
Local SIP Overload Control:
Controller Design and Optimization by Extremum Seeking

Luca De Cicco, Giuseppe Cofano, Saverio Mascolo

Abstract— The Session Initiation Protocol (SIP) is a signaling
framework allowing two or more parties to establish, alter, and
terminate various types of media sessions. An open issue is the
proper handling of overload situations that in SIP servers occur
when the incoming flow of requests overcomes the processing re-
sources. Due to overload, call establishment times increase and
retransmissions are triggered causing an uncontrolled increase
of the total input rate. In this paper we present a local overload
control system, made of two PI controllers, aiming at regulating
both the queue length and the CPU load of the SIP proxy to
provide high goodput and low call establishment delays. The
proposed control system has been implemented in Kamailio
(OpenSER) and the controllers parameters have been tuned
by employing the Extremum Seeking algorithm to minimize a
cost function. A performance evaluation and comparison with
Ohta and Occupancy local overload controllers has shown the
following main results: 1) the proposed controller is able to
counteract overload situations providing a goodput which is
close to the optimal while maintaining low call establishment
delays and retransmission ratios; 2) the proposed control system
significantly outperforms Ohta and OCC both in terms of
goodput, call establishment delays and retransmission ratios.

I. INTRODUCTION

The Session Initiation Protocol (SIP) [1] is a signaling
framework that allows two or more parties to establish, alter,
and terminate various types of media sessions. Today, SIP is
the main signaling protocol for multimedia sessions such as
Voice over IP, instant messaging, and video conferencing.

A key open issue is the proper handling of overload
situations in SIP networks. Overload occurs when the in-
coming request rate to a SIP server exceeds its processing
capacity. Possible causes for overload include poor capacity
planning, component failures, avalanche restart, flash crowds
and denial of service attacks [2]. It has been shown that
overload episodes are exacerbated when SIP is used with
the UDP due to the retransmission mechanism employed
by SIP to cope with packet losses. In fact, during overload
episodes, retransmissions occur and, as a consequence, the
total incoming load increases, potentially leading the entire
SIP network to collapse [2], [3]. The 503 response code
“Service Unavailable” can be sent by the overloaded SIP
servers to the user agent (UA) to reject messages [1], thus
preventing messages retransmissions. Unfortunately, it is

The authors are with the Dipartimento di Elettrotecnica ed
Elettronica, Politecnico di Bari, Via Orabona 4, Bari, Italy.
emails: l.decicco@poliba.it, g.cofano@poliba.it,
mascolo@poliba.it

This work has been partially supported by the project "Platform for
Innovative services in the Future Internet" (PLATINO - PON01 01007)
funded by Italian Ministry of Education, Universities and Research (MIUR).

(only if stateful)

INVITE
INVITE100 Trying

180 Ringing
180 Ringing

200 OK
200 OK

ACK ACK

503 (Possible)

BYE
BYE

200 OK200 OK

Session established

UAC UACSIP proxy

Fig. 1: Time sequence graph of a SIP call

well-known that this mechanism is not able to effectively
avoid overload [2], [3].

To address this important issue, several overload control
algorithms have been proposed and the IETF has established
the working group “SIP Overload Control”. Overload control
algorithms can be clustered into three categories based on
the control architecture (see [3] for a comparison): local
overload control, hop-by-hop, and end-to-end.

In this paper we focus on local overload control which
does not require any modification to the SIP protocol. The
main contributions of this paper are: 1) a mathematical model
for an ideal rate-based overload control algorithm which
gives an upper bound to the goodput achievable by such
algorithms; 2) a local SIP overload control system, based on
two control loops with two PI controllers; 3) a functional
is proposed as a performance metric for local overload
control algorithms; 4) based on the proposed performance
metric, the parameters of the controllers have been tuned
by means of the Extremum Seeking (ES) algorithm [4]; 5)
a performance evaluation and comparison with two local
overload controllers is performed.

II. SIP OVERVIEW

SIP is a client-server message-based protocol for manag-
ing media sessions. Two logical entities participate in SIP
communications: SIP User Agents (UAs) and SIP servers.
SIP servers can be further classified as: proxy servers, for
session routing, and registration servers, for UA registration.

Fig. 1 shows the time sequence graph of the establishment
of a SIP call session, which is originated by the INVITE
message.

