
On Asymptotic Stability of Nonlinear Systems with Deep Reinforcement
Learning Controllers

Gioacchino Manfredi, Luca De Cicco, and Saverio Mascolo

Abstract— Controlling systems with learning-based control
strategies is attracting the interest of the research community
due to the advantages that machine learning offers, such as
the possibility of controlling nonlinear systems that would be
hard to control with conventional techniques, the possibility
of controlling systems whose model is not available and so
on. Reinforcement Learning (RL) and Deep Neural Networks
(DNN) can be merged to obtain Deep Reinforcement Learning
(DRL) control strategies. Yet, such new approaches are imple-
mented only in few real-world applications since classical DRL
control policies cannot guarantee asymptotic stability, which
is a key requirement to guarantee safety. In this work, we
propose a framework that, after extracting the DRL control
policy, tries to synthesise a Lyapunov function that certifies
the asymptotic stability of the system controlled with such
a policy. We also show that our framework paves the way
for safety guarantees that are often necessary when deriving
a control policy. Results show that Lyapunov functions can
be synthesised for the considered benchmark systems, thus
ensuring asymptotic stability. Furthermore, the corresponding
regions of attraction prove the quality of DRL control policies
wrt other state-of-the-art learning-based controls.

Index Terms— Lyapunov stability, Regions of attraction,
Deep Reinforcement Learning, Actor-Critic

I. INTRODUCTION

Deep Reinforcement Learning (DRL) methods aim at
learning control policies through interaction with an environ-
ment. However, one of the prominent reasons that hinders the
adoption of such learning-based approaches in real control
applications is safety [1]. Despite the promising performance
DRL control policies can achieve, most of the systems
employed in reality are safety-critical, usually because of
their interaction with human beings and/or with equipment
that could be damaged when unsuitable control actions are
taken by the control policy.

Therefore, it is important to ensure the learning process
produces safe control policies. In general, a state is consid-
ered safe if system trajectories are bounded within a region
and eventually converge asymptotically to the equilibrium
point under a given control policy. One of the downsides of
DRL methods applied to nonlinear continuous time systems
is that there is no guarantee that the learned control policy
always stabilises the system as prescribed. This is due to
the fact that, during the training phase, the DRL algorithm
cannot exhaustively explore all possible states since they are
infinite. As a consequence, when the trained control policy is

This work has been partially supported by the Italian Ministry of
Universities and Research through the MAIA project (ARS01 00353). The
authors are with the Dipartimento di Ingegneria Elettrica e dell’Informazione
at Politecnico di Bari, Via Orabona 4, 70125, Bari, Italy Emails:
name.surname@poliba.it.

actually deployed, it could occur that some unexplored states
are visited, in which case the system dynamics may diverge.

One commonly employed approach is to linearise the
system dynamics around an equilibrium point and to use
the theory of linear systems to compute a linear feedback
controller (f.i., using a Linear Quadratic Regulator) that
guarantees stability in a small neighbourhood of the equi-
librium point where the linear approximation remains valid.
Lyapunov methods are adopted to derive controllers valid
outside the small neighbourhood of the equilibrium point.
One popular application of these methods rely on polynomial
approximations of the system dynamics and seeks sum-of-
squares (SOS) polynomials as Lyapunov functions using
semidefinite programming (SDP) [2], [3]. Nevertheless, we
end up again with an approximation of the system and
therefore a restriction on the control.

In this work, the goal is to check whether the control
policy obtained with a DRL algorithm makes the system
asymptotically stable. In particular, we focus on deriving
stability certificates to prove the asymptotic stability of
nonlinear systems at an equilibrium point in the presence
of deterministic control policies obtained with DRL. When
a control policy is derived with a DRL technique to control
a continuous-time system without any approximation of its
dynamics, there is no guarantee that such a policy is always
able to successfully control the system. This controller can
be plugged into the nonlinear model of the system and then
a Lyapunov Neural Network (LNN) can be implemented to
synthesise a Lyapunov function, which provides a stability
certificate for the system. In our framework, a DRL module
derives the best feedback control possible given the system
dynamics and a reward function. Concerning the Lyapunov
function synthesis, we adopt a Learner-Verifier approach,
which has been proposed recently [4], [5]. In particular,
the learner trains an LNN over a set of sample states with
stochastic gradient descent to tune proper parameters for
a Lyapunov candidate in such a way that a specific cost–
representative of the violation of the Lyapunov conditions–is
minimised. The verifier takes the DDPG control policy and
the Lyapunov candidate from the learner and verifies whether
the candidate is actually a Lyapunov function. If it is not the
case, the verifier adds a certain number of counterexamples
to the set of sample states and feeds them back to the learner
so that the procedure iterates until a Lyapunov function is
found or a maximum number of iterations is reached. It is
important to point out that in general it is not easy to verify
the Lyapunov conditions and that for this reason we employ a
sound decision procedure using Satisfiability Modulo Theory

