
A Hybrid Model of Adaptive Video Streaming Control Systems

Giuseppe Cofano, Luca De Cicco, Saverio Mascolo

Abstract— Video streaming traffic over the Internet has
significantly grown in the recent years. Adaptive video stream-
ing control systems are employed to provide the best user
experience given the user device and the network available
bandwidth. The control goal is to maximize the video bitrate
while avoiding playback interruptions. In this paper, we present
a complete and accurate model of a generic adaptive streaming
control system in the form of a hybrid dynamical system.
The model describes all the system features, differently from
previous models making the fluid-flow approximation, and
allows to rigorously design video streaming controllers whose
performance can be analytically assessed. The high accuracy
of the model has been assessed by comparing numerical
simulations to experimental data obtained through real network
experiments. Given its accuracy and low computation cost, the
proposed model provides a promising alternative to network
experiments in order to aid the design and evaluation of
adaptive video streaming systems.

I. INTRODUCTION

Recent years have witnessed a remarkable change of
the Internet traffic. If in the past years peer-to-peer traffic
was dominant, today video streaming is considered the
largest contributor of the global Internet traffic [5]. This
phenomenon is mainly driven by the shift of a large por-
tion of users which today prefer to consume video con-
tent over the Internet instead of using traditional broadcast
TV channels. Consequently, video content providers are
required to deliver a seamless multimedia experience across
a heterogeneous mix of client devices (such as smart TVs,
desktop PCs, smartphones) and access networks (such as
wired cable/ADSL and wireless 3G/4G connections). When
designing such systems, the Quality of Experience (QoE), i.e.
the quality perceived by the user, has to be carefully taken
into account due to its impact on user engagement, which
is in turn directly connected to the revenues [9], [14]. For
this reason, video streaming systems are required to design a
control algorithm with the goal of maximizing the QoE under
time-varying network conditions. Video delivery systems
employing such control algorithms are defined as adaptive
video streaming systems. Adaptivity can be implemented by
throttling the video bitrate in real-time to track the time-
varying and unpredictable Internet available bandwidth.

Due to its deployment and implementation advantages,
the leading approach to implement adaptivity is the stream-
switching (or multi-bitrate). The server encodes the video
content at different bitrates, the video levels. Each video level

The authors are with the Dipartimento di Ingegneria Elettrica e
dell’Informazione, Politecnico di Bari, Via Orabona 4, Bari, Italy. Emails:
{name.surname}@poliba.it

This work has been partially supported by the "Future in Research"
project no. ACYBEH5 funded by the Apulia Region, Italy.

is temporally divided into video segments of fixed duration.
A playout buffer is employed at the client to absorb the
instantaneous mismatches between the selected video bitrate
and the network available bandwidth. The control algorithm
dynamically selects the video level to be sent based on the
knowledge of the state of the system. Such an approach is
today used by all major video streaming services such as
YouTube, Netflix, Hulu, Vudu, Livestream, and Akamai [4],
and adopted by the two main adaptive streaming standards,
i.e. the MPEG Dynamic Adaptive Streaming over HTTP
(MPEG-DASH) and the HTTP Live Streaming (HLS).

The adaptive streaming control system has two fundamen-
tal goals: 1) to avoid the depletion of the playout buffer
(rebuffering event), which has been shown to be highly detri-
mental for the QoE and the user engagement [3]; 2) to select
the highest possible bitrate, possibly matching the available
bandwidth. Several adaptive streaming controllers have been
proposed in the literature, usually resorting to heuristic-
based design whose performance can only be analyzed via
experimental evaluations. The only models proposed in the
literature make the fluid-flow approximation, which consists
in assuming video segments of infinitesimal size. However,
such models cannot describe the following features of the
real system: 1) the playout buffer dynamics is character-
ized by a time-continuous draining process driven by the
video player and an impulsive filling triggered by segments
download completion; 2) the shaping of the received rate by
inserting OFF periods, which is employed by an important
class of controllers [6], [12]; 3) the mismatch between the
encoded nominal video bitrates and the effective bitrates of
each video segment.