In the case the SIP messages are sent over UDP, which
today is the most common choice, SIP employs a retrans-
mission mechanism to cope with packet losses. If an INVITE

message is sent, and a suitable1 reply message is not received
before the Timer A expires, the INVITE message is retrans-
mitted [1]. The duration of Timer A gets doubled each time
the same INVITE is retransmitted, i.e. Timer A = T1 · 2i,
where T1 is equal to 0.5s by default and i is the number of
times the INVITE has been retransmitted.

In [1] it is specified that retransmissions are stopped either
when a provisional response is received or when the timeout
value exceeds Timer B, that by default is equal to 32s.
When an overload situation is detected, SIP servers send
a 503 “Service Unavailable” in order to avoid the start of
retransmissions [2]. In this case the incoming message is said
to be rejected.

III. RELATED WORK

Several local overload control algorithms have been pro-
posed in the literature. The first local overload control
mechanism specifically designed for SIP has been proposed
by Ohta in [5]: the algorithm decides to either reject or
accept a new SIP session based on the queue length. Another
well-known example of local control is Local Occupancy
(OCC) [6], [3]. The algorithm rejects a fraction of INVITEs
according to a simple control law in order to drive the CPU
load to a target utilization.

Distributed overload control algorithms have attracted a
great deal of attention due to the promise of providing
better performance. The first paper exploring the hop-by-hop
approach has been [6]. Authors have defined two overload
categories: (i) server to server overload and (ii) client to
server overload. In [6] only the first case has been considered
and three hop-by-hop window-based feedback algorithms
have been proposed. In [7] a feedback-based algorithm
has been proposed to regulate retransmission ratios during
overload. In [8] an overload mechanism combining local and
remote control has been proposed, the former using a priority
FIFO queue at the SIP proxy during overload episodes, the
latter based on a prediction technique placed at the remote
control loop.

Finally, it is worth noting that performance evaluation
of the proposed controllers in [3], [5], [6], [7], [8] has
been carried out by using discrete events simulators and an
experimental evaluation is not provided.

IV. THE PROPOSED CONTROL SYSTEM

In this Section we propose a local overload control al-
gorithm which does not require any modification in SIP
protocol and can be rapidly deployed in SIP proxies. More-
over, local control should be always implemented in a large
SIP network in order to protect the servers in the case the
distributed controllers do not work properly.

A. The optimal goodput function

In this paper we focus only on INVITE transactions since
they are the most CPU-expensive messages to be handled

1In the case of a stateless SIP proxy the reception of a 1XX, 2XX, or
5XX reply message prevents Timer A to fire.

by a SIP proxy [9]. Moreover, we make the modelling as-
sumption, which is experimentally validated, that the cost for
forwarding one INVITE message is unitary, while rejecting
one INVITE has a cost 1

β (β>1) which is a fraction of the
forward cost. Let ρ(t) denote the incoming load of INVITE
messages measured in calls per second (cps) and C(t) ∈
[0, 1] the instantaneous CPU load. As ρ(t) increases, C(t)
will increase until the point it reaches its maximum value
1 and overload occurs. We denote with ρM the maximum
offered load the SIP proxy can manage without suffering
overload, and we define the normalized incoming INVITEs
rate as r(t) = ρ(t)/ρM . Finally, the normalized goodput g(t)
is the rate of successfully established calls divided by ρM .
From now on, we will consider only the normalized load
r(t) and goodput g(t).

Let us now consider the overall system composed of a
generic rate-based local overload controller and the proposed
CPU model. The controller computes the fraction α(t) of
incoming INVITE rate r(t) to be rejected. The CPU load
can be modelled as follows:

C(t) = (1− α(t))r(t) + 1

β
α(t)r(t) + d(t) (1)

where the first additive term is the CPU load due to the
accepted rate, the second one is due to the rejected rate, and
the third one models the CPU load due to other processes in
execution, which is considered as a disturbance2.

The following proposition gives an upper bound to the
goodput obtainable by any local SIP overload controller
based on the model (1):

Proposition 1: Let β denote the ratio between the cost
of accepting and the cost of rejecting an INVITE message,
and let CT be the maximum CPU load to be assigned
to the SIP server. Then the goodput g(r), function of the
normalized incoming rate r, obtainable by any local SIP
overload controller is bounded by:

gopt(r) =


r r < CT ,

− 1
β−1r +

CT β
β−1 CT ≤ r < βCT

0 otherwise.
, (2)

Proof: The proof is omitted due to space limitations.
Remark 1: The normal behaviour of a SIP proxy can be

extended even when the normalized incoming INVITEs rate
is greater than 1, that is the limit at which an uncontrolled
SIP proxy gets overloaded.