2022 30th Mediterranean Conference on Control and Automation (MED)
June 28 - July 1, 2022. Athens, Greece

978-1-6654-0673-4/22/$31.00 ©2022 IEEE 306

20
22

 3
0t

h
M

ed
ite

rr
an

ea
n

C
on

fe
re

nc
e

on
 C

on
tro

l a
nd

 A
ut

om
at

io
n

(M
ED

) |
 9

78
-1

-6
65

4-
06

73
-4

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
ED

54
22

2.
20

22
.9

83
71

55

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:31:57 UTC from IEEE Xplore. Restrictions apply.

(SMT) [6] called δ-complete decision procedure [7]. It
provides guarantees of correctness of the Lyapunov function
found in terms of fulfilment of the Lyapunov conditions.
This paper makes the following contributions: (i) we provide
a learning-based methodology to prove asymptotic–and not
only practical–stability at the equilibrium point of a nonlinear
system with a deterministic DRL control policy; (ii) we
compute the region of attraction of a system at an equilibrium
point with a deterministic DRL feedback control policy, thus
bounding the trajectories of the system when the initial state
lies inside the region; (iii) we show that a DRL feedback
controller can ensure wider regions of attraction compared
to other state-of-the-art controllers.

II. RELATED WORK

In [8], an approach to learn safety certificates for nonlinear
discrete-time closed-loop dynamical systems is presented. In
essence, sampling methods are used to verify the Lyapunov
conditions and a manual design of the neural network is
employed to derive the Lyapunov function given a controller.
This method, along with [9], [10], [11], does not provide
formal numerical soundness. Our approach first derives a
control policy using a DRL algorithm and then relies on a
generic feed-forward network to obtain a Lyapunov function
with a Learner-Verifier method, which is formally sound
because it is based on SMT solvers. Mehrjou et al. [12]
provide an improvement of the algorithm in [8] to enlarge
the region of attraction only of a specific class of systems.

An interesting approach is presented in [4], in which the
authors leverage feed-forward neural networks and SMT
solvers to synthesise both the control and the Lyapunov
function. However, they guarantee Lagrange–or practical–
stability, i.e., stability is not guaranteed in a neighbourhood
of the equilibrium point. Conversely, in this work we aim
at guaranteeing full asymptotic stability and compare our
results with the aforementioned work to show that we are still
able to synthesise Lyapunov functions and that the controller
obtained with DRL techniques ensures even larger regions
of attraction. Abate et al. [5] propose a method for the
formal synthesis of LNNs to ensure full asymptotic stability
of autonomous nonlinear systems. A polynomial Lyapunov
function is derived and comparisons with other approaches
prove the efficiency of the method in terms of computation
time needed to synthesise a Lyapunov function. The focus
of this work is mainly computation time efficiency for
autonomous nonlinear systems without analysing the regions
of attraction. Our method is based on the computation of
a DRL control policy to prove its suitability in terms of
asymptotic stability and on the analysis of the regions of
attraction compared to other methodologies.

III. PRELIMINARIES

Before describing the procedure to obtain a deterministic
DRL controller and to synthesise a Lyapunov function that
certifies its stability, we provide in the following the relevant
preliminary background and notation used in this work.

Lyapunov stability theory. Consider the continuous-time
time-invariant nonlinear system:

ẋ = f(x, u), (1)

where f : D → Rn is a Lipschitz-continuous vector field
and D ⊆ Rn is the domain of the system containing all the
states x(t) and such that 0 ∈ D . The continuous function
u : D → Rp is the static state-feedback control policy to be
learned, thus we can write ẋ = f(x, u(x)). Throughout this
work, we will consider w.l.o.g. that x = 0 is an equilibrium
point for system (1).

