Skype Video Congestion Control: an Experimental Investigation

Luca De Cicco®, Saverio Mascolo?®, Vittorio Palmisano®

@ Politecnico di Bari, Via Orabona 4, 7012}, Bari, Italy

Abstract

The Internet is facing a significant evolution from being a delivery network for static content to an efficient
platform for multimedia content delivery. Well-known examples of applications driving this evolution are
YouTube Video on Demand, Skype Audio/Video conference, IPTV and P2P video distribution. While
YouTube streams videos using the Transmission Control Protocol (TCP), time-sensitive applications, such
as Skype Audio/Video conference, employ the UDP because they can tolerate small loss percentages but
not delays due to TCP recovery of lost packets via retransmissions. Since, differently from the TCP, the
UDP does not implement congestion control, these applications must implement congestion control at the
application layer in order to avoid congestion and preserve network stability. In this paper we investigate
Skype Video congestion control in order to assess to what extent this application is able to throttle its
sending rate to match the unpredictable Internet bandwidth while preserving resource for co-existing best-
effort TCP traffic. We have found that: 1) Skype Video adapts its sending rate by varying frame rate, frame
quality and video resolution; 2) in many scenarios a Skype video call refrains from fully utilizing all available
bandwidth thus not sending videos at the highest possible quality; 3) Skype Video employs an adaptive FEC
action that is proportional to the experienced loss rate; 4) the sending rate matches a changing available
bandwidth with a transient time as large as a hundred of seconds; 5) the minimum bandwidth required for
a video call is 40kbps at 5 frames per second.

1. Introduction the network available bandwidth, real-time au-

dio/video sending rate must follow the source rate.

The introduction of new multimedia services such For these reasons data traffic is elastic and is car-

as video on demand, video broadcasting, personal ried over the TCP, which implements congestion

communication and IPTV is pushing the Inter- control, whereas real-time traffic is inelastic and is
net, which was originally conceived to transport carried over the UDP.

time insensitive elastic type data traffic, towards
a platform for delivering an ever increasing amount
of delay-sensitive multimedia traffic. Examples of
such driving applications are Voice over IP, video
conferencing (such as Skype), Video on Demand ; " ”
(such as YouTube, DailyMotion), IPTV, peer-to- presence of congestlon as TCP do.es, in practice
peer video distribution systems such as, to name well-designed tlme—sgnsmve app‘hcatlons must
few, Coolstreaming [24] and Hulu!. adapt to network avaﬂab}e bandwidth at l.east t'o

A key difference between time-insensitive data some 'extent. The way this goal can be achleveq 1S
traffic and time-sensitive traffic generated by ap- by using a cor}gestlon control algorlthrl} along W'lth
plications such as VoIP or real-time video is that, an adaptive video codec that adjusts video quality,

while data sending rate can be modulated to match fram.e rate and picture size to .match both QOS
requirements and network available bandwidth

23], [19].

Although, in principle, time-sensitive au-
dio/video applications generate inelastic traffic
because, due to time-constraints, flows cannot
reduce their bandwidth requirements in the

Email addresses: ldecicco@gmail.com (Luca De . .
Cicco), mascolo@poliba.it (Saverio Mascolo), Differently from TCP flows that continuously

vpalmisano@gmail.com (Vittorio Palmisano) probe for network capacity via the Additive In-
Thttp://www.hulu.com/ crease Multiplicative Decrease (AIMD) paradigm,
Preprint submitted to Computer Networks October 11, 2010

the throughput of the flows originated by means of
an adaptive video codec is always bounded by the
maximum and minimum bitrate achievable by the
specific codec.

YouTube is the most relevant example of video
distribution system and employs the TCP to gener-
ate elastic traffic. In particular, the video stream is
buffered at the receiver for a while before the play-
ing is started. In this way, short-term mismatch be-
tween the source video rate and the network avail-
able bandwidth are averaged out and masked by the
playout buffer. On the other hand, Skype is one of
the most prominent example of applications pro-
viding unicast Audio/Video calls over UDP. Skype
Audio/Video is a closed source application. Skype
Audio employs several audio codecs such as G729,
SVOPC, iSAC, iLBC, SILK, whereas Skype Video
employs the VP7 codec provided by On22.

In the literature several papers proposed to de-
sign new transport protocols tailored to transport
multimedia content. A review of these protocols
along with a proposed one can be found in [12].
Among these protocols, the only congestion con-
trol for multimedia flows that has been proposed
for IETF standardization is the TCP Friendly Rate
Control (TFRC) [14], [18]. Implementation of
TFRC is complex since it requires ad-hoc tuning of
many parameters. For instance, to enable a VoIP
application, it has been necessary to propose the
small packet variant [11]. For these considerations,
the state of art of today running real-time applica-
tions such as Skype Audio/Video employs the UDP.
Since the UDP does not implement congestion con-
trol, it is mandatory for a well-designed multimedia
application to include an efficient congestion control
algorithm [9], otherwise the Internet would experi-
ence a congestion collapse as the one happened in
the eighties before the introduction of TCP conges-
tion control [22].

Skype today counts over 40 millions active users
of which 17 millions are concurrent users®. In a re-
cent report, Skype claims that more than 25 billions
minutes of Skype video calls have been generated
[1], resulting in the most used desktop video confer-
ence application. For this reason, it is increasingly
important to assess if and how Skype contributes to
network congestion and how it affects TCP respon-
sive traffic, which still contributes the most part of
the Internet traffic [9, 14]. Moreover, it is of interest

20n2 Truemotion VP7 codec, http://www.on2.com/
3http://share.skype.com /stats _rss.xml

to study if there is room for improving design and
implementation of adaptive videoconference appli-
cations.

