A Resource Allocation Controller for Cloud-based
Adaptive Video Streaming

Luca De Cicco, Saverio Mascolo, and Dario Calamita

Abstract—Video streaming accounts today for more than half
of the global Internet traffic. Content Delivery Networks (CDNs)
are employed to provide scalable and reliable video streaming
services. Typically, the delivery systems are provisioned to meet
the expected peak demands which are due to time-of-day effects.
However, such a sizing strategy may either not be able to handle
unpredictable flash crowd scenarios, or lead to underutilization of
the network with a consequent waste of resources and revenues.
Cloud computing offers a way to match the users demand by
scaling the allocated resources and by billing the service with a
pay-as-you-go pricing. In this paper, we focus on the design of a
control plane for cloud-based adaptive video streaming delivery
networks. By employing feedback control techniques, we design
a dynamical Resource Allocation Controller which throttles the
number of virtual machines in a Cloud-based CDN with the goal
of minimizing the distribution costs while providing the highest
video quality to the user. Results indicate that our resource
allocation controller is able to significantly decrease distribution
costs and to provide a high video quality to the user.

Index Terms—Cloud computing, adaptive video streaming,
resource allocation

I. INTRODUCTION AND RELATED WORK

Recent years were characterized by a significant Internet
traffic increase, mainly due to the worldwide wideband con-
nections diffusion and to the remarkable growth of multimedia
traffic, such as in the case of video streaming [1]. Content
Delivery Networks (CDNs) are employed to provide a scalable
and reliable video streaming services [2].

Typically, the delivery systems are provisioned to meet the
expected peak demands which are due to time-of-day effects.
However, such a sizing strategy may either not be able to
properly handle unpredictable flash crowd scenarios, or lead
to underutilization of the network with a consequent waste of
resources and revenues.

Cloud computing, with its elasticity, offers a way to match
the users demand by dynamically scaling the allocated re-
sources and by using a pay-as-you-go charging model without
the need of large upfront capital investments.

In this context, the design of an effective control plane
for the automatic resource allocation of a Cloud is an open
research topic. In [3] authors show that the use of a control
plane specifically designed for the video streaming is able to

L. De Cicco and S. Mascolo are with the Dipartimento di Elet-
trotecnica ed Elettronica, Politecnico di Bari, Via Orabona 4, Italy (e-
mail: l.decicco@poliba.it, mascolo@poliba.it), Phone: +390805963851, Fax:
+390805963410

D. Calamita was a master student at Politecnico di Bari, Via Orabona 4,
Italy

This work has been partially supported by the project Platform for Innova-
tive services in the Future Internet (PON 2007IT161PO006) funded by Italian
Ministry of University and Research (MIUR)

H Cloud APT
| Uni

I) Central Unit @ %N(t}

Load |: BY —| Resource Alloc.

Ll (@) : Controller
L) By ’%
A L
@L|

i—th server j—th server

Figure 1: The proposed control plane

remarkably improve the overall user engagement. In [4], by
employing time series forecasting methods to predict the user
demand, a bandwidth resource reservation algorithm, along
with a load balancer, is designed. In [5] a model for elastic
media streaming service over a public Cloud is presented:
authors propose the Virtual Content Service Provider (VCSP)
which has the role of dynamically renting cloud resources by
cloud service providers to adjust the bandwidth resources to
the user demand. The algorithm takes explicitly into account
the minimization of distribution costs by deciding which type
of instance to rent, i.e. small, large, spot.

In this paper, we focus on the design of a control plane for
cloud-based adaptive video streaming delivery networks.

We consider the video stream-switching that is getting a
wide acceptance, being adopted, among the others, by Akamai,
Microsoft, and Apple, and by popular video streaming services
such as Netflix, Hulu, Vudu, and Livestream [6], [7]. These
algorithms encode the raw video content at increasing bitrates
resulting into /N versions of the video that form the discrete
set £ = {lp,...,Iny—1} of video levels; a control algorithm
automatically selects a video level I; € .Z that matches the
user’s available bandwidth.

In this paper, we employ a feedback control approach
to design a dynamical resource allocation controller which
throttles the number of virtual machines in a Cloud-based
CDN to both minimize the distribution costs and delivery a
high video quality to the user.

The rest of the paper is organized as follows: in Section II
we propose the control architecture and the dynamic Resource
Allocation Controller (RAC); in Section III a performance
evaluation is carried out using a discrete event network simu-
lator; finally, Section IV concludes the paper.