In this work we make the following contributions. First,
from a modeling standpoint, we propose a complete model
of the control system in the form of a hybrid dynamical
system overcoming all the above mentioned limitations. The
model has been built by employing the well-established
modeling framework for hybrid dynamical system presented
in [10]. It allows to rigorously design video streaming
controllers whose performance can be analytically assessed.
Second, from a technological point of view, we show how to
implement the proposed model and employ it as a tool which
accurately simulates the behavior of the real system. The tool
has a very low computational cost which allows carrying
out simulations that are two orders of magnitude faster than
the experimental runs. Considered the high costs generally
involved to carry out experimental evaluations, which do not
allow an exhaustive coverage of the whole design parameters
space, our tool provides a promising alternative to aid the
design and evaluation of adaptive video streaming systems.



II. BACKGROUND

In this Section we provide background material focusing
on HTTP adaptive video streaming control systems. The
controllers can be classified based on their actuation vari-
ables [6]: (i) algorithms acting by limiting the received rate
at the client by means of OFF periods are denoted as rate-
based, whereas (ii) algorithms acting by adapting only the
video level are denoted as level-based.

In the case of the rate-based approach OFF periods are
inserted between the downloads of consecutive segments in
order to shape the average received rate. The rationale is to
set the received rate equal to (on average) the selected video
level in order to avoid video level switches. Moreover, if
the end-to-end bandwidth is constant, the queue tracks the
set point. Despite its simplicity, this approach has two major
drawbacks: (i) the available bandwidth is always underuti-
lized; (ii) it has been experimentally shown that the ON-OFF
traffic pattern causes the video flows to obtain a significantly
smaller bandwidth share with respect to the fair one when
competing with long-lived TCP flows [1], [12]. The first
issue can degrade the perceived QoE remarkably in case the
distance between the levels is large. The second issue, that
is known in the literature as the downward spiral effect, can
lead to an even worse degradation of the perceived QoE when
concurrent long-lived TCP flows share the bottleneck with
the video flow [1], [12]. Among the controllers proposed to
address the described issues we mention [2], [18], [13].

In the case of the level-based approach (see for in-
stance [7]), the video segments are downloaded back to
back, thus eliminating the ON-OFF traffic pattern. In this
way, video flows behave as any other TCP long-lived flow
and, as a consequence, full utilization and fairness with TCP
long-lived flows are achieved by design. The control is done
by throttling the video bitrate in order to avoid rebuffer-
ing events. Well-known feedback control techniques such
as PI regulators, Model Predictive Control, and feedback
linearization can be employed [7], [17]. The drawback of
this approach is that at steady state video level switches
occur even when the available bandwidth is constant since
the video bitrate belongs to a discrete set and cannot exactly
match the available bandwidth.

III. ADAPTIVE VIDEO STREAMING CONTROL SYSTEM

A. Overview

In this Section we describe a general adaptive video
streaming system, in which a client plays a video that is
sent by a remote server over the Internet. Such systems use
the stream-switching (or multi-bitrate) approach to allow the
video bitrate to be varied: the server encodes and stores the
video content at different bitrate levels l1, . . . , lN forming a
discrete set L ={l1, l2, . . . , lN}. Each video level is tempo-
rally divided into a number of segments of fixed duration. A
control algorithm dynamically selects 1) the video level to
be streamed at each segment download and 2) the duration
of idle times (OFF periods) inserted to shape the received
rate. The video client employs a playout buffer to absorb

Playout

buffer

Internet

dr fr r

qs

(l, w)

L

Client
(li ,s)

r

GET (li, s)

D
ow

nl
oa

de
r

Player

Controller

Server
HTTP

Fig. 1: An adaptive video streaming system

the instantaneous mismatches between the selected video
bitrate and the network available bandwidth that in best-effort
Internet is unpredictable and time-varying.

Fig. 1 shows the architecture of an adaptive video stream-
ing system: control signals and data flows are represented
with thin and thick lines respectively. In a nutshell, the client
is made of four components: (i) a controller that computes
the video level bitrate and the idle times; (ii) a downloader
that retrieves the video segments from the server at the video
level bitrate computed by the controller; (iii) a playout buffer
that temporarily stores the video segments retrieved by the
downloader; (iv) a player that drains the playout buffer,
decodes the video frames, and renders the video on the
screen.