This work investigates how a Skype Video flow
behaves when sharing the Internet with other TCP
and Skype Video flows. The goal is to determine
the responsiveness of Skype Video to the unpre-
dictable time-varying Internet bandwidth in terms
of transient times needed to match the available
bandwidth, fairness with respect to coexisting TCP
and Skype flows, frames per second and packet loss
rate.

At the best of authors’ knowledge, this is the first
investigation of Skype Video congestion control.

The rest of the paper is organized as follows: in
Section 2 we summarize the related work; in Sec-
tion 3 we summarize the knowledge made available
to the public on the adaptive video codec used by
Skype; in Section 4 we briefly describe the exper-
imental testbed and the tools we have developed
in order to carry out the experiments; in Section
5 we present and discuss the experimental results;
Section 6 describes the adaptive FEC algorithm em-
ployed by Skype. Finally, Section 7 draws the con-
clusions of the paper.

2. Related Work

It is well-known that the best-effort Internet can-
not provide guaranteed resources for real-time mul-
timedia applications. The first attempts to address
this problem date back to early ’90s and show the
benefits of using congestion control schemes to con-
trol the rate generated by a video source [17], [4].
In particular, in [17] authors show that by using ex-
plicit feedback information provided from the net-
work it is possible to implement a control algorithm
that achieves graceful degradation when congestion
occurs. In [4], authors show the benefit of imple-
menting a very basic congestion control scheme in
conjunction with the adaptive video codec H.261 in
a video conferencing system. In the past years, the
idea of applying congestion control to multimedia
systems [10] has consolidated itself and it has led
to several design efforts [12],[14],[18],[21].

One of the most prominent and successful ap-
plications which implement real-time audio/video
transmission over the Internet is Skype.

Recently, an experimental investigation has re-
vealed that Skype VoIP implements some sort of
congestion control by varying the sending rate to

match the network available bandwidth to some ex-
tent [7]. Moreover, in [8] a mathematical model of
Skype VoIP flows is provided, revealing that the
main driver of the congestion control algorithm is
the estimated loss ratio.

Other relevant papers on Skype can be grouped
in the following categories: i) P2P network charac-
terization; ii) perceived quality of the Skype VoIP
flows.

First papers on Skype mainly focused on the
characterization of the P2P network built by Skype
in order to enlight, at least partially, interesting de-
tails on its architecture and on the NAT traversal
techniques [3],[13].

Moreover, several studies have been carried out
on the quality provided by the Skype VoIP calls in
different scenarios by using metrics such as mean
opinion score (MOS) and Perceptual Evaluation of
Speech Quality (PESQ) [2], [6], [15], [16] or by
defining metrics based on packet level measure-
ments such as round trip time, input rate and du-
ration of the calls [5].

3. Video Codec Employed by Skype

In this Section we summarize all the public infor-
mation concerning the video codec used by Skype
Video that are reported in [20]. Since 2005, Skype
employs the proprietary Video Codec TrueMotion
VPT7 provided by On2 in order to manage one-to-
one videoconferencing. The codec supports real-
time video encoding and decoding using a “datarate
control” which adjusts frame quality, video resolu-
tion and number of frame per seconds to adapt to
bandwidth variations. Moreover, the white paper
[20] states that a model of the client buffer level is
employed in order to control those variables, but no
further details are provided. Regarding the bitrates
produced by VP7, On2 claims to provide video
transport starting from bitrates as low as 20 kbps,
whereas no information is given on the maximum
bitrate.

4. Experimenting with Skype Video: the
Skype Measurement Lab

In order to investigate how Skype Audio/Video
connections behave when network bandwidth
changes over time, we have developed a set of tools
that allows real network experiments to be deployed
over one or more hosts and to measure and log

b(t)d(t)p(t)

lQUEUE
Skype[f Tl 13 | i NIC
—_—
pert [> % ://_):: measurement ﬁl T
other[: w L
flows

Figure 2: TPQshaper functional diagram: filtered
traffic (thick arrows) is routed to a userspace queue
whose bandwidth b(t), delay d(t) and packet drop
probability p(t) can be set

Skype key variables. Figure 1 shows the testbed
set-up which is made of two real hosts: on each host
one or more Skype applications are started with or
without concurrent Iperf generated TCP traffict.

On each host we deployed TPQshaper, which is
a software we have developed to perform per-flow
measurements. The tool, whose schematic is shown
in Figure 2, allows us choosing a set, of processes and
filtering the generated traffic using IPTables rules.
The filtered traffic is then routed to a userspace
queue using the IPtables QUEUE target®. At the
input of this queue, marked with an “I” in Figure
2, the per-flow incoming rate r;(t) is measured. At
the output of the queue, that is marked with an
“0” in Figure 2, the per-flow outgoing rate r,(t) is
measured, so that the loss rate I(t) experienced by
the flow can be computed as r;(t) — ro(t).

In order to emulate a LAN or WAN scenarios,
the packets in the queue are drained at configurable
rate b(t), which models the bandwidth available at
the bottleneck drop tail queue. Finally, the tool
allows packets to be delayed of an amount d(¢) and
dropped with probability p(t).

The throughput is defined as Asent/AT, the loss
rate as Aloss/AT and the goodput as (Asent —
Aloss) /AT, where Asent is the number of bits sent
in the period AT, Aloss is the number of bits lost
in the same period. We have considered AT = 0.4s
in our measurements.

