A Hybrid Model of Adaptive Video Streaming Control Systems

G. Cofano, Luca De Cicco, S. Mascolo

Politecnico di Bari, Italy 55th IEEE Conference on Decision and Control - Las Vegas, USA

12-14 December 2016

Introduction

- Video will represent ${\sim}80\%$ of Internet global traffic by 2018, up from ${\sim}60\%$ in 2013 (source Cisco)
- Users are moving from traditional TV broadcasting to Internet based video services

(Source statista.com)

- Provide an experience **at least** as good as traditional TVs on a heterogeneous set of devices (tablets, smartphones, smart TVs)
- **Playback interruptions** due to buffer depletion must be avoided (highly detrimental for QoE)
- Video bitrate should be as high as possible to increase visual quality
- Legacy systems (until \sim 2010) encoded video at fixed bitrate
- Modern video streaming systems can vary the video bitrate and resolution to adapt to:
 - Time-varying Internet available bandwidth
 - Device resolution

The mainstream Multi-Bitrate Approach

- The video is encoded into a number of versions, the **video levels**, at different (nominal) bitrates *I_i*
- Each video level is temporally divided into segments of fixed duration $\hat{\tau}$
- $S_{i,s}$ is the actual size produced by the encoder for segment s and level *i*. Actual bitrate is $S_{i,s}/\hat{\tau}$

A video streaming control streaming in a nutshell

The client fetches video segments at a video bitrate I_i decided by the controller from an HTTP server

The Controller

- The controller's output has two components:
 - The index i ∈ {1,..., N} of the video level to be downloaded
 The idle time w to be waited between two consecutive segments
 - download
- Control actions can be actuated only when a new segment **download is triggered** (event driven)

- The downloader serves as the actuator and fetches video segments from the HTTP server
- It pushed video segments as soon as they are downloaded (at time $t_{\rm s}+\tau_{\rm s})$

Two possible states:

- **Pause**: video playback is paused (drain rate $d_r = 0$) to allow the buffer to be filled
- **Play**: the player drains the buffer at rate $d_r = 1$ and plays the video

The playout buffer

- It is **drained continuously** by the player at a rate d_r
- It is **impulsively filled** by a fixed amount $\hat{\tau}$ (segm. duration) on completion of a segment download
- Net increment (decrement) of queue length due to the download of a segment:

$$q(t_s+\tau_s)-q(t_s)=\hat{\tau}-\int_{t_s}^{t_s+\tau_s}d_r(\xi)d\xi$$

A hybrid system can be described by four elements [HDS]:

$$\mathscr{H} : \begin{cases} \dot{x} = f(x, u, r) & (x, u, r) \in \mathcal{C}, \\ x^+ = g(x, u, r) & (x, u, r) \in \mathcal{D} \end{cases}$$

- Flow set: C where the state x "flows" (evolves continuously)
- Jump set: \mathcal{D} where the state x "jumps" (time discrete evolution)
- Flow map: f modelling time-continuous evolution
- Jump map: g modelling time-discrete evolution

[HDS] R. Goebel, R.G. Sanfelice, A.R. Teel, "Hybrid Dynamical, Systems: modeling, stability, and robustness", Princeton University Press, 2012

State, input, disturbance

State
$$x = \begin{bmatrix} d_r \\ \Delta \\ \tau \\ \sigma \\ s \end{bmatrix}$$

Playout buffer length (s) [PB] Draining rate [P] Segment downloaded bytes [D] Idle timer (s) [D] Downloader state (1=ON,0=Idle) [D] Segment index [D]

Input
$$u = \begin{bmatrix} i \\ w \end{bmatrix}$$
 Idle

r

Video level
$$i \in \{1, ..., N\}$$

Idle duration (s)