According to a well-known theorem in [13], let f(x, u(x))
be a locally Lipschitz continuous vector filed with an equi-
librium point at the origin. Let V : D → R be a continuously
differentiable function such that V (0) = 0, V (x) > 0
∀x ∈ D \ {0} and V̇ (x) < 0 ∀x ∈ D \ {0}. Then, the
origin is an asymptotically stable equilibrium point of the
system and V is called a Lyapunov function.

Notice that V̇ (x) represents the Lie derivative of V (x)
over the vector field f(x, u(x)) and is defined as follows:

V̇ (x) = ∇xV (x) · f(x, u(x)) =
n∑

i=1

∂V

∂xi
fi(x, u(x)). (2)

In general, it is not easy to find a Lyapunov function
and there exists no general method to construct Lyapunov
functions [14]. These functions are important tools to esti-
mate the regions of attraction at an equilibrium point of a
general nonlinear dynamical system [13]. Suppose system
(1) is asymptotically stable at the origin under the control
law u(x) and let V (x) be a Lyapunov function for system
(1) in D . A region of attraction S is an invariant subset of
D that contains the origin, i.e., if the initial state of the
system belongs to S, then the system trajectories always
stay inside S. All level surfaces of V (x) contained in D
are regions of attraction for the system, i.e., for some c > 0,
S = {x ∈ Rn|V (x) ≤ c} ⊆ D .

Neural Networks. Neural networks are employed in a
wide range of applications. They have been used also to
enhance Reinforcement Learning (RL) agents to derive poli-
cies for the control of continuous-time systems. To this end,
Deep Reinforcement Learning (DRL) allows us to scale to
decision-making problems that were previously intractable,
i.e., settings with high-dimensional state and action spaces.
In this work, we will consider two DRL algorithms with
deterministic control policy: Deep Deterministic Policy Gra-
dient (DDPG) [15] and Twin Delayed Deep Deterministic
Policy Gradient (TD3) [16]. The DDPG algorithm is one of
the most widely used learning technique applied to control
systems. It employs an off-policy Actor-Critic architecture
to learn control policies in continuous action spaces. In
a nutshell, the actor chooses an action to perform on the
environment and observes the reward and the new state. Such
a transition is stored in the replay buffer. The critic measures
how good the action chosen by the Actor was through the
Q-function. Then, it samples a number of transitions from
the replay buffer to minimise a loss function and to update

307

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:31:57 UTC from IEEE Xplore. Restrictions apply.

𝑉!"#$(𝑥) 𝑉(𝑥)𝑦𝑒𝑠

𝑛𝑜

Learner

Model of the system
+

DRL Control Policy

Add counterexamples to 𝐶

𝐶: set of sample
states

Verifier
Is 𝑉!"#$ a Lyapunov

function?

Fig. 1: Proposed architecture

the actor policy. The TD3 algorithm improves the DDPG by
introducing two Q-functions instead of just one and uses the
smallest of the two Q-values to compute the loss function.

Neural networks are also efficient regressors. This is a
particularly useful property that allows us to approximate
Lyapunov functions, usually called Lyapunov Neural Net-
works (LNNs). In this work, we implement a feed-forward
neural network as a LNN whose input has the dimension of
the state space of the system, say n, the output layer has
dimension 1, and in between there are m hidden layers with
h1, h2, . . . , hm neurons. Supposing fully connected layers,
the weights are contained in m + 1 matrices as follows:
W1 ∈ Rh1×n for those weights from the input to the first
hidden layer, W2 ∈ Rh2×h1 and so on until Wm+1. It is
possible to have also an additive bias in each hidden neuron,
therefore B1 ∈ Rh1 , B2 ∈ Rh2 and so on. Every layer can
have an activation function σ : R → R applied to each
neuron. Hence, if x0 is the input state, it results that:

l1 = σ0(W1x0), (3)

li = σi(Wili−1), i = 2, . . . ,m, (4)

where σi is computed element-wise and li is the output of the
i-th layer. The output of the feed-forward network represents
the value of the Lyapunov function in the input state:

V (x0) = σm+1(Wm+1lm). (5)

Once this network is trained to meet the Lyapunov con-
ditions, we end up with an LNN that represents a Lyapunov
function V : D → R proving the asymptotic stability of the
controlled system at the equilibrium point in the domain D .