It is of fundamental importance to perform ex-
periments in a controlled environment in order to
allow tests be reproducible. We provide repro-
ducibility by employing a controlled LAN as a
testbed and using the same video sequence as in-
put. In fact, using the input obtained by a webcam

4http://dast.nlanr.net /Projects/Iperf/
5NetFilter: http://www.netfilter.org/

Figure 1: Experimental testbed

would generate an encoded bitrate that depends on
the particular video content, thus not allowing ex-
periments to be reproduced.

To this end we have developed a software called
Skype Measurement Lab (SML), which allows a de-
sired video source to be injected as input to Skype.
In particular, we have modified the GStreamer
plug-in gst-fakevideo®, which generates a fake
/dev/video device that simulates a video source
(like a webcam) using a technique similar to the
one employed by Skype Audio Dsp Hijacker’. An-
other important feature of the SML is the auto-
matic logging of all the information contained in
the Skype technical call information tooltip, which
is displayed when the “Technical Call Infos” option
is enabled in the preferences. To the purpose, we
have modified the QT 4.X user interface library®
that is used by this client (freely available as source
code) in order to periodically log all information
contained in the call tool-tip, which includes among
others: RTT, jitter, video resolution, video frame
rate, estimated sent and received loss percentages.

The experiments have been run using the Linux
Skype client version and the standard Foreman
YUV test sequence®’. The audio input has been
muted in order to analyze only the network traffic
generated by video flows. From now on, the RT'T
of the connection is set at 50 ms and the queue size
at the two hosts is set equal to the bandwidth delay
product unless otherwise specified.

6http://code.google.com/p/gstfakevideo/

7Skype DSP hijacker: http://195.38.3.142:6502/skype/
8QT 4.3: http://trolltech.com/products/qt
“http://www.cipr.rpi.edu/resource/sequences/sif.html

YUV
Video
sequence

Video Hijacking
I AR — .

decoder

I
I
|
' | encoder
|
I
I

Figure 3: Model of the Skype Video rate adaptation
scheme

5. Experimental
Video dynamics

investigation of Skype

In this Section we aim at investigating how
Skype Video flows throttle their sending rates when
changes of available bandwidth occur and how
Skype flows behave when concurrent TCP flows
share the bottleneck. To the purpose we consider
step-like variations of the available bandwidth since
this is a widely used and efficient practice in control
theory when testing the dynamic response of a sys-
tem to a stimulus. Indeed, the step response of a
system reveals key features of the system dynamics
such as transient time and degree of stability.

In this case we are interested in revealing the
transient dynamics of the Skype flows in response to
bandwidth increase/decrease or to joining/leaving
of TCP flows.

Figure 3 shows the overall scheme of a desktop
video conferencing system. An encoder adapts the
video flow sending rate r4(t) by throttling the frame
quality ¢(¢), the video resolution s(¢) and the num-
ber of frames per second (fps) f(¢) based on feed-

back reports sent by the receiver. It is reasonable
to conjecture that the feedback variables used that
throttle ¢(t), s(t) and f(t) are the available band-
width, loss rate and jitter [8]. Throughout the dis-
cussion of the experimental results we will illus-
trate the effect of variable network conditions on
the three control variables throttled by Skype.

5.1. Skype Video response to a step wvariation of
available bandwidth

We start by investigating the behaviour of one
Skype flow accessing a bottleneck link whose band-
width capacity changes following a step function
with minimum value A4,, = 160 kbps and maximum
value Ap; = 2000 kbps. The aim of this experiment
is to show how Skype flows behave when the net-
work available bandwidth suddenly increases; this
is particularly important to assess Skype respon-
siveness in grabbing the available bandwidth.

In this experiment no concurrent traffic is in-
jected. Figure 4 shows throughput and frame rate
dynamics obtained by repeating four experiment
runs. The video flow starts sending at a very
low rate and achieves a steady state sending rate
of roughly 80kbps, well below the available band-
width of 160 kbps. When the available bandwidth
increases at ¢ = 50s , the sending rate reaches an
average bitrate slightly below 450 kbps, after a long
transient time of roughly 100 s.

Now, let us focus our attention on the three vari-
ables f(t), q(t) and s(t) that are throttled by the
video codec to match the network available band-
width. In the four experiments the resolution s(t) of
the videos produced by Skype was set at 320 x 240
pixels and kept unchanged throughout all the ex-
periments; the frame rate f(t) decreases from an
initial value of 15 fps to a value of around 10 fps
in less than 10s. After the step increment of the
available bandwidth at ¢ = 50 s, f(t) starts to in-
crease at roughly ¢ = 85s and then it oscillates
around the value of 15fps; the sending rate r;(¢)
starts to increase at ¢ = 50s whereas the value of
f(t) remains roughly constant in the time interval
[50, 85]s which means that the quality ¢(¢) is in-
creased.

A further insight can be obtained by looking at
Figure 5 that shows packet sizes and cumulative
losses of the four experiment runs: the packet size
increases in the time interval [50,85] s whereas f(t)
is left almost unchanged, which means that the in-
crement of the sending rate is due to an improved

quality ¢(t).

10

PDF %
o
T
I

C

. . Rt W
0 200 400 600 800 1000 1200
Packet size (Byte)

Figure 6: Packet size probability density function
(PDF): packets of type A contain feedback informa-
tion, packets of type B are video packets without
redundancy, and packet of type B are packets with
redundancy.

Figure 5 reveals also an interesting correlation
between packet size and packet losses: every time
a large loss event occurs (marked by a large step
in the cumulative line shown in the Figure 5) the
packet size doubles, thus meaning that Skype em-
ploys a FEC scheme to counteract packet losses. On
the other hand, Skype does not trigger a packet size
increment when the entity of the loss is considered
negligible as it can be inferred by looking at the S3
plot at time ¢t = 177 s, which shows that a small
step increase in the cumulative loss curve does not
induce a doubling of the packet size.

