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Abstract—Applications requiring real-time communication
(RTC) between Internet peers are ever increasing. Real-time
communication requires not only congestion control but also
minimization of queuing delays to provide interactivity. It is
known that the well-established TCP congestion control is not
suitable for real-time communication due to its retransmissions
and in-order delivery mechanisms which induce significant
latency. In this paper we propose a novel congestion control
algorithm for RTC which is based on the main idea of estimating
– using a Kalman filter – the end-to-end one-way delay variation
which is experienced by packets traveling from a sender to a
destination. This estimate is compared with a dynamic threshold
and drives the dynamics of a controller located at the receiver
which aims at maintaining queuing delays low, while a loss-based
controller located at the sender acts when losses are detected.
The proposed congestion control algorithm has been adopted by
Google Chrome. Extensive experimental evaluations have shown
that the algorithm contain queuing delays while providing intra
and inter protocol fairness along with full link utilization.

I. INTRODUCTION

V IDEO constitutes the largest part of the Internet traffic
according to recent measurement studies [1], [2].

Although video streaming is the primary driver of this growth,
applications generating audio/video flows for establishing
end-to-end real-time communication (RTC) are also getting
very popular. This is mainly due to the ever increasing
diffusion of hand-held devices (f.i., smartphones, tablets)
which capture, encode, and send real-time video flows through
mobile connections. Besides traditional video conferencing
and telepresence systems, new mobile applications, such as
Periscope, Meerkat or Facebook live, allowing videos captured
by smartphones to be streamed in real-time, are getting
momentum.

Even though the Internet has undergone significant changes
in its upper layers and today is employed as a platform for
delivering video at a massive scale, the majority of Internet
traffic is still mostly delivered through the Transmission
Control Protocol (TCP). As a matter of facts, the loss-based
congestion control employed by the TCP has proven to be
suitable for both elastic data transfer (web browsing, file
transfer) and traffic with weak real-time characteristics such
as the one generated by video streaming systems which today
deliver videos over HTTP/TCP. However, it is well-known that
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the TCP is not suitable to deliver traffic with hard real-time
constraints (delay-sensitive traffic), such as the one generated
by video conferencing applications. In fact, compared to bulk
data delivery, which essentially requires the minimization of
flow completion times [3], [4], the Quality of Experience
(QoE) of real-time multimedia applications is not only affected
by the goodput but also by the connection latency that
must be kept as low as possible [5]. It is known that
the well-established TCP congestion control is not suitable
for real-time communication due to its retransmissions and
in-order delivery mechanisms which induce significant latency.
To the best of our knowledge, except in the case of VoIP
traffic [6], [7], the delivery of real-time video content over
TCP – which indeed entails much higher data rates – has
never been addressed in the literature nor proven to be
successful in real applications. Consequently, despite several
standardization efforts – the most notable being DCCP [8],
real-time video applications employ UDP sockets managed
by ad-hoc congestion control algorithms implemented at the
application layer (see f.i., [9] and [10]). The obvious drawback
of resorting to this practice is that different applications
cannot inter-operate which hinders mass adoption of RTC
applications. A joint W3C and IETF initiative called WebRTC
has been established to address this issue. In particular, the
WebRTC initiative aims at standardizing an interoperable and
efficient framework for real-time communication using Web
browsers over the Real Time Protocol (RTP) [11]. Launched
only a few years ago, today the WebRTC initiative allows more
than two billion of users to communicate in real-time through
Web browsers1. Another related IETF working group, the RTP
Media Congestion Avoidance Techniques2 (RMCAT), has been
established for standardizing inter-operable congestion control
algorithms for RTC.

This paper significantly extends our previews work [12]
and presents the Google Congestion Control (GCC) which is
an algorithm fully compliant with the WebRTC framework.
The algorithm has been designed to work with RTP/RTCP
protocols and is based on the idea of using delay variations to
infer congestion. First, we propose to use a Kalman filter to
estimate the one-way delay variation at the application layer.
Then, we show that the estimated delay variation cannot be
compared to a static threshold to detect congestion, and we
propose a simple and yet effective control law to dynamically
adapt the threshold.