II. THE PROPOSED CONTROL PLANE

Figure 1 shows the proposed control plane to provide a
scalable and adaptive video streaming service that is made

of three components: 1) one Resource Allocation Controller
(RAC); 2) one load balancer (LB); 3) a number of Stream-
Switching Adaptation Controllers (SSAC). The RAC and LB
are centralized, whereas the SSAC is a per-flow algorithm that
does not take any input from the RAC or the LB as it is shown
in Figure 1.

The overall work-flow can be described as follows: @ the
user requests a video; @ the load balancer assigns the request
to one of the active servers (see Section II-C); ® the adaptive
video streaming session begins and a SSAC instance is created;
@ periodically, each T seconds, every active server provides
several feedbacks through a monitor module to the RAC; based
on the received feedback , the RAC computes the number N (¢)
of machines to turn on/off.

Before describing the three algorithms we make the fol-
lowing assumptions: 1) the distribution network is composed
of origin servers, where all the videos are available, and
surrogate servers, that store only a fraction of the available
videos [2]; 2) all the surrogates are given with the same
nominal upstream bandwidth B; 3) the videos are encoded
using the same set of video levels .Z; 4) a centralized server,
the Central Unit (CU), is able to observe, by periodically
probing the nodes, the state of the generic server s comprising
the number of active flows, the number of flows obtaining
an average video level I(t) € [z,y]kb/s, and the upstream
available bandwidth Bf:).

In the following we use the function:
n(s,L,I,t): Sx Bx BxR—N (1)

which returns the number of active flows of the server s € S,
for which the average video level I(t) € [[,I] C B = {z €
R|0 < & <lp}, where [y = max.%. It is worth noticing that
n(s,l,1,t) can be used to obtain the number of flows having
an average video level equal to I, and n(s, 0,1y, t) returns the
number of active video flows for the streaming server s. For
convenience we introduce the notation n(*) (t) = n(s, 0,1/, 1)

to refer to the number of active video flows on server s.

A. The stream switching adaptation controller

The SSAC is implemented by employing the Quality Adap-
tion Controller (QAC) [6], a stream-switching server-side
controller designed using a feedback control approach, which
throttles the video level I(t) to track the end-to-end available
bandwidth. In this paper, we assume that each video is encoded
at increasing bitrates resulting into 10 versions of the video
that form the discrete set of video levels £ = {ly,...,lo}
with [y < I3 < --- < lg = ljy. The video is sent over a HTTP
TCP connection which can be considered as a TCP greedy
flow if I(t) < lps. In [6] it is shown that the video level I()
matches the end-to-end available bandwidth with a transient
time of less than 30s and it fairly share the end-to-end available
bandwidth with concurrent TCP flows and other QAC video
streaming flows. Due to space limitation we are not able to
provide a complete description of the algorithm that can be
found in [6].

B. The resource allocation controller

In this section we propose the Resource Allocation Con-
troller (RAC) which dynamically throttles the number of active
servers M (t) to adapt to the users demand load. We focus on
scalability with respect to the network bandwidth, since, in a
video streaming service the performance bottleneck is mostly
due to the available bandwidth within the distribution network
and not to the storage or computation resources. The goal of
the RAC is to minimize the number M (t) of active servers in
our cloud-based CDN to contain costs, while ensuring that the
maximum video quality is delivered to the user. We define the
normalized server capacity as C = B/lys. In other words, C is
the maximum number of concurrent video streaming sessions
supported by a single server that can obtain the maximum
video level [j;. Since QAC video streams are TCP greedy
flows, they inherit from the TCP the ability to fairly share the
bandwidth and, as a consequence, the video level matches,
on average, the available bandwidth [6]. Therefore, when the
number of active video streaming sessions on a server is larger
than C, the available bandwidth for each connection results
less than [j;. This means that QAC will reduce the video
level [(t) € £ to a value lower than /), in order to match the
reduced available bandwidth.

The goal of the controller is to minimize the total number
of flows ny(t) not obtaining the maximum video level, the
number of limited flows, by throttling the number of active
servers M (t). The number of limited flows ny(¢) is the sum
of two contributes: 1) the number ny,(t) of upstream-limited
flows (UL), which is due to the fact that the delivery network
upstream bandwidth is saturated; 2) the number ncy(t) of
client-limited (CL) flows which are due to the fact that the
client downlink bandwidth is saturated, i.e. the bottleneck is
at the client. Since it is not possible to act on the client-limited
flows, the goal of the controller is to steer to zero the number
of upstream-limited flows ngr (¢).