In order to provide a further insight, Figure 6
shows the packet size probability density function
computed for time ¢ > 150s when the transient
due to the bandwidth variation at ¢ = 50s ends.
The probability density function shows three peaks:
the first one (A) occurs at packet size equal to
61 bytes and we conjecture that such packets con-
tain feedback information sent to the other peer
of the communication; the second peak (B) occurs
at packet size equal to 491 bytes and we conjec-
ture that it reveals that the size of the packets con-
taining the video are in the range [350, 550] bytes;
the third peak (C'), occurring at packet size equal
to 961 bytes, reveals FEC packets in the size
[720,1035] bytes that indeed is roughly two times
the normal packet size.

To summarize, the main result of this first ex-
periment is that a Skype Video flow produces a
sending rate that achieves the maximum value of

1000

| S1 S2 s3 sa

800 i
§ 600 \ Mo |
é‘ h i J“ y /“ A 1 "l
W" ~' \’WIWWW""‘{ / W by |
£ W[!-V) '(/\"‘ i

200

% 50 180 1éo 2(30 . 2éo 380 3!30 460 4%0 500

20 My

FPS
o

1 Wity

V

r[V\M it J\/ WI\V d?d%\ﬂ(fﬂ a 1) /”F
QgAY “*1/‘/ v{\\“\,.\,\/"" \—k\\, \/"\A-/\,\

50

100

150

200

250

300

350

400

450

time (s)

500

Figure 4: Skype Video response to a step change of available bandwidth at ¢ = 50s

1500

s1 x 10°
3

Packet size (bytes)

T 1 n P 0
0 100 200 300 400 500
time (s)
S3 x 10*
2000 2
m
1]
g |\] A
. =
& 1000}, S| i 1 &
) -r wig 0
- . [%]
% Ea S
© 5
o
0 100 200 300 400 500
time (s)

Figure 5: Packet size (black points) and cumulative bytes lost (gray lines) of the four Skype flows in response

to a step change of available bandwidth at ¢ = 50s

S2

>

x 10
1600 8
1400 7
I 6
=3 —~
g 158
8 148
« %)
- v
2 133
©
= 4 2
1
- - Pa— - 1y
0 100 200 300 400 500
time (s)
S4 x 10*
2000 2
m
g
g g
=
& 1000 1E
@ 1)
- [%]
2 S
©
o
o L= 0
0 100 200 300 400 500
time (s)

around 450 kbps after a transient of 100 s and em-
ploys FEC mechanism to counteract large packet
losses. Moreover, in this experiment we have found
that around 10% of packets sent in a Skype Video
flow are feedback packets (type A), around 83%
are packets without redundancy (type B), and the
remaining 7% are FEC packets containing redun-
dancy (type C).

5.2. Skype response to a staircase wvariation of
available bandwidth

In this scenario we aim at investigating how a
Skype Video flow adapts to small step-like incre-
ments/decrements of the available bandwidth. To
the purpose we start by allowing the available band-
width to vary in the range [160,1000] kbps. By us-
ing the knowledge on transient times that we have
gathered in the previous scenario, we set bandwidth
variations to occur every 100 s in order to let send-
ing rates to extinguish their transients. In partic-
ular, in the first half of the experiment, the avail-
able bandwidth increases every 100s of 168 kbps,
whereas, in the second half, it decreases of the same
amount every 100 s.

Figure 7 shows that Skype Video flow is some-
what slow in reaching the steady state since the
maximum sending rate is achieved only at t = 7005,
when the second half of the experiment is already
started. In the first half of the experiment, losses
are negligible and the average throughput is around
300 kbps, a value that is well below the available
bandwidth that goes up to 1000 kbps.

Regarding the frame rate, after an initial value of
f(t)= 151ps, it decreases down to 5 fps at t =t
when it suddenly increases its value again to 15 fps.
This sudden increase in the frame rate occurs in
correspondence to a reduction in the video resolu-
tion s(t) from 320 x 240 to 160 x 120. The frame
rate is kept unchanged until ¢ = ¢ when the res-
olution switches back to 320 x 240 and the frame
rate is set again to 15 fps.

We have run a similar experiment in which the
available bandwidth varies from 160 kbps down to
20kbps in order to investigate how Skype flows are
able to match a thin link capacity. Figure 8 shows
that the sending rate follows bandwidth reductions
until the capacity drops to 40kbps. In this con-
dition a minimum frame rate around 5 fps is mea-
sured. When the available bandwidth shrinks at
20 kbps, which is the minimum declared bitrate of
the Skype video codec [20], the video call is dropped

at t = 375 s probably because Skype detects a very
large packet loss percentage.

In this test, even though the available bandwidth
reaches the value of 500 kbps in 200 s and then out-
paces this value, the Skype video sending rate does
not exceed an average value of only 300 kbps. This
means that Skype is not effective to take all the
available bandwidth thus losing the possibility of
delivering videos at the highest possible quality.
The test has also shown that Skype Video is able
to shrink the sending rate to match a thin available
bandwidth as low as 40 kbps.

5.8. Skype Video response to a square wave avail-
able bandwidth

This scenario aims at showing how one Skype
Video flows reacts to variable network conditions
such as sudden drops/increases of the available
bandwidth. To the purpose we evaluate the Skype
response to a square wave available bandwidth with
a period T = 400s, a maximum value Ay =
1000 kbps, which is well above the maximum av-
erage sending rate we have measured in the first
scenario, and a minimum value A,, = 160kbps.
The Skype response is evaluated by measuring the
sending rate, the loss rate and the frame rate.