In our previous work [12] we experimentally evaluated
GCC in the scenarios described in the IETF RMCAT working

1http://iswebrtcreadyyet.com/
2http://datatracker.ietf.org/wg/rmcat/
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group [13]. This choice was made to allow a comparison
with other congestion control algorithms proposed in the
RMCAT WG on a common set of scenarios. In this paper,
we have further investigated the behavior of GCC on a broad
set of network conditions and scenarios. In particular, we
have evaluated the sensitivity of the algorithm with respect
to different queue sizes, bottleneck capacity, and number of
concurrent flows. We believe that the obtained results give a
more complete picture of the algorithm performance.

The algorithm we propose in this paper is today adopted
by Google Chrome, which is the most used browser in the
Internet3. To the best of our knowledge, GCC is the only
proposed congestion control algorithm for WebRTC that has
been deployed on the Internet. Moreover, Google has recently
announced that the new video conferencing application for
Android named Google Duo will also employ GCC. Finally,
we point out that the experimental results presented in this
work can be reproduced. In fact, (i) the code of the proposed
algorithm is made available in the Google Chromium GIT
repository [14] and (ii) details on how to set up the testbed
employed in this paper are publicly released [15].

The rest of this paper is organized as follows. Section II
reviews the relevant literature on congestion control for
delay-sensitive flows. Section III describes the proposed
algorithm. In Section IV control parameters are tuned.
Section V presents the experimental testbed and the employed
metrics. Section VI illustrates the experimental results and
Section VII concludes the paper.

II. RELATED WORK

Traditional loss-based TCP is not suitable for real-time
communication traffic since its congestion control
continuously probes for network available bandwidth
introducing periodic cycles during which network queues are
first filled and then drained. These queue oscillations induce
a time-varying stochastic delay component that adds to the
propagation time and makes delay-sensitive communications
problematic. Two complementary approaches can be employed
to tackle this issue: end-to-end, placing the control in the
end-points, and active queue management (AQM), addressing
the problem in the routers.

The idea that network delay can be correlated to
network congestion has been proposed in the seminal
paper [16]. However, since then several issues related
to delay measurements in delay-based algorithms have
been considered [17], especially in the case of wireless
environments [18] and when the bottleneck is shared with
loss-based flows [19], [20]. In the following, we provide a
review of the related work clustering proposed end-to-end
congestion control algorithms based on the metric used to infer
congestion and complementary solutions which employ AQM
to control bottleneck queuing delays in the network.

A. The use of round trip time to infer congestion

The first efforts aiming at reducing queuing delay were
set in the TCP congestion control research domain and,

3http://www.w3schools.com/browsers/default.asp

consequently, many algorithms for real-time traffic are rooted
in this literature. The first congestion control algorithm
specifically designed to contain the end-to-end latency is
employed in the seminal work by Jain which dates back to
1989 [16]. Since then, several delay-based TCP congestion
control variants have been proposed, such as TCP Vegas [21]
and TCP FAST [22] which use RTT measurements to infer
congestion. It has been shown that when the RTT is used as a
congestion metric a low channel utilization may be obtained
in the presence of reverse traffic or when competing with
loss-based flows [19]. It is worth mentioning that the problem
of reverse traffic is crucial in the context of video conferencing
since video flows are sent in both directions.

B. One-way delay to infer congestion

Another class of algorithms advocates the use of
one-way delay measurements to rule out the sensitivity
to the reverse-path congestion. Examples are LEDBAT
(over UDP) [23] and TCP Santa Cruz [24]. In particular,
LEDBAT [23] increases its congestion window at a rate that
is proportional to the distance between the measured one-way
delay and a fixed delay target. It has been shown that LEDBAT
is affected by the so-called “latecomer effect”: when two flows
share the same bottleneck the second flow typically starves the
first one [25].