Towards this end, we need to measure nyr(t) = nr(t) —
ncr (t). However, since there is no way to directly measure
ny(t), in the following we show how to obtain an estimate
of the number of upstream-limited flows.

1) Estimating the number of upstream-limited flows: The
RAC algorithm employs two thresholds to estimate the number
of upstream-limited flows. A fixed threshold, defined as L=
0.9l is used to estimate the number of flows not obtaining the
maximum video level by using the function (1) as nf) (t) =
n(s,0,L,1).

In order to obtain an estimate of n(Cf)L(t) the RAC uses a
variable threshold:

L (1(1),a0(0)) =17 (1) + a9 (1) (s =17 (1) @)

where l;s)(t) = min(B/n)(t),1p;) is the fair video level
that every video should receive in the case nop(t) = 0,
and a(t) € [0,1] is the fraction of flows sending at the
maximum bitrate defined as o(*)(t) = m()(t)/n(*), where
m(®) (t) < n(*)(t) are the streaming session at . It has to be
noted that the lower lgf) /1y the more severe is the congestion

on the server, since lgf)/lM = C/n(s). Thus, to obtain an
estimate of the number of client-limited flows, we count the

Figure 2: The Resource Allocation Controller block diagram

number of flows that receive an average video level less than
LO(t), ie. nl) (t) = n(s,0,L)(t),t). We use the symbol
ﬁ(cf)L(t) to stress that this is an estimate of the actual client-
limited flows n(CQ)L(t) which is always unknown. Therefore,
the estimated number of uplink-limited flows for server s is
ﬁg)L(t) = n(LS) - ﬁ(cj)L (t). Finally, the total number of uplink-
limited flows is obtained by summing over all the servers, i.e.
AL (t) = X,es L),

2) The controller: In the following F(z) : C — C
represents the Z-Transform of the discrete-time signal f(t) :
N — R, Ty = 10s is the sampling interval, and ¢, = kT
indicates the k-th sampling time.

Figure 2 shows the overall system that is made by the
following components: 1) a switch-on controller G.(z) which
computes Non(t), i.e. the number of servers to turn-on; 2) a
switch-off controller, which computes N(tx) the number of
machines to turn-off; 3) a time-delay block z~" of r = [7/T}]
sampling intervals! which models the delay to turn on a
machine; in this paper the activation delay is 7 = 30s, and
thus = 3; 4) an integrator block 1/(1 — 2~!) which models
the input/output relation between M (¢), the number of active
machines, and N (¢;) the number of machine to turn on/off;
4) the control unit, which is provides two outputs, the total
available bandwidth B4 (tx) and the estimated number of the
uplink-limited flows 7y 1, (t) (see Section II-B1); even though
we do not provide a model of 7y, (£x) it is important to notice
that such a block is inverting, i.e. an increase of the input M (t)
provokes a decrease of the output, i.e. the number of uplink-
limited flows 7 (t).

The control algorithm works as follows: at the sampling
time tj, the error —nyp(tx) is computed and nyr(ty)/C
is given as input to the switch-on controller which gives
Non(tr); the switch-off controller, based on the total available
bandwidth B4 (tx) computes the number of machines to turn-
off Noff(tk) = BA(tk) . ’fLUL(tk); if N(tk) = Non(fk) —
Nyge(tr) > 0, the controller requests the control unit to switch
on N (tx) machines, otherwise N (¢;) machines are turned off.

The switch-on controller is made of a Proportional Deriva-
tive (PD) controller plus a Smith predictor. The PD controller
transfer function is:

Gz) =K, + Ka(1—271) 3)

where K, and K are strictly negative®. The Smith predictor is
implemented through the branch (1—z~")G/(z): in a nutshell,
based on the delay-free model of the plant G(z) and on the
knowledge of the time delay, it predicts the effect of the delay
on the future output of the system and computes a control
action that is able to compensate such delay [8], [9]. Here

T2] is the smallest integer not less than .
2The gains are negative since the plant is inverting.

we consider a very simple model for the delay-free transfer
function of the plant, i.e. G(z) = 1/(1 — z~'). This model
captures the dominant dynamics of the plant, i.e. the integrator,
that is due to the transfer function M (z)/N(z).