In the following, we describe the workflow of a video
streaming session by showing the interactions between com-
ponents and their dynamics.

B. The Video Encoding

In adaptive video streaming systems, the video encoder
generates N versions of the same video clip, each of them
corresponding to a nominal encoding bitrate li. Each video
version is made of video frames of fixed duration (usually a
few milliseconds), which are the minimal part of information
that a video player can process. Video frames are grouped to
form video segments, which are the minimum transport unit
and have a fixed playback duration (usually of few seconds).
A video segment is identified by its index s ∈ S , where
S = {1, 2, . . . , bT̂ /τ̂c} is the set of video segment indices,
τ̂ is the segment duration and T̂ is the video clip duration.
The set of encoded video bitrates is depicted in Fig. 2. It
is worth to notice that the effective encoding bitrate of each
segment (height of each segment in Fig. 2) can be different
from the nominal bitrate li set at the video encoder (dashed
line in the Fig. 2). The effective encoded bitrate of the i-th
segment is equal to Si,s/τ̂ , where Si,s is the size, measured
in bytes, of the s-th segment of the i-th video level.

C. The Controller

Control laws are designed with the overall goal of max-
imizing the user QoE. Even though a quantitative model
of the QoE based on key performance parameters is still
missing [16], it is today well-known that quality degradation
is due to, in decreasing order of importance, the following
factors: (i) rebuffering events [3]; (ii) low average video
bitrate; (iii) video bitrate oscillations. The control law u(·)
is made of two components: 1) u1(·) is the video bitrate
l ∈ L to be downloaded; 2) u2(·) is the idle time w to wait



bitrate

bitrate

τ̂

Si,3Si,2Si,1 Si,s

li

video time

video time

l1
S1,1 S1,2 S1,3

S1,s

τ̂

Fig. 2: The mismatch between nominal and effective seg-
ments bitrates for the levels l1, . . . , li

2 3
1

t

s

l(t)

τ1 τsτ3w2τ2w1

bitrate

l1

l2

l3

l4

Fig. 3: The video bitrate selection in an adaptive video
streaming system. OFF periods are depicted in gray.

before downloading the next segment, which is employed to
shape the received rate.

The control law is computed after the completion of the
segment download. The selected bitrate assumes values in
the discrete set L, thus l(t) is a piece-wise constant signal.
The idle time w belongs to R≥0. Controllers can be classified
as (i) level-based, which download segments back to back
and set the idle time equal to 0 (i.e. they do not shape the
received rate and (ii) rate-based, which update the idle time
to shape the received rate. An example of a generic control
action is shown in Fig. 3.

D. The Downloader

The downloader component is the actuator of the control
system. It retrieves from the server the video segments at
the bitrate decided by the controller and keeps track of the
progression of s. Let us define ts as the time instant at
which the download of the segment s starts. The downloader
measures the download time τs, i.e. the time elapsed from
ts to the completion of the download of segment s. Then,
the downloader waits ws seconds before starting to retrieve
the next segment s+ 1. As a consequence, it holds

ts+1 = ts + τs + ws.

E. The Player

The player is the component that drains the playout buffer,
decodes, and renders the video on the user screen. It is worth
noting that if the controller works at segments timescale, the
player works at frames timescale, i.e., the minimum amount

of video drained by the player is one frame. Since frame
duration is negligible compared to segment duration1, we
consider the player to drain the buffer with continuity. The
player has two possible states: (i) playing: during this state
the player drains the playout buffer, meaning that for any
given time interval of duration ∆T , ∆T seconds worth of
video are drained by the playout buffer; (ii) paused: during
this state the playback is stopped and no video is drained
from the playout buffer; the player is in such state either
when the buffer is empty or during the initial phase of a
video streaming session.

Thus, the player draining rate dr(t) = dτ̂/dt, defined as
the duration of video dτ̂ drained in a time interval dt, can
be modeled as follows

dr(t) =

{
1 playing,
0 paused.