C. The use of delay-gradient to infer congestion

The idea of employing RTT gradient to infer congestion
has been recently used to overcome the aforementioned
“latecomer effect”. Some examples are CDG [26] and
Verus [27]. CDG [26] has been designed to provide fair
coexistence with loss-based flows and low end-to-end delay.
Verus [27] has been specifically designed for cellular networks
where sudden link capacity variations make the congestion
control design challenging. Recently, it has been shown that
accurate delay gradient measurement is achievable in data
center networks by employing NIC hardware timestamps [28].

D. Other approaches

Among recently proposed congestion control algorithms,
which do not infer congestion by measuring network delays,
we cite Sprout [29], and Remy [30]. Sprout [29] takes a
stochastic approach which aims at containing delays while
maximizing the throughput. Remy [30] is a framework to
generate congestion control algorithms. By defining a utility
function based on users requirements, Remy employs apriori
knowledge of the network to train a machine that learns
congestion control schemes.

E. Design for RTP/RTCP

This paper aims at designing a congestion control algorithm
for real-time communication among Web browsers. The
algorithm will conform to the WebRTC W3C and IETF
joint initiative [11]. Three end-to-end algorithms have been
proposed within the IETF RMCAT working group: (i) the
Network Assisted Dynamic Adaptation (NADA) [31] by

http://www.w3schools.com/browsers/default.asp
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Cisco, is a loss/delay-based algorithm that relies on “one-way
delay” measurements; (ii) the Self-Clocked Rate Adaptation
for Multimedia (SCREAM) [32] by Ericsson which inherits
some ideas from LEDBAT; (iii) Google Congestion Control
(GCC) [33] is proposed in this paper. Further details on the
standardization status of such algorithms are available in [34].

F. AQM algorithms to reduce the queuing delays

Queuing delays can also be reduced with appropriate
tuning of network buffers size [35], [36], [37] or with AQM
algorithms which control the router buffers by dropping the
packets or marking them if ECN is used [38]. Despite the
fact that many AQM algorithms have been proposed in the
past, their adoption has been held back due to two main
issues [39]: (i) they aim at controlling the average queue length
instead of queuing delay and (ii) an ad-hoc configuration of
their parameters has to be made. These issues, along with the
bufferbloat phenomenon [40], have motivated the study of new
AQM algorithms, such as CoDel [39] and PIE [41], that do
not require parameter tuning and that explicitly control the
queuing delay instead of the queue length.

In the complementary paper [42] we have carried out an
experimental investigation studying the interaction between
GCC and delay-based AQM schemes. Results show that if
only GCC flows run through the bottleneck, GCC is able to
contain the queuing delay with zero losses in the case of a
drop-tail queue. On the other hand, PIE and CoDel provide
roughly the same queuing delay of drop-tail but with the
drawback of introducing packet losses. This is because CoDel
(or PIE) reacts to the delay inflation before GCC does, with the
consequence of inducing losses on the video flow. Moreover,
we have shown that flow schedulers such as Stochastic Fair
Queuing (SFQ) offer a better solution compared to AQMs
since they provide flow isolation. In particular, GCC obtained
the best results in terms of queuing delay and packet losses
when used with SFQ.

III. THE CONGESTION CONTROL ALGORITHM (GCC)

GCC is designed for real-time flows. It must provide (i) low
queuing in the absence of concurrent heterogeneous traffic and
(ii) a reasonable share of bandwidth when competing with
homogeneous or heterogeneous flows [43].

In order to satisfy both the requirements two cooperating
congestion control algorithms are designed as shown in
Figure 1. A delay-based controller located at the receiver
aims at maintaining queuing delays low, whereas a loss-based
controller located at the sender acts when losses are detected.