C. Load balancing algorithm

The control unit also runs the load balancing algorithm for
distributing the user requests to provide a fair load distribution
among the servers in terms of bandwidth usage. The CU
maintains a table which is updated periodically and it includes
the value of the virtual available bandwidth (VAB) for each
server. The VAB of the server s is computed as VAB(®)(t) =

(8 2
B- Z;L:1(t) b;(t) where n*)(t) is the total number of flows
on the server s and b;(t) is the virtual bandwidth estimate
defined as follows:

by(t) = {bj)

Inr iff j-th flow is transient

iff j-th flow is steady-state

The CU redirects the user request to the surrogate server
with the maximum virtual available bandwidth which has the
selected video content in its cache.

In the case the video content is not available in the surro-
gates, the CU forces the surrogate with the minimum VAB
to download the content from the origin server with less
active connections. At the same time, the CU redirects the
clientrequest to the same origin server.

III. PERFORMANCE EVALUATION
A. Simulation set-up

1) The simulator: With the aim of carrying out a per-
formance evaluation of the proposed control plane, we have
modified the simulator CDNsim?[10] which is based on Om-
net++ and the INET framework [11]. In particular, we have
introduced the following features which were not available in
CDNsim: 1) the adaptive streaming algorithm (QAC) [6]; 2)
the dynamic resource allocation controller (RAC) presented
in Section II-B; 3) Distribution costs tracking; 4) the load
balancing algorithm described in Section II-C. To simulate an
elastic cloud, we let the instances to be turned on/off by using
a specific signal that can be sent from the control unit to the
server.

2) Metrics: We measure the following metrics to evaluate
the performances of the resource allocation controller: 1) the
number of active machines M (t); 2) the fraction of streams
obtaining the maximum video level, i.e. a(t) = m(t)/n(t)
where m(t) is the number of flows obtaining the maximum
level and n(t) is the number of active streams; «(t) can be
considered as an index of the overall quality provided by the
delivery network to the users; 3) the CPU usage costs that are
computed as C.(t) = >, g7 fot a®) (t)dr where v(*) is
the cost rate* of the server s which depends on the instance
type (i.e. small, medium, large, etc), measured as $ per second,
and a(®)(t) is a binary function that is 0 when the machine
s is off or 1 when it is on. In this paper we have employed

3http://oswinds.csd.auth.gr/CDNsim/
“In this paper the cost rate ~(5) is based on the Amazon’s pricing.

CDF
OO0000000
_LOZDWRUIDNDO

CDF
OO0O0000000
oL whnimNDW©O—

0 100 1000 0 010203040506070809 1
Video duration (sec) Fraction of downloaded video

(a) (b
Figure 3: Video duration and fraction of downloaded video

Table I: Request arrival rate r(t)

Time | [0,200) | [200,400) | [400,600) | [600,800) | [800, 1200]

(@) 20 30 5 30 0

7(5) = 0.085$/s for each server, which is the cost rate of an
Amazon EC2 medium instance.

3) Workload generation and simulation scenarios: We used
the guidelines contained in [12] to generate a realistic work-
load of user requests. In particular, a total number of 100
videos are available whose popularity are ranked using a
Zipf distribution with a parameter a« = 0.8, the distribution
of the video duration and the distribution of the fraction
of downloaded video are reported in [12] and shown in
Figure 3 (a) and Figure 3 (b) respectively. Since studying the
performance of the caching strategy is out of the scope of the
paper, in the considered simulation scenarios we make assume
that all the servers have all the videos stored in their cache.

The user requests inter-arrival time is modelled using a
Poisson process with a variable intensity r(¢) as reported
in Table I to check to what extent the adaptation algorithm
is able to cope with sudden traffic increases and decreases.
Furthermore, when the simulation starts the number of active
surrogates and origin server is set to 10 and one respectively.
Each surrogate has a channel capacity of B = 100Mb/s.

Two different scenarios are considered: 1) the clients are
connected to the delivery network through 100 Mb/s links;
in this scenario the number of client-limited flows ncy ()
is 0; 2) in this scenario we consider the realistic case in
which the clients access the delivery network through links
at different capacity as reported in [12]; in particular, 40%
of the clients have 10 Mb/s bandwidth capacity, 42% have
3.5 Mb/s links, and the remaining 16% are characterized by a
downlink capacity of 1 Mb/s.

4) Considered resource allocation controllers: For both
the scenarios described above, we compare the performance
obtained using the following resource allocation controllers:

1) a static controller (SC) which sets the number of server
based on the estimated traffic peak value that is supposed
the network will manage.