B. The design of the proposed control system

We start by making the assumption that the SIP proxy
server is able to store incoming messages in a queue that will
be drained by an asynchronous worker thread. Fig. 2 shows
the proposed control system which is made of two feedback
loops: the first controller, depicted in the topmost box, steers
the queue level q(t), measured in number of INVITEs, to a
target qT (t); the other one steers the CPU load C(t) to a
desired target CT < 1.

2The computational cost of the control action has to be considered as a
component of the disturbance. Hence, the simplicity of the control system
is a key design requirement.

RTX

qT (t) −

r̃(t)

q(t)+
−
o(t)

rr(t)

r(t)
+

Gcq(s)

u(t)

α(t)
CPU

CT
Gcc(s)

H(s)

F (s)

−

−

R(t)

d(t)
C(t)

ρMT q
ρM
s

Fig. 2: The proposed control system

1) The queue controller: The goal of this control loop is
to compute the queue draining rate u(t), i.e. the normalized
rate of INVITEs to be processed by the CPU, so that the
queuing time of incoming INVITE messages is well below
the first retransmission timeout T1 = 0.5s. The queue is
assumed to be a FIFO drop-tail buffer, with a maximum
length qM , whose length q(t) can be modelled as follows:

q(t) = ρM

ˆ t

0

(r(σ)− u(σ)− o(σ))dσ

where o(t) is the queue overflow rate and r(t) is the total
incoming rate that is the sum of R(t), the rate of new
INVITEs, and rr(t), the retransmission rate. The overflow
rate o(t) can be modelled as follows [10], [11]:

o(t) =

{
r(t)− u(t) q(t) = qM , r(t) > u(t)

0 otherwise
(3)

which is the rate of dropped messages when the queue is
full and the input rate exceeds the output rate.

Regarding the retransmission rate rr(t), which in Fig. 2
is the output of the block “RTX”, a fluid model is still not
available in the literature. In fact, retransmissions occur due
to the expiration of a series of timeouts of variable duration
which can be caused by either large queuing times Tq(t)
or the queue overflow rate o(t). The modelling of rr(t) is
outside the scope of this work.

Even though, in principle, it would be possible to explicitly
control the queuing delay Tq(t), we take a different approach
which makes the controller simpler to be implemented. In
fact, the model of the Tq(t) is non-linear and it is often
approximated in the literature as Tq(t) = q(t)/(ρMu(t)),
with u(t) 6= 0 [12]. We are able to indirectly control Tq(t) by
using a set-point qT (t) = T qρM r̃(t) where T q is the desired
queuing time and r̃(t) is a low-pass filtered version of the
measured total incoming rate r(t). We have set T q = 50ms,
which is 10 times lower than the first retransmission timer
T1, to avoid retransmissions. We employ a first order low-
pass filter (LPF), shown in Fig. 2 by the transfer function
F (s) = 1/(1 + τs) with τ = 0.1s, to filter out the high
frequency components of r(t).

The controller is a PI with proportional gain Kpq (mea-
sured in s−1) and integral gain Kiq (measured in s−2):

UAS
1Gbps1Gbps

SIP proxyUAC

SIPp client SIPp serverkamailio

Fig. 3: The testbed employed for the experimental evaluation

Gcq(s) =
U(s)

Eq(s)
=

1

ρM
(Kpq +

Kiq

s
) (4)

where eq(t) = qT (t)− q(t) is the error and ρM is a scaling
factor due to the assumption that u(t) is non dimensional.

2) The CPU controller: The second controller, i.e.
Gcc(s), computes the fraction of messages to reject α(t),
using 503 messages, to steer the CPU load C(t) to the
desired value CT . It is worth noting that the queue draining
rate u(t) tracks r(t) at steady state and can be considered as
a disturbance acting on such control loop.