The sender employs a UDP socket to send RTP packets and
receive RTCP feedback reports from the receiver. In particular,
the delay-based controller computes the rate Ar which is fed
back to the sender; the loss-based controller computes the rate
As. The target sending bitrate A is set as the minimum of
(Ar, As). The block sending engine encodes the raw video
captured from a video source at a bitrate matching A and
sends the encoded video through a UDP socket.

In the following, we provide a description of the algorithm.
The source code of GCC is available in the WebRTC
repository4 of the Chromium web browser.

A. The delay-based controller

Design Rationale
Ideally, the congestion control algorithm should provide full

link utilization while keeping zero queuing at steady state.
A direct measurement of the queue length is not available
at the end-points. Thus, the queue length must be estimated
using the one-way delay or the RTT measurements which are
however affected by several issues discussed in Section II, i.e.
reverse-path congestion, latecomer phenomenon, etc.

In order to eliminate such issues, we propose to measure
one-way delay variations to detect congestion. The architecture
of the proposed delay-based controller is detailed in Figure 1.

In a nutshell, we propose to design a delay-based controller
that in response to an increased queuing delay decreases the
sending rate, whereas when the queue is drained, it increases
the sending rate. To the purpose, we need: (i) a component
producing estimates m(t) of the one-way queuing delay
variations based on end-to-end measurements (the Arrival filter
block in Figure 1); (ii) a component that, based on such
estimates, detects the state s of the network (the Overuse
detector block in Figure 1); (iii) a Rate controller that
computes the rate Ar based on the detected network state s.

In the following, we present the design of these three
components.

The delay variation estimation
Definition 1: The one-way queuing delay gradient is the

derivative of the queuing delay Tq(t).
A well-known fluid-flow model of the queuing delay is
Tq(t) = q(t)/C, where C is the bottleneck link capacity
and q(t) is the queue length measured in bits [44]. Thus, the
queuing delay gradient Ṫq(t) is equal to:

Ṫq(t) =
q̇(t)

C
(1)

The derivative of the queue length can be modeled as
follows [45]:

q̇(t) =

{
r(t)− C 0 ≤ q(t) ≤ qM
0 otherwise

(2)

where r(t) is the queue filling rate measured in bit per second
and qM is the queue size. Ṫq can be used as a congestion
signal since, when Ṫq(t) > 0 the queue is inflating, conversely
when Ṫq(t) < 0 the queue is deflating. In all cases, the higher
the value of |Ṫq(t)| the higher the rate the queue is filled or
drained.

The case Ṫq(t) = 0 needs to be analyzed separately. Ṫq(t) =
0 implies q̇(t) = 0, i.e. the queue length q(t) stays constant.
This can happen in three different conditions: (i) when the
filling rate r(t) is below the link capacity C, i.e. in the case

4https://chromium.googlesource.com/external/webrtc/+/master/webrtc/
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of channel underutilization, the queue eventually gets empty;
(ii) when the filling rate r(t) exceeds the link capacity C, i.e.
when persistent congestion occurs, the queue keeps equal to
qM ; (iii) when the input rate r(t) is exactly equal to C. In
this last case, the queue stays at a constant value q ∈ [0, qM ].
The case of standing queue [39], i.e. q > 0, is regarded as
undesirable since it steadily delays the traffic.

As mentioned above, the proposed algorithm aims at
keeping the queue as small as possible without underutilizing
the link. To achieve this goal the algorithm has to probe for
the available bandwidth by increasing its sending rate until a
positive queuing delay variation is detected. At this point, the
sending rate must be reduced. Thus, some queuing delay needs
to be induced to run a congestion control algorithm based on
delay variations.

Estimation. Measuring one-way delays in computer networks
is a key issue in several applications ranging from
synchronization of distributed nodes [46] to delay-based
congestion control algorithms [17]. Despite the fact that the
use of delay to infer congestion has been already debated in
the past [47], recently several studies are advocating the use
of such a metric to drive congestion control algorithms [26],
[28].