2) A feed-forward allocation controller (FF) that dynami-
cally computes the number of machines N (¢x) to turn
on/off according to the number of active flows n(ty) =
> ees ') (ty) using the following control law:

N(ty) = n(ty)/C — M(ty). “)

The rationale of (4) is simple: for each sampling time
(4) computes the number of machines to be turned on
(f n(tr)/C > M (tr)) or off (if n(ty)/C < M(ty)) as
the difference between the number of machines n(ty)/C

that should be turned on to stream all the n(ty) flows
at the maximum video level, and the current number of
machines M (ty,).

3) The proposed RAC controller (RAC) with a proportional
gain® K, = —0.7 and a derivative gain K; = —0.3.

4) The proposed RAC controller (RAC no SP) with the
Smith predictor action turned off and with gains K, =
—0.7 and K; = —0.3.Results

5) Scenario without bandwidth limited clients (ncp(t) =
0): We start our investigation by considering that throughout
all the duration of the simulation the number of client-limited
flows is zero, i.e. ncr(t) = 0. Figure 4 shows the results of
the simulation.

Let us consider Figure 4 (a) that shows the number of
active machines M (¢t) for each of the considered controllers.
The RAC exhibits a smooth dynamics of M (¢) without the
overshoots that can be observed in the case of “FF” and “RAC
no SP” after the requests rate increases (t = 0s, t = 200s,
t = 600s). The main reason is that both “FF” and “RAC no
SP” do not compensate the effect of the delay: thus, when the
request rate increases at time ty; the controllers ask the CU
to turn on a number of machines N (¢7); however, the desired
effect of the control action, i.e. to decrease 7y, (¢), is delayed
of 7 samples; thus, the next sampling time 5 41 the controller
will not measure a decreased number of uplink-limited flows
and, as a consequence, it will compute again a positive control
action N (t7,,) resulting in the overshoot shown in the figure.

Figure 4 (c) shows the fraction of flows a(t) € [0,1]
obtaining the maximum video level ;. Let us consider the
three transient phases that are triggered at ¢t = 0, ¢ = 200s,
and ¢ = 600s when the request rate r increases from 0 to
20req/s, from 20req/s to 30req/s, and from 5Sreq/s to 30req/s
respectively. The figure shows that the dynamics of «(t)
provided by the two controllers “RAC no SP” and “FF” during
the three transients exhibit remarkable oscillations between 0.1
and 0.8 due to the overshoots of M (¢) shown in Figure 4 (a).
On the other hand, RAC is able to reach the same steady
state values of «(t) provided by the other controllers while
exhibiting a smooth dynamics. We have computed an average
value of «(t) equal to 0.70, 0.69, and 0.74 for RAC, “RAC
no SP”, and “FF” respectively. It is worth noting that, even
though at ¢ = 600s «(t) = 0 for all the considered controllers,
this does not mean that re-buffering phases are occurring.
In fact, the adaptation algorithm will sense a decrease of
the available bandwidth and will decrease the video level
accordingly, avoiding re-buffering [6].

Figure 4 (b) shows the costs, measured in dollars that are
due to the CPU usage: when M (t) is provisioned using the
peak load, i.e. using the static controller (SC), the highest costs
are obtained; the proposed controller is able to achieve up to
42% cost saving wrt the static controller and up to 9% wrt the
other dynamic controllers “FF” and “RAC no SP”.

6) Scenario with bandwidth limited clients (ncrp(t) > 0):
In this scenario we consider the realistic case in which the
clients access the delivery network through links at different
capacity as reported in [12] and already described in Section

5The optimal tuning of K p and K4 will be addressed in future works.

|- - -SC ——FF ——RAC no SP—— RAC

! 25— --sc P
150 ! g —FF - 08
| 2t| —— RAC no SP e
| —RAC 4 06
L | i 6r
= oo 0 =
o A 0.4}
50t ! [|
| | i
| | 02 \M ~——— RAC no SP
=20 | r=30 | =5 | r=30 r=0 ‘ . LA ‘ 1]V [=—rac
0 200 400 600 800 1000 1200 0 250 500 750 1000 1250 0 200 400 600 800 1000 1200
Time (sec) Time (sec) Time (sec)

(a) Number of active servers M (t)

(b) CPU costs C(t)

(c) Fraction of streams obtaining the maximum level

Figure 4: Performance of the considered controllers in the case of noy(t) =0

100 [F--SC— FF — RACnoSP——RAC|]| 12|[---sC .
T — FF 7
1t —— RAC no SP -
——RAC 7
. o 0.8 . _
= 2 06 2 T
0.4 y ‘ FF
02t - | | ~——— RAC no SP
L2 \L f ——RAC
0 . . n T
0 250 500 750 1000 400 600 800 1000
Time (sec) Time (sec) Time (sec)