(1)

F. The Playout Buffer

The playout buffer is employed to store the video content.
Its length q(t) is the video duration measured in seconds.
This means that, if the filling rate is zero, the video playback
that can still be ensured for q(t) seconds. The playout buffer
is fed by the downloader and drained by the player. The play-
out buffer dynamics is characterized by a time-continuous
draining process driven by the video player according to (1)
and an impulsive filling of amplitude τ̂ triggered by segments
download completion, which occurs at time ts + τs for each
segment s.

Thus, the net increment of the queue length due to the
download of s-th segment is given by

q(ts + τs)− q(ts) = τ̂ −
ˆ ts+τs

ts

dr(ξ)dξ (2)

since in τs seconds the queue has been filled by a quantity
τ̂ and drained by ˆ ts+τs

ts

dr(ξ)dξ (3)

seconds according to integration of (1).

IV. THE MODEL OF THE CONTROL SYSTEM

In this Section we present a mathematical model of a
generic adaptive video streaming control system. To the
purpose, the hybrid dynamical systems framework proposed
in [11] has been employed. Such a mathematical framework
allows modeling dynamical systems which combine time-
continuous and time-discrete dynamics [10].

The adaptive video streaming system presented in Sec-
tion III is made of two components which form a classic
closed-loop system: the plant to be controlled which is
composed of the player, the downloader, and the playout
buffer presented in Section III, and the controller computing
the control law u(·).

Before describing the model, let us briefly introduce the
hybrid dynamical system framework. Further details are

1The duration of one frame is in the range 16ms-40ms whereas segments
are typically in the range 1s-10s.



providede in [11]. The key idea of this framework is to
separate the continuous part of the dynamics of a dynamical
system from its discrete part.

A hybrid system H can be described using four elements
(C,D, f, g)

H :

{
ẋ = f(x), x ∈ C
x+ = g(x), x ∈ D

where x is the state, C is the flow set where x evolves
according to a continuous equation, f is a function describing
the continuous evolution of the state, D is the jump set where
jumps are enabled, g is a function describing the discrete
evolution of the state. When x belongs to the flow set C, the
system evolves with a time-continuous dynamics according
to the differential equations f (flow map). When x belongs
to the jump set D, the system evolves with a time-discrete
dynamics according to the finite-difference equation g (jump
map).

A. The Hybrid Model of the Playout Buffer

In this Section the hybrid model B of the playout buffer
dynamics is proposed. The state of the system is given by
x = [q, l,D, dr, τ, w, s, σ]T ∈ X ⊆ R8, where: 1) q is the
playout buffer length, which is measured in seconds; 2) l is
the selected video bitrate taking values in L; 3) D is the
amount of bytes of the current segment which have already
been downloaded; 4) dr is the player draining rate; 5) τ is
the timer tracking the current segment download time; 6) w
is the duration of the OFF period; 7) s is the current segment
index; 8) σ is a logical state, which has value 1 during ON
periods and 0 during OFF periods. The system has three input
variables: the control laws u1(·) and u2(·), the received rate
r(t). The control laws are computed by the controller, the
received rate is considered as a disturbance.

For convenience of notation, we define the following sets:

D1 = {x ∈ X : D = Si,s},
D2 = {x ∈ X : τ = w ∧ σ = 0},
D3 = {x ∈ X : q = 0},
D4 = {x ∈ X : q = qmin ∧ dr = 0}.

The condition defining D1, i.e. the downloaded bytes D are
equal to the current segment size Si,s, represents the event
occurring at the end of an ON period, which corresponds
to the completion of a video segment download. The set
D2 represents the event occurring when an OFF period
ends, i.e. the timer τ is equal to the idle time w set by
the controller. The condition defining D3 is met when a
rebuffering event occurs, i.e. the playout buffer gets empty.
The condition defining D4 is met when the playout buffer
has been filled again after a rebuffering event, i.e. q(t) gets
above a configured threshold qmin and the player is not active
(dr = 0) because of the rebuffering.

In our proposed model the flow set C and jump set D are
given by

D =

4⋃
i=1

Di ; C =X \ D.