We propose to employ one-way delay variation (OWDV)
end-to-end measurements dm(ti) to estimate the one-way
queuing delay variation m(t). End-points can measure the
OWDV dm(ti) as follows (see Figure 2):

dm(ti) = (ti−Ti)− (ti−1−Ti−1) = (ti− ti−1)− (Ti−Ti−1)
(3)

where Ti is the time (stamped in the packet) when the first
packet of the i-th video frame has been sent5 and ti is the time
when the last packet that forms the i-th video frame has been
received. It should be noted that (3) does not require sender
and receiver clock synchronization.

The model d(ti) of the measured one-way delay variation
dm(ti) is given by the sum of three components: (i) the
transmission time variation, given by the ratio between the
variation of the size of two consecutive video frames ∆L(ti)
and the bottleneck link capacity C(ti), (ii) the one-way
queuing delay variation m(ti), and (iii) the measurement noise
n(ti):

d(ti) =
∆L(ti)

C(ti)
+m(ti) + n(ti).

The goal here is to extract m(ti) from d(ti). Specifically, we
need a tool that is able to both filter out the noise n(t) and
eliminate the term due to the transmission delay variation.
The use of a noise filter on dm(ti) would only be able to
filter out the component n(ti) and not the contribution due to
the transmission delay variation. A suitable and robust tool to
solve this problem is the Kalman Filter [48]. We employ a
Kalman filter to estimate the state θ(ti) of the system, based
on its model and on the noisy measurements dm(ti) (3). The
system state vector is defined as follows 6:

θ(ti) =

[ 1
C(ti)

m(ti)

]
(4)

The system model is given by:

θ(ti+1) = θ(ti) +w(ti) (5)

The state noise w(ti) is modeled as a stationary Gaussian
process with zero mean and variance Q(ti) = E[w(ti) ·
wT (ti)]. Similarly to w(ti), the measurement noise n(ti) –
which takes into account the network jitter – is also considered
as a stationary Gaussian process with zero mean and variance
σ2
n(ti) = E[n(ti)

2]. Both the state and measurement noise

5https://webrtc.org/experiments/rtp-hdrext/abs-send-time/
6Throughout the paper vectors are represented with boldface fonts to

differentiate them from scalars.

https://webrtc.org/experiments/rtp-hdrext/abs-send-time/
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variance are important parameters which are required to be
tuned appropriately.

At each step the innovation or residual z(ti) is computed
as:

z(ti) = dm(ti)−H(ti) · θ(ti) (6)

where H(ti) =
[

∆L(ti) 1
]
. The innovation z(ti)

is multiplied by the Kalman gain K(ti) which provides
the correction to the estimate and is dynamically updated
according to the process and the measurement noise variance:

K(ti) =
(P (ti−1) +Q(ti))H

T (ti)

H(ti)(P (ti−1) +Q(ti))HT (ti) + σ2
n(ti)

(7)

where P (ti) is the system error variance recursively computed
as:

P (ti) = (I −K(ti)H(ti))(P (ti−1) +Q(ti)) (8)

In our case, the Kalman gain is made of two components
K(ti) =

[
kc(ti) km(ti)

]T
; km(ti) provides the correction

to the one-way delay variation m(ti) as follows:

m(ti) = (1−km(ti)) ·m(ti−1)+km(ti) ·(dm(ti)−
∆L(ti)

C(ti−1)
).

(9)
Observe that (9) turns out to be equivalent to an adaptive
EWMA filter which takes as input the measured OWDV
dm(ti) from which it is subtracted the estimated transmission
delay variation ∆L(ti)/C(ti−1). This equation shows that
the Kalman filter is able to both adaptively filter the noise
n(ti) and eliminate the contribution of the transmission time
variation from the measurements dm(ti).

Regarding the tuning of the state noise covariance Q, we
have run several experiments on real networks and chose
the setting that turned out to best balance between algorithm
responsiveness in detecting congestion and filtering noise to
avoid false positives. The following Q has been obtained:

Q =

[
10−10 0

0 10−3

]
A physical interpretation of such a setting can be gathered by
considering the dynamics of the state components. Since the
bottleneck capacity C is typically unknown but constant,7 the
variance of such a component (q11) turns out to be very small
compared to the variance of the noise affecting m (q22).