(a) Number of active servers M (t)

(b) CPU costs C(t)

(c) Fraction of streams obtaining the maximum level

Figure 5: Performance of the considered controllers in the case of ncyr(¢) > 0

III-A3. It is worth to notice that, since in this scenario
ner(t) > 0, the total uplink bandwidth required is less than
the one required in the case ncr(t) = 0. In fact, 16% of
the flows have a downlink capacity of 1 Mb/s which does not
support the maximum video level [;;. This also means that, on
average, we expect a fraction of flows obtaining the maximum
video level which is equal to 0.84.

Let us consider the active machines dynamics M (¢) which
are shown in Figure 5 (a): the proposed controller provides
a smooth dynamics of M/(t) which is very similar to the
one exhibited in the other scenario in which ncp(t) = 0;
moreover, Figure 5 (c) shows that «(t) is very close to the
maximum 0.84; in this scenario the average value of « is
equal to 0.73.

The performance provided by “FF” are clearly worse com-
pared with the RAC since a very large number of machines
is turned on with the consequence of increasing remarkably
the distribution costs; the average value of « is 0.78, which is
slightly better than the one provided by RAC; however, this
comes at the expense of a 28% increase of the distribution
costs wrt to the ones required by RAC; (see Figure 5 (b)).
The “RAC no SP” controller performs better than “FF” but
it exhibits large overshoots compared to the proposed RAC
even though they are reach the same steady state; “RAC no
SP” provides an average value of a equal to 0.73, which is
the same obtained by RAC, but with a 10% increase of the
distribution costs wrt to RAC.

IV. CONCLUSIONS

In this paper we have proposed the Resource Allocation
Controller (RAC) which automatically throttles the number of
active machines in a Cloud-based adaptive streaming delivery
system to adapt to the user workload with the goal of obtaining
a high video quality while minimizing delivery costs. With the

purpose of evaluating its performance, the proposed controller
has been implemented in a discrete event simulator and, using
a realistic workload, a comparison with two other controllers
has been carried out. The results have shown that the proposed
controller is able to deliver a high video quality to the users
while containing the delivery costs. In particular, it has been
shown that the proposed controller is able to save 33%, 28%,
and 10% of the distribution costs wrt to the static controller,
the feed forward controller, and the “RAC no SP” respectively.

REFERENCES
[1]

[2]
[3]

Cisco, “Cisco Visual Networking Index:Forecast and Methodology
2009-2014,” White Paper, June 2010.

R. Buyya and M. Pathan, Content delivery networks, vol. 9. Springer
Verlag, 2008.

X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A case for a coordinated internet video control plane,” 2012.

D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud bandwidth
auto-scaling for video-on-demand applications,” in Proc. of IEEE IN-
FOCOM, vol. 12, 2012.

J. He, Y. Wen, J. Huang, and D. Wu, “On the cost-qoe trade-off for
cloud media streaming under amazon ec2 pricing models,”

L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for
adaptive live video streaming,” in Proc. ACM MMSys, 2011.

L. De Cicco, S. Mascolo, and C. Abdallah, “An experimental evaluation
of akamai adaptive video streaming over hsdpa networks,” in Proc.
of IEEE International Symposium on Computer-Aided Control System
Design (CACSD), pp. 13-18, IEEE, 2011.

O. Smith, “A controller to overcome dead time,” ISA Journal, vol. 6,
no. 2, pp. 28-33, 1959.

S. Mascolo, “Congestion control in high-speed communication networks
using the Smith principle,” Special Issue on “Control methods for
communication networks” Automatica, vol. 35, no. 12, pp. 1921-1935,
1999.

K. Stamos, G. Pallis, A. Vakali, D. Katsaros, A. Sidiropoulos, and
Y. Manolopoulos, “Cdnsim: A simulation tool for content distribution
networks,” ACM TOMACS, vol. 20, no. 2, p. 10, 2010.

A. Varga et al., “The omnet++ discrete event simulation system,” in
Proc. of European Simulation Multiconference (ESM 2001), vol. 9, 2001.
J. Summers, T. Brecht, D. Eager, and B. Wong, “Methodologies for
generating http streaming video workloads to evaluate web server
performance,” in Proc. of SYSTOR ’12, 2012.

[4]

[5]
[6]
[7]

[8]

[9]

(10]

(11]
[12]