Disturbance

 $\ensuremath{\mathcal{D}}$ is the union of the sets:

$$\begin{array}{lll} \mathcal{D}_{\text{feed}} &=& \{(x, u, r) \in \mathcal{X} \times \mathcal{U} \times \mathbb{R}_{\geq 0} : \Delta = S_{i,s}\} \\ \mathcal{D}_{\text{dwnl}} &=& \{(x, u, r) \in \mathcal{X} \times \mathcal{U} \times \mathbb{R}_{\geq 0} : \tau = w \wedge \sigma = 0\} \\ \mathcal{D}_{\text{empty}} &=& \{(x, u, r) \in \mathcal{X} \times \mathcal{U} \times \mathbb{R}_{\geq 0} : q = 0 \wedge d_r = 1\} \\ \mathcal{D}_{\text{play}} &=& \{(x, u, r) \in \mathcal{X} \times \mathcal{U} \times \mathbb{R}_{\geq 0} : q \geq q_{\min} \wedge d_r = 0\} \end{array}$$

$\mathcal{D}_{ ext{feed}}$	End of download of segment s of level $I_i \Rightarrow I$ he
	segment is fed to the buffer
$\mathcal{D}_{\mathrm{dwnl}}$	End of an idle period \Rightarrow Triggers the download of the
	next segment $(s+1)$
$\mathcal{D}_{ ext{empty}}$	Queue gets empty \Rightarrow Playback is stopped ($d_r = 0$)
$\mathcal{D}_{ ext{play}}$	Queue gets filled \Rightarrow Playback is started ($d_r = 1$)

Continuous and discrete dynamics (f and g)

Continuous	$\dot{q} = -d_r$
dynamics	$\dot{\Delta} = \sigma r$
$(x, u, r) \in \mathcal{C}$	$\dot{ au}=1$
	(other variables' derivatives are 0)

Discrete dynamics $(x, u, r) \in \mathcal{D}$

$$d_r^+ = \begin{cases} 1, & (x, u, r) \in \mathcal{D}_{\text{play}} \\ 0, & (x, u, r) \in \mathcal{D}_{\text{empty}} \end{cases}$$
$$q^+ = q + \hat{\tau} & (x, u, r) \in \mathcal{D}_{\text{feed}} \\ \Delta^+ = 0 & (x, u, r) \in \mathcal{D}_{\text{feed}} \end{cases}$$
$$\sigma^+ = \begin{cases} 0 & (x, u, r) \in \mathcal{D}_{\text{feed}} \\ 1 & (x, u, r) \in \mathcal{D}_{\text{dwnl}} \end{cases}$$
$$\tau^+ = 0 & (x, u, r) \in \mathcal{D}_{\text{feed}} \cup \mathcal{D}_{\text{dwnl}} \\ s^+ = s + 1 & (x, u, r) \in \mathcal{D}_{\text{feed}} \end{cases}$$

Experimental Validation

- The model is implemented in Matlab through the Hybrid Equations (HyEq) Toolbox by Sanfelice
- Experimental data: gathered through tests on a controlled testbed in lab

- An Internet bottleneck link is emulated by a tool we developed allowing the bandwidth *r* to be set
- An adaptive video streaming client is implemented using TAPAS (https://github.com/ldecicco/tapas)

- **Employed controller** [ACC15]: a controller keeping the queue length within $[q_L, q_H]$ by throttling the video level between the closest ones (I_i, I_{i+1}) to the available bandwidth r
- We compare the dynamics of:
 - ► A fluid flow model of the queue length [ACC15]
 - The proposed Hybrid system model
 - The real system
- The video is the popular benchmark "Sintel" encoded at five nominal bitrates:

 $\mathcal{L} = \{240, 500, 900, 1400, 2600\} kb/s$

[ACC15] G. Cofano, L. De Cicco, S. Mascolo, "Characterizing Adaptive Video Streaming Control Systems", in Proc. of ACC, July 2015

Results: step response

- We have proposed a hybrid system modeling adaptive video streaming control systems
- The model accurately predicts the dynamics of real video streaming systems
- The model can be used to:
 - Design control laws and prove properties of the closed loop system (future work)
 - Perform simulations of video streaming systems to aid the design phase of controllers

Thank you!

Luca De Cicco luca.decicco@poliba.it

Results: step response

A Hybrid Model of AVS Control Systems