Regarding the measurement noise variance σ2
n(ti), we use

an exponential moving average filter of the residual (6):

σ2
n(ti) = β · σ2

n(ti−1) + (1− β) · z2(ti) (10)

where β = 0.95 and dm(ti) is measured according to (3). This
is a typical methodology employed when information about
the measurement noise is not available [49].

Finally, regarding the system initial conditions, quick
convergence is obtained when the initial system error variance

7Consider that rerouting on the Internet is an unlikely event and, as such,
bottleneck capacity typically keeps constant throughout the duration of a
connection.

overuse underuse normal
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Figure 3. Over-use detector signaling

P (0) is much larger than the state noise variance Q. We have
set:

P (0) =

[
100 0
0 10−1

]
In these conditions, the initial estimate of the state can be
freely set to any value.

Congestion detection
In this Section, we design a congestion detection mechanism
based on the one-way delay variation m(ti) estimated by the
Kalman filter. To this purpose, we propose to detect congestion
by comparing m(ti) with a threshold γ(ti). Such a mechanism
is implemented by the block over-use detector shown in
Figure 1. In particular, this block produces a signal s which
can take three different values (see Figure 3):

1) overuse when m(ti) >γ(ti): an increasing queue length
is detected;

2) underuse when m(ti) <−γ(ti): a decreasing bottleneck
queue is detected, i.e. the input rate is below the
available bandwidth;

3) normal when −γ(ti) ≤ m(ti) ≤ γ(ti): an unchanged
congestion state is detected.

The value of the threshold γ is critical to tune the congestion
detection mechanism. Intuitively, a small threshold would
make the algorithm very sensitive in detecting changes in the
congestion state, but it would have the drawback of being too
sensitive to noise. Conversely, a large threshold would result in
a sluggish detection of congestion state changes but would be
more robust with respect to noise. Moreover, a constant value
for the threshold γ cannot be used (see also [50]) because
two issues can occur: (i) the delay-based controller may never
affect sending rate computation if the size of bottleneck queue
is not sufficiently large and (ii) GCC flows are starved in the
presence of concurrent loss-based TCP traffic.

To overcome such issues we propose an Adaptive
Threshold to have a detection mechanism that adapts to
network conditions. We propose the following control law to
dynamically adapt the threshold:

γ(ti) = γ(ti−1) + ∆Ti · kγ(ti)(|m(ti)| − γ(ti−1)) (11)

where ∆Ti = ti−ti−1, and ti is the time instant the i-th video
frame is received. The gain kγ(ti) is defined as follows:

kγ(ti) =

{
kd |m(ti)| < γ(ti−1)

ku otherwise
(12)

where ku (kd) determine the rate at which the threshold
is increased (decreased). The threshold γ(ti) is a low-pass
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filtered version of |m(ti)|. The tuning of ku (kd) will be
discussed in Section IV.

Rate control
A finite state machine (FSM) is driven by the signal s produced
by the over-use detector and computes the rate Ar as follows:

Ar(ti) =


Ar(ti−1) + Ā Increase,
αRr(ti) Decrease,
Ar(ti−1) Hold,

(13)

where ti denotes the time the i-th video frame is received,
α = 0.85, and Rr(ti) is the measured received rate. Ā is the
increase rate and is set equal to the ratio between half of the
average packet size and the round trip time. The finite state
machine (FSM) is shown in Figure 4: the state of the FSM (13)
is driven by the over-use detector signal s which is based on
m(ti). It is important to notice that Ar(ti) is upper bounded
by 1.5Rr(ti).