IV. THE PROPOSED ARCHITECTURE

In this section, we present an architecture that extracts
a DRL control policy and proves–if it is the case–full
asymptotic stability of the system through the synthesis of a
Lyapunov function.

Following a counterexample-guided approach such as the
one employed in [5], Fig. 1 shows the proposed architecture
composed of three main modules: the model of the system
with the DRL Control Policy, the Learner and the Verifier.

DRL Control Policy: it employs the model of the system
and is in general based on a DRL algorithm that outputs
the control policy u(x) after a training phase. Notice that,
in order to extract the control policy as a function of the
states, the DRL algorithm needs to be deterministic, i.e., the
output of the algorithm must provide an action when an input
state is presented rather than an average value and a standard
deviation of the action, which would imply stochasticity.

Learner: it trains a neural network on the basis of an input
set C containing a certain number of sample states. The
trained network represents a candidate LNN whose output
given a state is the value of the candidate Lyapunov function
in that state. The neural network is trained by minimising
a cost function using steepest gradient descent. The cost
function must necessarily take into account the Lyapunov
conditions.We formulate such a cost as in [4]:

L(x) =
1

N

N∑
1

(max(−V (xi), 0)+max(0, V̇ (xi)))+V (0)2,

(6)
where xi is the i-th sample of the state and is such that
xi ∈ C with |C| = N . Notice that for each sample, the cost
is 0 when V (x) > 0, i.e. when the first Lyapunov condition is
met, and V̇ (x) < 0, i.e. when the second Lyapunov condition
is met. If V (x) < 0, then the first condition is violated and
such a violation is penalised of a term equal to −V (x). The
same can be said for the condition V̇ (x) < 0. The average
over all the samples plus V (0)2 represents our cost, which
is minimised using the steepest gradient descent. Obviously,
when V (x) is a Lyapunov function, L(x) = 0, although the
contrary is not true. In fact, it could happen that there are
some states not included in C in which the candidate function
violates the conditions. It is at this point that the Verifier
checks if there are some states that violate the Lyapunov
conditions and adds them to C.

Verifier: it makes use of a solver to find–if it is the case–
states that violate the Lyapunov conditions wrt a candidate
Lyapunov function. Satisfiability Modulo Theory (SMT)
solvers are powerful tools to check the satisfiability of first-
order logic formulae. Such solvers are formally sound and
therefore provide guarantees that are equivalent to giving
analytical proofs. For this reason, we employ SMT solvers
to check candidate Lyapunov functions. As already said, a
Lyapunov function has to meet the following conditions:

V (0) = 0 ∧ V (x) > 0 ∧ V̇ (x) < 0, ∀x ∈ D\{0}. (7)

In order to make use of SMT solvers, we derive the so
called dual falsification problem, which is needed in formal
verification. This problem is simply the negation of (7),

∃x ∈ D\{0} : V (x) ≤ 0 ∨ V̇ (x) ≥ 0. (8)

If the falsification condition is true for some nonzero x
in D , then V (x) is not a Lyapunov function since there is
at least one state in the domain that violates the Lyapunov
conditions. On the contrary, if it is false, it means that V (x)

308

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:31:57 UTC from IEEE Xplore. Restrictions apply.

is a Lyapunov function in D . To solve problem (8), it is
necessary to globally minimise non-convex functions such
as Lie derivatives, which is an NP-hard problem. For this
reason, the Verifier relies on an open-source SMT solver for
nonlinear formulas over the reals called dReal [17]. This
solver provides formally sound solutions to problem (8), i.e.,
if a solution exists, it is always found. Such a guarantee
comes with the δ-completeness property. For the sake of
clarity, let us provide the following definitions [7].

Definition 1 (SMT problem). An SMT problem is the
problem of determining whether an SMT formula, which is
a first-order logic formula, is satisfiable.

Definition 2 (δ-completeness). Let φ be an SMT formula
and δ a positive rational number, a decision procedure P is
δ-complete if it either determines that φ is not satisfiable or
that the δ-weakening of φ is satisfiable.