Figure 9 shows that, in the first half of the pe-
riod, the sending rate reaches an average value of
232 kbps, whereas the frame rate is between 10
and 15fps with negligible losses. When the first
available bandwidth drop occurs at ¢ = 200s, the
Skype flow suffers persistent losses which lasts for
19s. During this interval roughly 128000 bytes are
lost which corresponds to an average loss rate of
54kbps. During the time interval [217,400]s, the
Skype sending rate shrinks at 100 kbps, which is
well below the available bandwidth A,,, thus ex-
periencing no packet loss. The frame rate is kept
almost unchanged, except for a short transient time
during which it is reduced, which means that the
encoder decreases the quality in the time interval
[200,400] s. The flow starts to increase its rate when
the bandwidth is up again in the interval [400, 600]s
reaching an average sending rate of 238kbps. Dur-
ing this interval the video flow experiences signifi-
cant losses due to a high burstiness of the sending
rate in the interval [480, 540]s. During the last in-
terval [600,800]s, the sending rate achieves an aver-
age value of 78kbps with a frame rate that increases
up to 15fps at t = 735 s, when the video resolution
is reduced from 320 x 240 to 160 x 240 so that the
resulting sending rate is kept unchanged.

@ 1000 T T T

o

£ |[—Tou =" T

‘%’ — — —Avail. BW P

s 500 H Avg.Tput [-—+1! - b
<) | ——=— ———

=

o o

IE 0 L I I I I I I

0 100 200 300 400 500 600 700 800 900 1000

time (s)
5 300 T
Q.
o)
< 2001
Q
©
o 1001
: | L
- 0 l I 1 l I 1 I I I 1 \l 1
0 100 200 300 400 500 600 700 800 900 1000
time (s)
30 T T
I |
I
0 201 | h
i
10 ! NNV WA
I
L1 Il 1 1

O 1 1 1 1 1 1
0 tl10 200 300 400 1, 50 600 700 800 900 1000
time (s)

Figure 7: Skype Video flow dynamics in response to a time-varying available bandwidth

200 : ‘
e B ——— Throughput
150 A, _a -~ —AvailBW |
| P | LT VO Y | - B Avg.Tput
5 100 S YT 1
:~</ [
50 - b
0 1 1 1 1 1 1 r _
0 50 100 150 200 250 300 350 400
time (s)
2 200
o
=
Q] -
% 100
Q 0 A A .A I a LA LA AL I AN,
- 0 50 100 150 200 250 300 350 400
time (s)
20 \
%
a 10r b
LL
0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
time (s)

Figure 8: Skype Video response to an available bandwidth starting at 160 kbps and decreasing down to
20 kbps

o T
é‘ 1000~ —— Tput — — — Avail.BW Avg. Tputf ”””””)]
= | | | |
2 s00 | | | 4
= [\ [‘
3 — \
E 0 1 1 1 |
0 100 200 300 400 500 600 700 800
time (s)

- 300

joR

Qo

< 200 .

)

IS

=~ 100 7

[}

[%]

3 0 A 1 A l m L L] l h | A

0 100 200 300 400 500 600 700 800
time (s)
30

FPS

0 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

time (s)

Figure 9: Skype Video response to a square wave available bandwidth with period T"= 400 s

g T TT T T T T T
2 400} | | | | | [| —3S1 i
= I I I I I I I - - —Av.BW
= | | | | | | | I |
g - | | | | | | | | | B
5, 200 - - - - -
>
<
-|E 0 ! ! ! ! ! ! ! ! !
0 20 40 60 80 100 120 140 160 180 200
time (s)
a 100
Q.
o)
S
(0] L o
@ 50
3
3 0 _N \M I I I | ! ! !
0 20 40 60 80 100 120 140 160 180 200
time (s)

20

FPS

O 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

time (s)

Figure 10: Skype Video response to a square wave available bandwidth with period T' = 40 s

10

We have also run a similar experiment by using a
square wave with a period of 40s in order to asses
the reaction speed of the control algorithm. Figure
10 shows throughput, loss rate and frame rate in
this scenario. We have found that the input rate
never exceeds A,,, which means that the reaction
speed of the control algorithm is too slow with re-
spect to bandwidth variations. As a consequence
the frame rate is not able to reach values higher
than 12fps.

Again, the conclusion of this test is that Skype
is not effective to grab all the available bandwidth
thus losing the possibility of delivering the video at
the highest possible quality.

5.4. Two Skype Video flows over a square wave
available bandwidth

In this subsection we aim at investigating the ef-
fect of multiple video flows on the stability of the
network. To the purpose, we set up a scenario
in which one Skype Video flow S is started at
t = 0 and a second flow S5 is started at ¢ = 50s
. The available bandwidth varies as a square wave
of period T" = 400 s with a maximum value A,; =
384 kbps and a minimum value A,, = 160 kbps. We
have selected Ay = 384 kbps since this is the down-
link capacity of an UMTS link and is smaller than
the maximum average sending rate of Skype Video,
which we have measured is around 450kbps. In
this scenario, the two Skype Video flows will cre-
ate a congested bottleneck. Again, we have set
A,, = 160kbps, since with a lower value calls are
dropped.

Figure 11 (a) shows that, at the beginning, the
first flow increases its sending rate similarly to what
we have shown in previous experiments. Moreover,
the rate is kept increasing also when the second
Skype flow joins the bottleneck at ¢ = 50s. How-
ever, for t > 90s the first flow S; starts to leave
bandwidth to Sy that in turn increases its send-
ing rate until the first bandwidth drop occurs at
t = 200s. It can be seen that S5 generates a high
and persistent loss rate at around 80 kbps which
lasts for around 30s.