The rationale of the proposed FSM is the following: when
the bottleneck buffer starts to build-up, the estimated one-way
delay variation m(ti) becomes positive. Then, the over-use
detector detects this variation and triggers an overuse signal,
which drives the machine into the “Decrease” state. As a result,
the sending rate is reduced and the bottleneck buffer starts to
be drained up to the point when the estimated one-way delay
variation m(ti) becomes negative. An underuse signal is then
triggered, which drives the machine into the “Hold” state. The
machine remains in the “Hold” state until the bottleneck buffer
gets empty. When this occurs, m(ti) approaches zero and the
overuse detector generates a normal signal, which drives the
machine into the “Increase” state again.

B. The loss-based controller

The loss-based controller complements the delay-based
controller in the case losses are measured. The algorithm acts
every time tk a feedback message carrying Ar is received
by the sender. The feedback messages are sent through the
real-time control protocol (RTCP). The RTCP reports include
the fraction of lost packets fl(tk) computed as described in
the RTP RFC [51]. The sender uses fl(tk) to compute the
sending rate As(tk) according to the following equation:

As(tk) =


As(tk−1)(1− 0.5fl(tk)) fl(tk) > 0.1

1.05(As(tk−1)) fl(tk) < 0.02

As(tk−1) otherwise
(14)

The rationale of (14) is simple: (i) when the fraction of lost
packets is small (0.02 ≤ fl(tk) ≤ 0.1), As is kept constant,

Figure 5. Contour plot of the objective function U as a function of ku and
kd

(ii) when the fraction of lost packets is high (fl(tk) > 0.1)
the rate is multiplicatively decreased, whereas (iii) when the
fraction of lost packets is negligible (fl(tk) < 0.02), the rate
is multiplicatively increased.

IV. THE ADAPTIVE THRESHOLD DESIGN

In this Section, we describe the tuning of the adaptive
threshold parameters used to detect congestion. In particular,
we first motivate the choice of the parameters ku and kd used
in (12) which determine the speed at which the threshold is
increased or decreased. Then, we explain why an adaptive
threshold has to be employed to avoid (i) that the delay-based
controller may never affect the sending rate computation if
the size of the bottleneck queue is not sufficiently large and
(ii) the starvation of GCC flows in the presence of concurrent
loss-based TCP traffic.

Choice of the threshold parameters. The adaptive threshold
dynamics depends on two parameters ku and kd which define
how quickly the threshold γ(ti) follows the delay variation
m(ti), i.e. 1/ku and 1/kd are the dynamics time constant.
In order to tune these parameters we state an optimization
problem by employing the objective function proposed in [52]:

U(x) =

N∑
i=1

Ua(xi) (15)

where Ua(xi) is the objective function measured for the
i-th flow. The overall utilization is obtained as the sum of
Ua(xi) for each of the N concurrent flows. xi is the average
throughput of the i-th flow and Ua(x) is a concave utility
function given by:

Ua(xi) =

{
log(xi) a = 1
x1−a
i

1−a otherwise
(16)
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It is well-known that for any value of a > 0 this optimization
problem is Pareto-efficient [53], [52]. The maximization of U
implies a fair allocation of the throughput among concurrent
flows. In the case of video conferencing we need to extend (15)
to also consider the impact of the queuing delay on system
performance [30]:

U(x,y) =

N∑
i=1

(Ua(xi)− δ · Ub(yi)) (17)

The same rationale used for Ua(xi) applies to Ub(yi) where
yi is the average queuing delay measured for the i-th flow.
The parameters a and b express the trade-off between fairness
and efficiency for throughput and delay whereas δ expresses
the relative importance of delay with respect to throughput.
Following [30], we use a = 2, b = 1, which gives more
emphasis on throughput fairness, and δ = 0.15, which
guarantees Ua(xi) and Ub(yi) are well balanced.