The δ-weakening of φ is a numerical relaxation of the
original formula. In our case, a δ-complete procedure P
that verifies the formula in (8) is what we need because
if a formula is satisfiable, then its δ-relaxation is always
satisfiable. On the contrary, if the δ-relaxation of the formula
is satisfiable, then it could be that either the formula itself
is satisfiable or it is not satisfiable. Therefore, we can
guarantee the check on the Lyapunov conditions because
if the δ-relaxation of (8) is not satisfiable, then also (8)
itself is not satisfiable, thus implying that V (x) satisfies the
Lyapunov conditions and is a Lyapunov function. However,
it could happen that the δ-relaxation of (8) is satisfiable.
This provides no guarantee on (8) and the procedure gives
counterexamples that are solutions of the relaxed formula.
If the not-relaxed formula is not satisfiable, then the coun-
terexamples obtained are just spurious solutions that do not
pose any issue since this would translate in the synthesis of
a more conservative candidate Lyapunov function.

V. RESULTS

In this section we provide experimental results of the
proposed approach gathered on two test cases considering
the most widely implemented deterministic DRL algorithms:
DDPG and TD3. In the Learner we set up a feed-forward
neural network with one hidden layer while in the Verifier
we use dReal [17] as the SMT solver.

Case 1: Inverted Pendulum. In the first test case we
consider the problem of controlling an inverted pendulum
whose control goal is to balance it in the upright position
with zero angle and zero angular velocity. The control
variable is the torque that can be applied to the hinge of
the pendulum whereas the state is represented by the angle,
measured in radians, and the angular velocity, measured in
radians per second. Finally, we impose a domain D = {x =
(θ, θ̇) ∈ R2| ||x||2 ≤ 6}.

Let us start by considering a DDPG control policy. As a
first step, we train the Actor and Critic until the cost function
is minimised and the control goal is achieved. To the purpose,
we considered an Actor with the two states as inputs, no

θ

− 6
− 4

− 2
0

2
4

6

.
θ

− 6
− 4
− 2

0
2
4
6

V

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Domain

Fig. 2: Lyapunov function for Inverted Pendulum with DDPG
control

6 3 0 3 6
6

4

2

0

2

4

6
DDPG (Ours)
Chang et al.
Domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 3: Region of Attraction for Inverted Pendulum with DDPG
control

hidden layers, and one output with linear activation. In other
words, we considered a controller of the form u(x) = Kx,
thus obtaining: u(θ, θ̇) = −1.2616117 θ − 0.29633152 θ̇.

At this point, a set C of 500 random states sampled from
the domain is created and, on the basis of such a set and
of the model of the system, the Learner derives a candidate
Lyapunov function that is passed to the Verifier. The latter
uses the SMT solver to check if the Lyapunov conditions
are verified. In the case they are not, the solver augments
C with some states that violate the Lyapunov conditions in
such a way that, at the next iteration, the Learner can adjust
the Lyapunov candidate function to satisfy the conditions.
Notice that, according to what we have said in Section IV, it
could happen that the Learner finds a Lyapunov function but
the Verifier does not recognise it due to the δ-completeness
property of the SMT solver. In this case, the counterexamples
added to C are spurious data that are not detrimental to the
Learner: they can help it find a more suitable Lyapunov
function that, eventually, will pass the Verifier’s check.

Fig. 2 shows the Lyapunov function V (θ, θ̇) found by the
Learner and valid inside D . Qualitatively, one can see that

309

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:31:57 UTC from IEEE Xplore. Restrictions apply.

6 3 0 3 6
6

4

2

0

2

4

6
TD3 (Ours)
Chang et al.
Domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 4: Region of Attraction for Inverted Pendulum with TD3
control

DE

− 0.8
− 0.4

0.0
0.4

0.8

AE

− 0.8

− 0.4

0.0

0.4

0.8

V

0.00

0.05

0.10

0.15

Domain

Fig. 5: Lyapunov function for Bicycle circle tracking with DDPG
control

this function is 0 only when (θ, θ̇) = (0, 0) and is strictly
positive elsewhere in the domain (blue circle in the figure).
The Verifier formally ensures this along with the condition
on the gradient. At this point we have the guarantee that the
DDPG control policy asymptotically stabilises the nonlinear
system also when unexplored states are visited.