The reject ratio α(t) is computed based on the error
ec(t) = C̃(t) − CT , where CT is the desired CPU load
to be allocated to the SIP proxy and C̃(t) is the low
pass filtered CPU load. We have used a first order filter
H(s) = 1/(1 + τcs) with τc = 0.1 s. Again, we employ a
proportional-integrative controller, whose equation is given
by

α(t) = Kpcec(t) +Kic

ˆ t

0

ec(τ)dτ. (5)

By taking the derivative of (5), and considering that ˙̃
C(t) =

C(t)/τc− C̃(t)/τc where C(t) is given by (1), the following
mathematical model can be easily derived:


α̇(t) =

Kpc

τc
[u(t) · (1− γα(t)) + d(t)− C̃(t)]+

+Kic(C̃(t)− CT)
˙̃
C(t) = 1

τc
u(t)(1− γα(t)) + 1

τc
d(t)− 1

τc
C̃(t)

(6)

where we have posed γ = (β − 1)/β for notation
conciseness.

Proposition 2: Considered the equilibrium inputs
(CT , u, d) in the positive orthant of R3, the system (6) has
a unique equilibrium point:

α =
β − 1

β
(1− CT

r
+
d

r
); C = CT (7)

which is locally asymptotically stable provided Kic, Kpc, τc
are positive.

Proof: The proof is carried out by using the indirect
Lyapunov method and it is omitted due to space constraints.

V. IMPLEMENTATION DETAILS

Fig. 3 shows the testbed employed for the experimental
evaluation. Two Linux PCs are connected through a 1000
BaseT Ethernet LAN. We have adopted a point-to-point
topology by using SIPp3 to generate a configurable INVITE
rate. SIPp has been also used to emulate the upstream
SIP server. The SIPp client and server ran over an Intel

3http://sipp.sourceforge.net/

OC

ES

γ4
z−1

θ̂4(k)

α4 cos(ω4k)

γ1
z−1

θ̂1(k)

α1 cos(ω1k)

θ1(k)

θ4(k)

Ri ∈ R

J(·)

z−1
z+h

J(θ(k))
RIAE

CIAE

Fig. 4: Block diagram of the discrete extremum seeking
algorithm

Pentium IV 3.60 GHz with 2 GB of RAM. The modified
Kamailio SIP server, configured in the transaction-stateless
mode with no authentication, ran as proxy server over an
Intel Pentium III 1 GHz with 756 MB of RAM.

Kamailio is a widely employed open source SIP proxy
server. Its architecture is made of a core, providing basic
SIP server functionalities, and several pluggable modules
which extend the core. We have implemented the controller
proposed in Section IV, Ohta [5], and OCC [3] overload
controllers in the Kamailio module named ratelimit in
order to perform an experimental performance evaluation.

Both the PI controllers of the proposed controllers have
been discretized and provided with an anti-wind up scheme
to cope with saturation of the actuation variables. A timer
function ensures a sampling time of Tc = 10ms, while
another timer samples the CPU load every Tm = 10ms.
Finally, the maximum queue length qM has been set equal
to 800 INVITEs.

VI. CONTROLLER OPTIMIZATION

The proposed control system is made by two PI con-
trollers, resulting in four parameters to tune. Many methods
and PID tuning rules have been proposed in the literature
so far. However, optimal tuning of the considered system is
made complex due to the following reasons: 1) the param-
eters vector θ = [Kpc,Kic,Kpq,Kiq] has four components;
thus, using standard performance mapping over the whole
parameters space would require a very large number of
experiments; 2) a complete model of the considered system
is not available due to the lack of a mathematically tractable
model of the retransmission rate rr(t).

In the following we use the iterative algorithm Extremum
Seeking (ES) [13], [4] to tune the controllers without requir-
ing the knowledge of the mathematical model of the system.
ES has been applied successfully in different applicative
fields [14], [15]. In the following we describe the ES version
we have employed (Section VI-A), the cost function which
we shall minimize (Section VI-B), and finally we show the
experimental results of the optimization (Section VI-C).

A. The Extremum Seeking algorithm

ES is an optimization algorithm which iteratively modifies
the controller parameters θ to minimize a cost function

J(θ). J(·) is a static map which establishes a steady-
state relationship between the parameters vector θ and the
obtained performance. ES does not use an explicit mathe-
matical relation of J(θ), which is considered unknown, but
it makes the assumption that, once θ is fixed, it is possible
to experimentally measure J(θ). Fig. 4 shows the iterative
optimization technique: 1) the controller is configured with
the parameters vector θ(k); 2) a series of step-response
experiments is carried out and J(θ(k)) is measured (see
Section VI-B); 3) the ES algorithm computes the new value
of the parameters vector θ(k + 1).