The flow map f is defined as

f(x) =


[
−dr, 0, r, 0, 1, 0, 0, 0

]T
, σ = 1[

−dr, 0, 0, 0, 1, 0, 0, 0
]T
, σ = 0

where f1 models the time-continuous playout buffer de-
pletion, i.e q̇ = −dr; f3 models Ḋ = r, following from
D(t) =

´ t
ts
r(ζ)dζ, i.e. the amount of downloaded bytes of

the current segment is equal to the integral of the received
rate r; f5 models the timer, i.e. τ̇ = 1; finally, f2, f4, f6,
f7, f8 do not vary during the time-continuous dynamics.
In case the control law employs OFF periods, the received
rate is set to 0 during such intervals (σ = 0), since the
download process is paused. It is worth to notice that the
dynamics of the received rate r can be freely set to simulate
any rate pattern. A model of the interaction between r and
the available bandwidth B can be plugged in f3 to analyze
underutilization issues (i.e. r < B) that might affect video
streaming controllers, as shown in [1], [12]. The modeling
of such an interaction, however, is outside the scope of this
work.

The jump map g is given by

g1(x) = [q + τ̂ , u1(·), 0, dr, 0, u2(·), s+ 1, 0]
T
,

g2(x) =
[
q, l, D, dr, 0, w, s, 1

]T
,

g3(x) =
[
q, l, D, 0, τ, w, s, σ

]T
,

g4(x) =
[
q, l, D, 1, τ, w, s, σ

]T
.

Let us analyze separately each jump map gi which is
triggered when x ∈ Di.
g1 is triggered when c1 is met, i.e., a segment has been

downloaded. Thus, the queue q is increased by the segment
duration τ̂ , the control law u(·) is executed to select the
bitrate l of the next segment through u1(·) and the duration w
of the OFF period through u2(·), the amount of downloaded
bytes D and the timer τ are reset to 0, the player draining
rate is left to its current value dr, the logical state σ is set to
OFF (i.e. 0), the index of the current segment s is increased
by 1.
g2 is triggered when c2 is met, i.e., the OFF period ends.

All variables are left in their current states except for the
timer τ , which is reset to 0, and the logical state of the
system σ, which is set to ON, i.e. 1.
g3 is triggered when c3 is met, i.e., when a rebuffering

event occurs. All variables are kept in their current states
except for the player draining rate dr, which is set to 0.
With this choice the playout buffer is not drained anymore
in the time-continuous dynamics, allowing to be refilled.
g4 is triggered when c4 is met, i.e., when the playout buffer

has been refilled after a rebuffering event. All variables are
kept in their current states except for the player draining rate
dr, which is set to 1 to resume the playing.

V. EXPERIMENTAL VALIDATION

In this Section we validate the hybrid model B proposed
in Section IV. The validation is carried out by comparing



storage
Video

TAPAS

Player
L

Server Host

Apache
HTTP
Server

Client Host

Video
Emulation
Internet

NetShaper

Fig. 4: Testbed employed for the experimental evaluation

numerical simulations with experimental data. Moreover, we
have compared the hybrid model B to the fluid-flow model in
order to show the improved accuracy of the proposed model.

The fluid-flow model is described in details in [6]. In a
nutshell, the playout buffer dynamics is simply described by
q̇ = r/l − dr. The model is remarkably simpler, yet it does
not capture important features such as the impulsive playout
buffer filling, the OFF periods, and the mismatch between
nominal and effective video bitrates.

The simulations have been carried out by implement-
ing the models with the Matlab Hybrid Equations (HyEq)
Toolbox [15], which is capable of simulating individual
and interconnected hybrid systems. Regarding the network
experiments, instead, the control algorithms have been im-
plemented using TAPAS [8], an open-source tool written in
Python that allows video streaming control algorithms to be
implemented and tested in real networks.

