value,
the less controlled the queue levels are.

6.3. EPRCA using virtual feedback

Next, we study the performance of the proposed EPRCA under the same conditions and feedback
frequency (NRM = 10), as used above. Fig. 9(a) shows the oscillatory behavior of the controlled rates.
This is so because the control operates in the “positive feedback” mode, i.e. increasing promptly the rate
when a feedback cell is received, and decreasing exponentially otherwise. However, the oscillations are
constant in amplitude, and centered at the fair rate value, hence throughput performance is preserved. The
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frequency of oscillations is high because the virtual feedback period is A = 10, while the actual feedback
interarrival time is about 50. In fact, the control algorithm decreases the rate every A = 10, in a conservative
way, increasing it promptly when a feedback cell is received (approx. every 50 units of time). Fig. 9(b)
shows that the queue levels are still bounded, guaranteeing no cell loss. Thus, the major advantage of the
virtual feedback is to prevent cell loss, due to congestion, even if it is not possible to guarantee the frequency
of feedback cells.

6.4. Conventional PRCA

For the sake of comparison, the PRCA scheme has been simulated under the same traffic conditions
as before, with parameters: NRM = 10; AIR = 0.053; MDF = 8. The results are shown in Fig. 10. As
expected, the PRCA scheme does not prevent cell loss, because it cannot account for the bottleneck queue
level and the number of cells “in flight”.
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Fig. 10. PRCA control algorithm: (a) VCs input rates; (b) bottleneck queue levels.

7. Conclusion

Theoretical arguments and simulation results show that the proposed control algorithm performs an
effective congestion control in high speed networks, guaranteeing no cell loss and fairness. The control
scheme performs very well even under the practical constraints of the EPRCA implementation in an ATM
network. With the proposed EPRCA, every source adjusts its rate based on the delayed queue occupancy
value fed back from the congested link and on the number of cells transmitted during the last round trip
time. Therefore, as a difference from a “blind” additive increase/multiplicative decrease policy, our scheme
implements a feedback regulation which is based on a rigorous control model. Some of the assumptions
that have been made in the course of this report can be relaxed in a real network scenario. For instance,
if queueing delays at intermediate nodes are significant when compared with propagation delays, then a
periodic estimation of the ABR connection round trip delay including such delays can be used in conjunction
with the control scheme. Also, a version of the control schemes using a common queue per output link are
also possible [5,10].
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