Figure 11 (a) also shows the average throughput
in each time interval during which the bandwidth
is kept constant. In particular, the channel link
utilization is 68% for ¢ € [0,200]s, 83% for t €
1200, 400] s, 46% for ¢ €]400,600] s and 61% for ¢ €
1600, 800] s.

It is important to note that when the avail-
able bandwidth increases again up to 384 kbps at

11

t = 400s, the two Skype flows do not increase their
sending rate thus not taking the opportunity to
send video at the best possible quality. For what
concerns fairness issues, the two flows share the bot-
tleneck in a fair way (the Jain fairness index is 0.97).

Figure 11 (b) shows packet size (dots) of the two
flows and lost bytes (continuous line). The Figure
confirms what we have reported in Section 5.1, i.e.
Skype Video increases the FEC action when packets
are lost.

Again, this test shows that Skype Video is not
efficient in getting full bandwidth utilization thus
losing the possibility of delivering a video with a
higher quality.

5.5. One Skype Video flow with concurrent TCP
flows

In this subsection we investigate the Skype Video
behaviour when the network bandwidth is shared
with TCP flows. We consider a link with a constant
capacity of 384 kbps. A Skype Video call starts at
t =0, the first TCP flow starts at ¢ = 200s and a
second one starts at t = 400s. Figure 12 (a) shows
throughput whereas Figure 12 (b) shows cumulative
losses of Skype and TCP flows along with packet
size and frame rate of the Skype flow.

When TCP1 enters the bottleneck, the Skype
Video flow releases bandwidth by decreasing its
sending rate. The two flows share the bandwidth
fairly until ¢ = 250s when the Skype flow starts
decreasing its sending rate leaving bandwidth to
TCP1. Figure 12 (a) shows that the steady state
is still not reached when TCP2 flow starts. Af-
ter the TCP2 flow is started, the bandwidth is
shared in a somewhat fair way among the flows
in the time interval [400,1000] s, except during the
interval [550,700] s during which the Skype flow
increases its bandwidth obtaining a significantly
larger bandwidth share.

In order to understand the reason that triggers
the increasing of the sending rate of the Skype flow,
let us look at the packet size evolution shown in
Figure 12 (b).

The Figure 12 (b) shows that the Skype
Video packet size increases in the time intervals
[120, 180]s, [375,494] s and [590, 681] s which means
that Skype has activated the FEC action. This is
confirmed by the frame rate dynamics that does not
follow the sending rate increase in those intervals. It
is worth noticing that the step change in the frame
rate evolution that occurs at ¢ = 436 s corresponds

’(})\ I I I I I
Q.
o ——S] —— S2 - — — Avail.BW Avg. link Tput
< 400 ————d————__ 1 —————————— - g P
5 \
Q_ ‘
S200 ML ARRER ‘ A
=}
o
F o : ‘ ;
0 100 200 300 400 500 600 700 800
time (s)
‘@ 2001 -
o)
=
£ 100]
% l
3 0 Al L L . l L
0 100 200 300 400 500 600 700 800
time (s)

FPS

0 I [I I I I I
0 100 200 300 400 500 600 700 800
time (s)
(a) Throughput, loss rate and frame rate time evolutions
x 10°
1500 6
o
Q ..
SN e
& 1000 %
©
N
@ RRS
£ 500
[} ;
S SEET
o
0 e e e e e e
0 100 200 300 400 500 600 700 800
time (s)
1500
v
Q
2 1000F
[
N
@
£ 500
[}
©
o
0 Ly - - 0
0 100 200 300 40 500 600 700 800

time (s)

(b) Packet size (dots) and lost bytes (continuous line) evolutions

Figure 11: Dynamics of two concurrent Skype Vid@ flows in the presence of a square wave available
bandwidth

IS
a
=}

T T
—S1
—TCP1

N
o
=}

T

—TCP2
- — —Avail.BW

w

a

=]
T

W

=}

=}
T

N

a

=]
T

N
=3
=}

Throughput (kbps)

i
@
=}

-
15
S

o
=}

o

.
500 600 700 800 900
time (s)

(a) Throughput of Skype Video and two TCP flows

%
100 200 300 400 500 600 700 800 900 1000
time (s)

I I
0 100 200 300 400 1000

x10°

i
o

Loss (bytes)
=
o
T

o w
T

(<)

1000f

o
Q
=]

Packet size (bytes)

oem m g e

o

600

200 500

0 100 300 400 800 900 1000
time (s)
20
2.0 W
w
o
0 100 200 300 400 500 600 700 800 900 1000

time (s)

(b) Cumulative losses, packet size and frame rate evolutions

Figure 12: One Skype Video flow over a link with
384 kbps capacity sharing the bottleneck with two
concurrent TCP flows started at ¢ = 200s and ¢t =
400s

13

Table 1: Throughput, loss rate, loss ratio and chan-
nel utilization for the Skype and the two TCP flows

Tput Loss rate Loss Channel
(kbps) (kbps) ratio util.
S1 162.5 6.0 3.7% 42.3%
TCP1 101.6 12.3 12% 26.4%
TCP2 | 102.3 12.6 12% 26.6%

to a decrease in the video resolution from 320 x 240
to 160 x 120. The cumulative losses graph shown in
Figure 12 (b) clearly suggests that the increments in
the FEC are triggered by the increasing of lost bytes
(see also Section 5.1). In particular, the Skype flow
loses 258000 bytes in the interval [590, 681]s and ex-
hibits an unfair behaviour with respect to the TCP
flows.