In this paper, we employ the implementation of ES pre-
sented in [4] and shown in Fig. 4, which can be described
by the following equations:

ζ(k) = −hζ(k − 1) + J(θ(k − 1)) (8)

θ̂i(k + 1) = θ̂i(k)− γiαi cos(ωik)(J (θ(k))− (1 + h)ζ(k))
(9)

θi(k + 1) = θ̂i(k + 1) + αi cos (ωi · (k + 1)) (10)

Eq. (10) gives the output of the ES algorithm and, evalu-
ated for i = 1, 2, 3, 4, computes the new parameters vector.

B. The cost function J(θ)

The cost function J(θ) is measured at the conclusion of a
series of step-response experiments, whose duration has been
set to 120s, with input rates R(t) = Ri ·1(t) with Ri ∈ R =
{1.58, 2.10, 2.37, 2.63}, where 1(t) is the step function. For
each Ri ∈ R we have repeated every experiment 6 times
and considered the best m = 4 values to rule out possible
outliers due to experimental testbed issues.

We employ a functional that is the linear combination of
the average values of two integral absolute errors over the
m experiments. In particular, the functional J(θ) is:

J(θ) =
1

m

m∑
i=1

∑
R∈R

(ηRIAEi(θ,R) + ξCIAEi(θ,R)). (11)

RIAEi(θ,R) =
1

tf

tfˆ

0

|r̃(t, θ)−R|dt (12)

is the measured absolute integral of the retransmission ratio
for the i-th experiment, and

CIAEi(θ,R) =
1

(1− CT)tf

ˆ tf

0

|C̃(t, θ)− CT |dt (13)

is the measured CPU integral absolute error for the i-th
experiment. The error ec(t) is normalized by its maximum
value 1 − CT . η and ξ are weighting parameters that can
be freely adjusted to emphasize one term over the other. We
have found that η = 1 and ξ = 2 ensure a good shaping of
the cost function.

Even though a functional depending on the measured
goodput would appear as a natural choice for the perfor-
mance index of the considered system, we argue that such a
functional would not work as a proper indicator for overload

0 20 40 60

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

k

J

0 20 40 60
0

10

20

30

k

K
p
q

0 20 40 60
120

130

140

k

K
iq

0 20 40 60
0

5

10

15

k
K

p
c

0 20 40 60
0

5

10

15

k

K
ic

(a) θ(0) = [12, 12, 20, 130]

0 5 10 15
0.5

0.6

0.7

0.8

0.9

1

1.1

k

J

0 5 10 15
0

10

20

30

k

K
p
q

0 5 10 15
120

130

140

k

K
iq

0 5 10 15
0

10

20

k

K
p
c

0 5 10 15
0

10

20

k

K
ic

(b) θ(0) = [1, 1, 20, 130]

Fig. 5: Evolution of J(θ(k)) and θ(k)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)

1
-α

(t
)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)

C
(t

)

(a) CPU load and accept ratio (θ = θA)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)

1
-α

(t
)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Time (s)

C
(t

)

(b) CPU load and accept ratio (θ = θC)

0 20 40 60 80 100 120
2.2

2.4

2.6

2.8

3

3.2

Time (s)

r̃

θ = θ
C

θ = θ
A

R

(c) Arrival rate comparison

Fig. 6: Performance comparison for θ = θA and θ = θC in the case of R = 2.75

episodes. In fact, a goodput higher than the ideal maximum
given by (2) could be measured, meaning that the SIP proxy
is using a CPU load higher than CT . This situation should
be avoided to ensure that the specifics are met.

C. Experimental results

In this section we show the experimental results of the
parameters tuning using the ES algorithm described in Sec-
tion VI-A. We have adopted a step size γ = [10, 10, 10, 10],
a high-pass filter parameter h = 0.5, a sinusoidal am-
plitude and pulsation equal to α = [1, 1, 1, 1] and ω =
[2.82, 2.54, 2.28, 2.06] respectively.