Fig. 4 shows the employed testbed that is composed of
two hosts connected through a 1 Gbps switch: the server
host is a workstation with a Debian Linux operating sys-
tem equipped with the software Apache2 that acts as
the HTTP server; the server host also stores the video
sequence “Sintel”3, encoded at five nominal bitrates L =
{240, 500, 900, 1400, 2600} kbps; the client host is a Debian
Linux machine that runs the TAPAS tool in order to down-
load video segments from the HTTP server and play the
video; the TAPAS tool collects several variables such as the
video level l(t) selected by the controller and the playout
buffer length q(t) and stores them in log files [8]; moreover,
the client host runs NetShaper, a tool developed by us
that allows setting the bandwidth and the delay of the link
connecting the client to the server host to emulate an Internet
connection. We have tested step-like bandwidth changes.
In all runs, which last 400 s, the bandwidth B(t) is either
increased (step-up) or decreased (step-down) after 200 s fol-
lowing a step function. In order to show the accuracy of the
proposed model for several control laws, we have considered
two controllers, the Hysteresis controller and the Conven-
tional controller, which are representative respectively of the
level-based and rate-based approaches [6]. The Hysteresis
controller, proposed in [6], dynamically updates the video
level based on the bandwidth estimate and the queue length
so that the average video bitrate matches the received rate.
The playout buffer length is kept within two thresholds, qL
and qH , which have been set, respectively, to 12 s and 24 s.
The validation of the Conventional controller, however, is

2http://httpd.apache.org/
3http://www.sintel.org/

not shown in the following due to space constraints.
The results obtained with the Hysteresis controller are

shown in Fig. 5 and Fig. 6. We point out that further
experiments were carried out during the validation process,
but we show only two of them due to space constraints.

Let us first examine the experiment considering a band-
width that drops from 2000 kbps to 1200 kbps at t = 200 s.
Fig. 5 shows the dynamics of the queue length and the
selected bitrate for the fluid-flow model (Fig. 5 (a)), the
proposed hybrid model B (Fig. 5 (b)), and the real system
(Fig. 5 (c)). The dashed lines represent the thresholds qL
and qH in top figures and the available bandwidth B(t)
in bottom figures. The figure shows that the dynamics of
the model B accurately matches the real system dynamics
gathered through a real network experiment. The accuracy
improvement of B compared to the fluid-flow model is clear.
In fact, it can be observed that, in the case of the fluid-flow
model, at 200 s a switch-up event occurs, setting the video
level to l5 = 2600 kbps. On the other hand, both the hybrid
model B and the real system do not exhibit this event. In
summary, this scenario shows that the proposed hybrid model
B is able to accurately model the mismatch between nominal
and effective bitrates.

Let us now consider the experiments with step-up band-
width change, shown in Fig. 6. The bandwidth is increased
from 1200 kbps to 2000 kbps. The fluid-flow model provides
a slightly better approximation of the real system dynamics
compared to the previous scenario, even though a switch-
up to l4 = 1400 kbps is triggered at around 170 s, which is
instead not exhibited by the real system. On the other hand,
the dynamics of the proposed model is almost equivalent to
the one of the real system.

The validation has shown that the proposed hybrid model
is accurate in reproducing the dynamics of the real system
and clearly outperforms the fluid-flow model. The benefits
of the hybrid model are particularly evident when the actual
video bitrate is close to the received rate.

VI. CONCLUSIONS

In this work we have proposed a complete and accu-
rate model of a generic adaptive streaming control system
in the form of a hybrid dynamical system. Among the
improvements of the proposed model over the fluid-flow
model previously proposed in the literature, we mention:
(i) the accurate modelling of the hybrid playout buffer
dynamics made of a time-continuous draining process and an
impulsive filling process; (ii) the possibility to model rate-
based controllers which shape the received rate by inserting
OFF periods; (iii) the possibility to model the effect of the
mismatch between the encoded nominal video bitrates and
the actual bitrates of each video segment. The validation
of the proposed model has been carried out by comparing
simulations results to experimental data obtained through a
testbed implementing a real video streaming system. The
proposed model allows to carry out simulations that are
two orders of magnitude faster than the experimental runs



0 100 200 300 400
0

10

20

30
q

(t
) 

[s
]

0 100 200 300 400

t [s]

0

1000

2000

l(
t)

 [
k
b

p
s
]

(a) Fluid-flow model

0 100 200 300 400
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400

t [s]

0

1000

2000

l(
t)

 [
k
b

p
s
]

(b) Hybrid model B

0 100 200 300 400
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400

t [s]