In order to evaluate how the Skype flow behaves
when sharing the link with other TCP flows, Table
1 reports average values of throughput, loss rates,
loss percentages and channel utilizations of all the
flows for ¢t > 400s. Results show that Skype takes
a larger share of channel capacity, whereas the two
TCP flows share the left over bandwidth equally.

The overall conclusion here is that Skype Video
seems more aggressive than the TCP, because of the
FEC action that seems to unresponsively increase
the sending rate when losses are experienced.

5.6. Effect of reverse traffic on a Skype Video flow

This scenario aims at showing the effect on a
Skype Video flow when congestion is present on the
reverse path. To the purpose, in this experiment,
the available bandwidth is set at 2000 kbps so that
the Skype Video flow is not be able to generate con-
gestion on the forward path of the bottleneck. A
Skype Video flow is started at ¢ = 0s and three
TCP connections start along the reverse path at
t = 200s and leave at ¢t = 400s.

Figure 13 shows that when the TCP flows join the
path at time ¢ = 200 s the Skype sending rate de-
creases from a steady state value of around 450 kbps
to a value of around 190 kbps (corresponding to a
frame rate of 9 fps) even though the available band-
width on the forward path does not vary. By look-
ing at the RT'T evolution shown in Figure 13, the
decreasing in the sending rate seems to be triggered
by the increased RTT on the reverse path that is
due to the slow start phase of the TCP flows. After
the TCP slow start phase ends, the RTT decreases
and Skype starts increasing the sending rate again

@ 800

l¢)

Throl
o

. .
300 500
time (s)

L
0 100 600

300 !
_ ——RTT - - —RTT min
T ool !

L
300

600
time (s)
30 T T T T T
o 201 b
&
10 T
0
0 100 200 300 400 500 600
time (s)

Figure 13: One Skype Video flow with TCP reverse
traffic present for ¢ € [200,400] s

up to its steady state of 450 kbps. In this scenario
the sending rate is driven mainly by the frame rate
as it is can be inferred by noting that the frame rate
dynamics follows the sending rate dynamics.

In conclusion, the control algorithm employed by
Skype Video is sensitive to the congestion on the
reverse path.

6. Skype Video adaptive FEC algorithm

In Section 5 we have discussed the main proper-
ties of Skype Video flows in several different sce-
narios. In particular, we have shown that packets
generated by Skype Video (see Figure 5 and Figure
6) can be of three different types: control pack-
ets, video data packets and video data packets with
redundancy. We also noticed that packets with re-
dundancy are sent, i.e. FEC action is on, when
Skype detects packet losses (see Figure 5 and Fig-
ure 11 (b)).

In this Section we aim at explaining how, and to
what extent, FEC action is controlled by Skype.

To the purpose, we reconsider two experiments:
1) two Skype Video flows over a square wave avail-
able bandwidth (Section 5.4); 2) one Skype Video
flow with concurrent TCP flows (Section 5.5). We
have chosen these experiments because they exhib-
ited the highest number of lost packets, thus trig-
gering the FEC action for a prolonged amount of
time.

In order to evaluate the percentage of video pack-
ets with redundancy at a time instant ¢, we employ
the following algorithm. For each time ¢, = kAT

14

sof ,\w y\N m/w |
S ok ‘]
8 60 “ H“\
8 ol | W
FA. ‘]
w ﬂ\/\f M ‘
20t/ | W L]
| S !
0 100 200 300 400 500 600 700 800
time (s)
20 T
™
= i h
€15 —i /4”‘ f \W 1
@ [
b | |
% 10t f M \f\"l/\/ H\ \’J—l]
Sl | [
~
é o \\ J \L ‘ A\ i
|
0 ‘ ‘\ L L A L m /—w—m‘ U—\ﬁ
0 100 200 300 400 500 600 700 800
time (s)

(a) Two Skype flows over a square wave available bandwidth

100 T T

‘H MVAV‘ " ‘
8ot W M [“‘ f
i (\
gl || N .
o f\ . N \
§ aof]| i W [JV‘ ‘ | M M
‘ﬂ\ \‘ ‘\ WQ gl ‘ W ‘WW\ “ \\ \‘ N
o0 |] v L \ laam | WA
L)LY ! A v
% 100 200 300 400 500 600 700 800 900 1000
time (s)
15 -
_ \g
g
& 1 M]
3 ‘ M b ,} \
5 [[
g ° LAY]
= W \
0 Ay % [Vl Y S M
0 100 200 300 400 500 600 700 800 900 1000

time (s)

(b) One Skype Video flow with concurrent TCP flows

Figure 14: FEC action vs Measured packet, loss ra-
tio

(with AT = 4s) we evaluate the number of video
packets without redundancy n, (tx) and the number
of video packets with redundancy n,,(tx) contained
in the time interval t;,. We define the FEC action
FEC(ty) at time tj, as the ratio between video pack-
ets with redundancy n,, and the total number of
packets n,(tg) + nyr(tr) sent in the current time
interval:

Noyr (tk)

FECt) = a0 T o)

(1)

By comparing the loss ratio [(t) estimated by Skype
as shown in the “technical tooltip” and the FEC
action FEC(t) computed using (1) we have found
a proportionality between those two signals. Figure
14 (a) and Figure 14 (b) show a comparison between
the packet loss ratio measured by Skype Video and
the FEC action F'EC(t) computed using (1) in both
considered scenarios.

Both the figures show that Skype Video adap-
tively throttles the FEC action FEC(t) roughly
proportionally to the estimated packet loss ratio.