We have performed a series of ES runs employing different
initial conditions to investigate the presence of multiple
local minima. The first run has been started from θ(0) =
[12, 12, 20, 130]. Kpq(0) = 20 and Kiq(0) = 130 have
been chosen to ensure that the first loop has a damping
factor of 0.7 and a 2% settling time equal to approximately
0.1s. Fig. 5 (a) shows the evolution of both J(θ(k)) and
the parameters vector θ(k). J(θ(k)) converges into a neigh-
borhood of θA = [3.5, 10.3, 19.2, 130.5] corresponding to
J(θA) = 0.29.

It can be noticed that J(θ(k)) is not very sensitive to
the variations of Kpq and Kiq . In fact, these parameters
negatively affect the performance of the system only if the
settling time of the first loop is high and, as a consequence,
retransmissions are triggered. The figure clearly suggests
that J(θ(k)) is very sensitive to the proportional gain of
the CPU loop. In particular, Kpc decreases until the point
J(θ(k)) eventually reaches a minimum that is obtained for
Kpc = 3.5 and Kic = 10.3. A second run, started from
θ(0) = [2, 2, 20, 130], has confirmed this result.

A third run, started from θ(0) = [1, 1, 20, 130], has led
to a different equilibrium as shown in Fig. 5 (b). The
parameters vector converges to the neighborhood of θC =
[17, 12, 16.5, 124], where J(θC) = 0.6, which is much
higher wrt J(θA). To get a further insight, let us consider
Fig. 6 (a) and (b) that show the CPU load C̃(t) and the
accept ratio 1 − α(t) respectively for θA and θC when
the incoming rate R is equal to 2.75. When θ = θC , the
reject ratio is saturated, i.e. α = 1, and a finite CPU load
tracking error is present due to the anti-windup scheme. For
θ = θA, α(t) is not saturated and C(t) tracks CT with
zero steady-state error. Fig. 6 (c) compares the measured
retransmission rates when θ is either equal to θA or θC .
For θ = θC a moderate retransmission rate is exhibited,
whereas for θ = θA retransmissions are negligible. Thus
it has been explained the reason why a small Kpc provides
better performance. However, if Kpc is made too small the
settling time increases and the retransmissions generated
during the transient become significant. This can be verified
by considering Fig. 5 (b) which shows that, for Kpc = 1
and Kic = 1, the corresponding value of J is very high
(J(θ) = 1.1). In other words, the functional J(θ) is able
to make a trade-off between responsiveness in tracking the
target CT and control effort preventing actuator saturation.

VII. PERFORMANCE COMPARISON

In this section we compare the proposed control system,
named PI in the following, with Ohta and OCC algo-
rithms. Ohta’s algorithm is a simple bang-bang controller
that decides to either reject or accept a new SIP session
based on the queue length [5]. OCC dynamically adjusts
the probability f of accepting an incoming INVITE request
based on measurements of the CPU load to drive it to a target

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Normalized offered load

N
o

rm
a

liz
e

d
 g

o
o

d
p

u
t

PI 80%

OCC 80%

OCC 90%

Ohta

Fig. 7: Goodput comparison

utilization [6], [3]. For both of them we have employed the
parameters suggested in [3]. For what concerns the proposed
controller we have employed Kpc = 3.5, Kic = 10.3,
Kpq = 19.2, and Kiq = 130.5 which have been found in
Section VI-C.

Fig. 7, Fig. 8 (a), and Fig. 8 (b) show respectively the
goodput curves, the retransmission ratio, and the call estab-
lishment time W for each of the considered SIP overload
controllers. Fig. 7 shows that the proposed control system
achieves significantly better performance in terms of good-
put, retransmissions ratio, and call establishment time. In
particular, the proposed control system achieves a normalized
goodput equal to 0.5 when R = 2, whereas OCC and Ohta
are overloaded. When OCC is used with CPU load target
equal to 0.9 the goodput degrades significantly for input rates
greater than 1.3, due to its low responsiveness. OCC 80%
better handles overload wrt OCC 90%, and it is able to
support input rates up to 1.7. For what concerns the Ohta
algorithm, Fig. 7 shows that as soon as the input rate gets
greater than 1, the goodput suffers a significant step-like
drop, indicating that the algorithm is not able to properly
handle overload episodes.