At this point, we can consider the widest region of
attraction in the domain to have an idea of the stabilising
performance guaranteed by the controller. Fig. 3 outlines the
region of attraction obtained with the synthesised Lyapunov
function (green curve) and the phase portrait of the closed-
loop system (grey arrows) showing that the equilibrium point
in zero is a stable point. For a better understanding, if we pick
two random initial states (large dots in the figure) within the
region of attraction and let the system evolve, the trajectories
will never leave the region until convergence. Referring to
Fig. 3, if the initial state lies outside the highlighted green
region, then the system trajectories can evolve arbitrarily
far before converging to zero. This represents an impor-
tant insight towards tackling safety issues concerning DRL
control strategies. In fact, safety is the main reason why

such approaches meet few practical applications. Therefore,
synthesising a Lyapunov function for the DDPG controller
in the case of an inverted pendulum not only guarantees
asymptotic stability of the controlled system, but also allows
us to find a region of attraction, which–provided that the
initial state is in it–ensures that no state outside it is visited,
thus preventing the system from reaching possible unsafe
states.

Fig. 3 also shows the region of attraction found with the
controller developed by Chang et al. [4] for the same ex-
ample (magenta curve). This linear controller is synthesised
by the same neural network that generates the candidate
Lyapunov function. Even if the goal of the present work
is different, let us make some considerations on the kind of
controllers found. From the figure, it is clear that the DDPG
controller guarantees a much wider region of attraction wrt
to the other controller. In other words, it would prove
a more performing control. Moreover, the control in [4]
guarantees in practice Lagrange stability, thus excluding a
neighbourhood of the equilibrium point when synthesising
the Lyapunov function. On the other hand, our analysis
ensures full stability at the equilibrium point yet with a wider
region of attraction.

In the same way, we evaluated the TD3 control policy,
obtaining essentially similar results. In particular, after find-
ing the Lyapunov function, which is omitted here for space
constraints but which has a similar shape as in Fig. 2, we
show the corresponding region of attraction in Fig. 4. Also in
this case, the TD3 controller is able to guarantee full stability
and still a wider region of attraction compared to the case
described in the literature.

Case 2: Bicycle circle tracking. In this example, we
consider the case of a bicycle, running at constant speed,
that has to track a unit circle. The control variable is the
steering angle of the front wheel whereas the state variables
are represented by the Distance Error (DE), i.e., the distance
measured in meters between the rear wheel and the circle,
and the Angle Error (AE), i.e., the difference measured
in radians between the angle of the rear wheel and the
angle of the tangent to the circle in the closest point to
the wheel (see [4] for more details). The control goal is
to steer the state to zero. In this case, we set a domain
D = {x = (DE,AE) ∈ R2| ||x||2 ≤ 0.8}.

Let us first evaluate the DDPG algorithm. Notice that in
this case we set up the Actor with an input layer of dimension
2, two hidden layers with 256 neurons and an output layer
of dimension 1, all with linear activation. After training a
control policy able to stabilise the system in the testing
phase, we leverage the framework displayed in Fig. 1 to try
to synthesise a Lyapunov function that proves asymptotic
stability of the controlled system. The Learner managed to
find a Lyapunov function, which is displayed in Fig. 5. From
its level sets, we are able to find a region of attraction for
the system (green curve) as shown in Fig. 6.

Finally, we carried out the same analysis for the TD3
algorithm. A Lypunov function–similar to the DDPG case–
was successfully found. Fig. 7 shows the region of attraction

310

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:31:57 UTC from IEEE Xplore. Restrictions apply.

0.8 0.4 0.0 0.4 0.8
DE

0.80

0.50

0.25

0.00

0.25

0.50

0.80

A
E

DDPG (Ours)
Chang et al.
Domain

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Fig. 6: Region of attraction for Bicycle circle tracking with DDPG
control

0.8 0.4 0.0 0.4 0.8
DE

0.8

0.4

0.0

0.4

0.8

A
E

TD3 (Ours)
Chang et al.
Domain

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

Fig. 7: Region of attraction for Bicycle circle tracking with TD3
control

from which the same conclusions as the DDPG can be drawn.
In each of the considered benchmark control systems, the

region of attraction obtained with a DRL controller is also
way wider than the region derived with classical controllers
such as LQR or SOS (see [4] for a visual comparison).