7. Conclusions

We have carried out an experimental investiga-
tion of Skype Video flows behaviour in the presence
of time varying network conditions and TCP traf-
fic. We have found that a Skype Video call uses the
frame rate, the packet size and the video resolution
in order to throttle its sending rate to match the
network available bandwidth. The obtained results
have shown that a Skype Video call roughly requires
a minimum of 40 kbps available bandwidth to start
and it is able to fill in a bandwidth up to 450 kbps.
Thus it can be said that a video flow is made elas-
tic through congestion control and adaptive codec
within that bandwidth interval.

We have also measured that a Skype Video send-
ing rate exhibits a large transient time when it
increases to match an increment of the available
bandwidth. Moreover, we have found that in many
scenarios a Skype video call refrains from fully uti-
lizing all available bandwidth, which means that
a video call is not sent at the best quality that
a network would permit. Regarding coexistence
with TCP flows, Skype Video seems more aggres-
sive than the TCP because of the FEC action that
unresponsively increases the bandwidth even when
losses are experienced. Furthermore, we have found
that when congestion is present on the reverse path,

15

Skype Video unduly reduces its sending rate. Fi-
nally, we have shown that Skype Video employs an
adaptive FEC action that is roughly proportional
to the measured packet loss ratio.

8. Acknowledgment

This work has been partially supported by Fi-
nancial Tradeware plc.

References
[1] Skype fast facts - g4 2008. Avail-
able online: http://ebayinkblog.com /wp-

content/uploads/2009/01/skype-fast-facts-q4-08.pdf.
R. Barbosa, C. Kamienski, D. Mariz, A. Callado, S. Fer-
nandes, and D. Sadok. Performance evaluation of P2P
VoIP application. In Proc. of ACM NOSSDAV ’07,
2007.

S. Baset and H. Schulzrinne. An Analysis of the Skype
Peer-to-Peer Internet Telephony Protocol. In Proc. of
IEEE INFOCOM 06, Apr. 2006.

J.-C. Bolot and T. Turletti. A rate control mechanism
for packet video in the internet. In Proc. of IEEE IN-
FOCOM 9/, pages 1216-1223, 1994.

K. Chen, C. Huang, P. Huang, and C. Lei. Quantifying
Skype user satisfaction. In Proc. of ACM SIGCOMM
’06, Sept. 2006.

W. Chiang, W. Xiao, and C. Chou. A Performance
Study of VoIP Applications: MSN vs. Skype. In Proc.
of MULTICOM ’06, 2006.

L. De Cicco, S. Mascolo, and V. Palmisano. An Exper-
imental Investigation of the Congestion Control Used
by Skype VoIP. In Proc. of WWIC ’07, May 2007.

L. De Cicco, S. Mascolo, and V. Palmisano. A Math-
ematical Model of the Skype VoIP Congestion Control
Algorithm. In Proc. of IEEE Conference on Decision
and Control ’08, Cancun, Mexico, Dec. 9-11, 2008.

L. Eggert and G. Fairhurst. UDP Usage Guidelines for
Application Designers. RFC 505, Nov. 2008.

S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. IEEE/ACM Trans.
on Networking (TON), 7(4):458-472, 1999.

S. Floyd and E. Kohler. TCP Friendly Rate Control
(TFRC): The small-packet (sp) variant. RFC /828,
Experimental, 2007.

Grieco, L.A. and Mascolo, S. Adaptive Rate Control
for streaming flows over the Internet. ACM Multimedia
Systems Journal, 9(6):517-532, Jun 2004.

S. Guha, N. Daswani, and R. Jain. An Experimental
Study of the Skype Peer-to-Peer VoIP System. In Proc.
IPTPS ’06, Feb. 2006.

M. Handley, S. Floyd, and J. Pahdye. TCP Friendly
Rate Control (TFRC): Protocol Specification. RFC
3448, Proposed Standard, Jan. 2003.

T. Hoffeld and A. Binzenhofer. Analysis of Skype VoIP
traffic in UMTS: End-to-end QoS and QoE measure-
ments. Computer Networks, 52(3):650-666, 2008.

T. Huang, K. Chen, and P. Huang. Tuning the redun-
dancy control algorithm of Skype for user satisfaction.
In Proc.of IEEE INFOCOM ’09, Apr. 2009.

(2]

(3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
23]

[24]

H. Kanakia, P. Mishra, and A. R. Reibman. An Adap-
tive Congestion Control Scheme for Real Time Packet
Video Transport. In Proc. of ACM SIGCOMM 93, San
Francisco, USA, 1993.

E. Kohler, M. Handley, and S. Floyd. Designing DCCP:
congestion control without reliability. In Proc. of ACM
SIGCOMM 06, Sept. 2006.

J. McCarthy, M. Sasse, and D. Miras. Sharp or
smooth?: comparing the effects of quantization vs.
frame rate for streamed video. In Proc. SIGCHI con-
ference on Human factors in computing systems, pages
535-542. ACM New York, NY, USA, 2004.

On2 Technologies. TrueMotion VP7 Video Codec
White Paper. 10 Jan. 2005.

H. Schulzrinne, S. Casner, S. Frederick, and V. Jacob-
son. Rtp: A transport protocol for real-time applica-
tions. RFC 3550, Standard, 2003.

V. Jacobson. Congestion avoidance and control. In
Proc. of ACM SIGCOMM ’88, pages 314-329, 1988.
S. Wenger. H. 264/AVC over IP. IEEFE Trans. Circuits
and Syst. Video Technol., 13(7):645-656, 2003.

X. Zhang, J. Liu, B. Li, and Y. Yum. CoolStream-
ing/DONet: A data-driven overlay network for peer-to-
peer live media streaming. In Proc. of IEEE INFOCOM
’05, 2005.

16