0

1000

2000

l(
t)

 [
k
b

p
s
]

(c) Real system

Fig. 5: Dynamics of the system with the Hysteresis controller and bandwidth drop from 2000 kbps to 1200 kbps

0 100 200 300 400
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400

t [s]

0

1000

2000

l(
t)

 [
k
b

p
s
]

(a) Fluid-flow model

0 100 200 300 400
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400

t [s]

0

1000

2000

l(
t)

 [
k
b

p
s
]

(b) Hybrid model B

0 100 200 300 400
0

10

20

30

q
(t

) 
[s

]

0 100 200 300 400

t [s]

0

1000

2000

l(
t)

 [
k
b

p
s
]

(c) Real system

Fig. 6: Dynamics of the system with the Hysteresis controller and bandwidth increase from 1200 kbps to 2000 kbps

with very low implementation effort. We argue that this
low computational cost is particularly beneficial during the
development cycle when the designer has to iterate through
the design of the control system, the parameters tuning, and
the performance evaluation.

REFERENCES

[1] S. Akhshabi, L. Ananthakrishnan, A. C. Begen, and C. Dovrolis.
What Happens When HTTP Adaptive Streaming Players Compete for
Bandwidth? In Proc. of ACM NOSSDAV, pages 9–14, 2012.

[2] S. Akhshabi, L. Ananthakrishnan, A. C. Begen, and C. Dovrolis.
Server-Based Traffic Shaping for Stabilizing Oscillating Adaptive
Streaming Players. In Proc. of ACM NOSSDAV, pages 19–24, 2013.

[3] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and
H. Zhang. Developing a predictive model of quality of experience for
internet video. In Proc. of ACM SIGCOMM, pages 339–350, 2013.

[4] L. De Cicco, S. Mascolo, and C. T. Abdallah. An experimental
evaluation of Akamai adaptive video streaming over HSDPA networks.
In 2011 IEEE International Symposium on Computer-Aided Control
System Design (CACSD), pages 13–18, Sept 2011.

[5] Cisco. Cisco Visual Networking Index:Forecast and Methodology
2013-2018. 2013.

[6] G. Cofano, L. De Cicco, and S. Mascolo. Characterizing adaptive
video streaming control systems. In Proc. American Control Confer-
ence, pages 2729–2734, 2015.

[7] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. ELASTIC:
a Client-side Controller for Dynamic Adaptive Streaming over HTTP
(DASH). In Proc. of Packet Video Workshop, pages 1–8, 2013.

[8] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. TAPAS:
A Tool for rApid Prototyping of Adaptive Streaming Algorithms. In

Proc. of Workshop on Design, Quality and Deployment of Adaptive
Video Streaming (VideoNext), pages 1–6, 2014.

[9] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam,
J. Zhan, and H. Zhang. Understanding the impact of video quality
on user engagement. In Proc. of the ACM SIGCOMM, pages 362–
373, 2011.

[10] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems.
IEEE Control Systems Magazine, 29(2):28–93, 2009.

[11] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid Dynamical
Systems: modeling, stability, and robustness. Princeton University
Press, 2012.

[12] T.Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari.
Confused, timid, and unstable: picking a video streaming rate is hard.
In Proc. ACM IMC, 2012.

[13] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with FESTIVE. In
Proc. of ACM CoNEXT, pages 97–108, 2012.

[14] S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs.
IEEE/ACM Transactions on Networking, 21(6):2001–2014, 2013.

[15] R. Sanfelice, D. Copp, and P. Nanez. A toolbox for simulation of
hybrid systems in Matlab/Simulink: hybrid equations (HyEQ) toolbox.
In Proc. of Hybrid Systems: Computation and Control, 2013.

[16] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-
Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys and Tutorials, 17(1):469–492, 2015.

[17] X. Yin, V. Sekar, and B. Sinopoli. Toward a Principled Framework to
Design Adaptive Streaming Algorithms over HTTP. In Proc. of the
ACM Hotnets, 2014.

[18] L. Zhi, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran.
Probe and adapt: Rate adaptation for HTTP video streaming at scale.
IEEE JSAC, 32(4):719–733, 2014.