As already explained, in general, if no Lyapunov function
is found, then one cannot establish any conclusion about
the system’s stability. It could happen that the LNN either
finds a Lyapunov function or reaches a maximum number of
iterations. The latter case simply implies the network was
not able to find a Lyapunov function but it could exist.
Moreover, the more the system is complex, the wider the
networks employed in the DDPG or TD3 to control it.
However, as long as the activation functions on the neurons
are linear, the resulting controller is linear or affine in the
state and therefore the LNN can be easily deployed. In the
case of nonlinear activation functions, the time complexity of
the proposed procedure can considerably increase. The time
complexity also depends on the complexity of the Lyapunov
function we try to synthesise. In this work, we considered
linear or affine controllers and a LNN with one hidden layer,
64 neurons and a tanh activation function. In the simulations,
the time needed for the synthesis ranges from 132 to 431

seconds when using Google Colab. In any case, this is an
offline procedure, whose goal is to certify the asymptotic
stability of the controlled system without taking into account
the time required to accomplish such a task.

VI. CONCLUSIONS

This work proposes a methodology that can be employed
to prove asymptotic stability of nonlinear systems controlled
via deterministic DRL algorithms. In our analysis, we con-
sider two such algorithms: DDPG and TD3. After their
training phase, we extract the control policy and implement a
Learner-Verifier approach to synthesise a Lyapunov function
with the help of SMT solvers. The results obtained on two
benchmark control systems show the effectiveness of our
approach, ensuring not only asymptotic stability of DRL
algorithms but also important considerations on safety. An
interesting future research direction could be testing the
framework on real control systems, but also developing an
equivalent approach for stochastic DRL algorithms.

REFERENCES

[1] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in ai safety,” arXiv preprint
arXiv:1606.06565, 2016.

[2] P. A. Parrilo, Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization. California Institute
of Technology, 2000.

[3] Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard,
“Control applications of sum of squares programming,” in Positive
Polynomials in Control. Springer, 2005, pp. 3–22.

[4] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,” arXiv
preprint arXiv:2005.00611, 2020.

[5] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis
of lyapunov neural networks,” IEEE Control Systems Letters, vol. 5,
no. 3, pp. 773–778, 2020.

[6] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of model checking. Springer, 2018, pp. 305–343.

[7] S. Gao, J. Avigad, and E. M. Clarke, “δ-complete decision procedures
for satisfiability over the reals,” in International Joint Conference on
Automated Reasoning. Springer, 2012, pp. 286–300.

[8] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Conference on Robot Learning, 2018, pp. 466–476.

[9] M. Mittal, M. Gallieri, A. Quaglino, S. S. M. Salehian, and
J. Koutnı́k, “Neural lyapunov model predictive control,” arXiv preprint
arXiv:2002.10451, 2020.

[10] N. Noroozi, P. Karimaghaee, F. Safaei, and H. Javadi, “Generation of
lyapunov functions by neural networks,” in Proceedings of the World
Congress on Engineering, vol. 2008, 2008.

[11] V. Petridis and S. Petridis, “Construction of neural network based
lyapunov functions,” in The 2006 IEEE International Joint Conference
on Neural Network Proceedings. IEEE, 2006, pp. 5059–5065.

[12] A. Mehrjou, M. Ghavamzadeh, and B. Schölkopf, “Neural lyapunov
redesign,” arXiv preprint arXiv:2006.03947, 2020.

[13] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2002, the book can be consulted by contacting: PH-AID:
Wallet, Lionel. [Online]. Available: https://cds.cern.ch/record/1173048

[14] P. Giesl and S. Hafstein, “Review on computational methods for
lyapunov functions,” Discrete & Continuous Dynamical Systems-B,
vol. 20, no. 8, p. 2291, 2015.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[16] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning. PMLR, 2018, pp. 1587–1596.

[17] S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear
theories over the reals,” in International conference on automated
deduction. Springer, 2013, pp. 208–214.

311

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:31:57 UTC from IEEE Xplore. Restrictions apply.