Fig. 8 (a) shows that the proposed control system main-
tains the retransmissions ratio below 0.1 for a normalized
rate equal to 3, i.e. it prevents the uncontrolled increase of
retransmissions which is a symptom of an overload situation.
On the other hand, OCC and Ohta are not able to handle
overload correctly and retransmissions cannot be controlled
for large values of R. Let us consider the Fig. 8 (b) which
shows the call establishment time. The proposed algorithm
maintains a call establishment time which matches the target
value Tq = 0.05s for every input load: this confirms that the
first control loop tracks the reference signal qT (t). On the
other hand, OCC and Ohta exhibit very high average call
establishment time.

VIII. CONCLUSIONS

We have proposed a SIP overload control algorithm con-
trolling both the queue length and the CPU load of a
SIP proxy. We have implemented the proposed overload
control system in Kamailio, an open source SIP proxy, and

0.5 1 1.5 2 2.5 3
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Normalized offered load

L
o

g
(r

e
tr

a
n

s
m

is
s
io

n
 r

a
ti
o

)

PI 80%

OCC 80%

Ohta

(a) Retransmissions ratio

0.5 1 1.5 2 2.5 3
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Normalized offered load

L
o

g
(E

[W
])

PI 80%

OCC 80%

Ohta

(b) Call establishment time

Fig. 8: Retransmission ratio and call establishment time

carried out a performance optimization by means of the
algorithm Extremum Seeking and a comparison with OCC
and Ohta, two local overload control algorithms. The results
have shown that the proposed control system significantly
outperforms OCC and Ohta providing higher goodput and
exhibiting low retransmissions ratio and call establishment
time. The proposed control system handles overload up to a
maximum normalized input load equal to 3, OCC supports
input rates lower than 1.7, whereas Ohta fails to properly
handle overload.

REFERENCES

[1] J. Rosenberg, et al, “SIP: Session Initiation Protocol,” RFC 3261,
Internet Engineering Task Force, June 2002.

[2] J. Rosenberg, “Requirements for Management of Overload in the
Session Initiation Protocol,” RFC 5390, Internet Engineering Task
Force, Dec. 2008.

[3] V. Hilt and I. Widjaja, “Controlling Overload in Networks of SIP
Servers,” in Proc. IEEE ICNP, pp. 83–93, Oct. 2008.

[4] N. J. Killingsworth and M. Krstic, “PID tuning using extremum
seeking: online, model-free performance optimization,” IEEE Control
Systems Magazine, vol. 26, pp. 70–79, Feb. 2006.

[5] M. Ohta, “Overload control in a sip signaling network,” Proc. of World
Academy of Science, Engineering and Technology, pp. 205–210, 2006.

[6] C. Shen, et al, “Session initiation protocol (sip) server overload
control: Design and evaluation,” in Proc. IPTCOMM ’08, pp. 149–
173, 2008.

[7] Y. Hong, et al, “Mitigating sip overload using a control-theoretic
approach,” in Proc. IEEE GLOBECOM 2010, pp. 1–5, 2010.

[8] R. Garroppo, et al, “A prediction-based overload control algorithm for
sip servers,” IEEE Transactions on Network and Service Management,
vol. 8, no. 1, pp. 39–51, 2011.

[9] H. Jiang, et al, “Load Balancing for SIP Server Clusters,” in Proc.
IEEE INFOCOM, pp. 2286 –2294, Apr. 2009.

[10] S. Mascolo, “Congestion control in high-speed communication net-
works using the Smith principle,” Automatica, vol. 35, no. 12,
pp. 1921–1935, 1999.

[11] L. De Cicco and S. Mascolo, “A mathematical model of the skype
voip congestion control algorithm,” IEEE Transactions on Automatic
Control, vol. 55, pp. 790 –795, march 2010.

[12] C.V. Hollot, et al, “Analysis and design of controllers for AQM routers
supporting TCP flows,” IEEE Transactions on Automatic Control,
vol. 47, no. 6, pp. 945–959, 2002.

[13] M. Krstic and H.-H. Wang, “Stability of extremum seeking feedback
for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4,
pp. 595 – 601, 2000.

[14] D. Popovic, et al, “Extremum seeking methods for optimization of
variable cam timing engine operation,” IEEE Transaction on Control
Systems Technology, vol. 14, no. 3, pp. 398–407, 2006.

[15] D. Carnevale, et al, “A new extremum seeking technique and its
application to maximize rf heating on ftu,” Fusion engineering and
design, vol. 84, no. 2, pp. 554–558, 2009.