We have considered three scenarios in which we have
measured the objective function (17): (i) a single GCC flow
over a bottleneck with variable link capacity, similarly to the
use case shown in Figure 10, (ii) multiple concurrent GCC
flows over a bottleneck with constant link capacity, similarly
to the use case depicted in Figure 13, (3) one GCC flow
against one TCP flow over a bottleneck with constant link
capacity. The objective function has been computed for every
value of ku and kd in the range [10−5, 0.1] × [10−5, 0.1]
divided into 200× 200 intervals in the logarithmic scale. The
contour map of the sum of the normalized objective functions
U obtained in each scenario for every couple (ku,kd) is shown
in Figure 5. U increases when ku > kd, i.e. when the threshold
γ(ti) is quickly increased and slowly decreased. However
when ku � kd (in the bottom-right corner of Figure 5)
the threshold decreases too slowly reducing the algorithm
sensitivity to the delay inflation; this induces higher queuing
delays and, as a consequence, U decreases. On the other hand,
when ku < kd the algorithm becomes very sensitive to the
delay variation which leads to throughput degradation in the
presence of concurrent TCP flows. The maximum is obtained
for (ku,kd) ' (0.01, 0.00018). This setting provides the best
trade-off between throughput, latency, intra and inter-protocol
fairness.

Influence of the bottleneck queue size on the delay
variation. We now explain why an adaptive threshold is
needed. In fact, a constant threshold γ(ti) = γ, may inhibit
the delay-based controller if γ is larger than the maximum
measurable delay variation.

Proposition 1: Let us consider one GCC flow accessing a
drop-tail bottleneck queue with maximum queuing time T q .
Over-use signals cannot be generated, and thus the delay-based
controller is inactive, if the following condition holds:

γ >

√
2
T q
τ

+
T q
τ
, (18)

where τ is the time constant of the exponential increase phase
of the sending rate computed using the loss-based algorithm
(14).

Proof: We start by recalling that the goal of the
delay-based controller is to stop the increase of the sending
rate (14) before the queuing delay gets too large. Towards
this end, the overuse detector of the delay-based controller
compares the estimated m(t) with a static threshold γ and
it triggers a decrease of the rate if m(t) > γ. Thus, if the
maximum value mM of m(t) is less than γ the generation
of the over-use signal is inhibited. Therefore, to prove this
proposition we need to show that if (18) holds, it turns out
that mM <γ.

We start by computing mM = max(m(t)). From the
hypothesis given in Section III, m(t) is an estimate of
the queuing delay gradient Ṫq(t). Since we are interested
in finding the maximum of m(t), we only consider the
exponential increase phase of the sending rate r(t) that holds
when the measured loss rate is less than fl(t) < 0.02
according to (14). A fluid-flow model of the increase phase
of the sending rate r(t) can be easily derived from (14) as
follows:

ṙ(t) =
1

τ
r(t) (19)

Now, by combining (2) and (1) we obtain:

m(t) =
q̇(t)

C
=

{
r(t)
C − 1 0 ≤ q(t) ≤ qM

0 otherwise
(20)

Let t0 = 0 denote the time instant when r(t0) = C, i.e.
the instant after which the queue starts to build up, and let
us analyze the dynamics of m(t) for t > t0. Under these
assumptions, by integrating (19) it turns out

r(t) = r(t0) exp(t/τ) = C · exp(t/τ) (21)

Now, by substituting (21) in m(t) = r(t)/C − 1, we obtain:

m(t) = exp(t/τ)− 1. (22)

Eq. (22) is a monotonically increasing function until the point
q(t) = qM , i.e. when the queue is full and packets start to get
dropped. Thus, the maximum value of m(t) is equal to m(tM )
where tM is the time instant at which the queue becomes full,
i.e. q(tM ) = qM . By considering (2) and integrating between
t0 and tM we obtain:

q(tM ) = qM =

∫ tM

t0

(r(ξ)−C)dξ = Cτ(exp(tM/τ)−1)−CtM .
(23)

Based on the experimental evaluation of Section VI we
measured that τ is in the order of seconds and is much
larger than tM ; thus by computing the second order McLaurin
expansion for the exponential and substituting it in (23) we
obtain the following approximation:

tM =

√
2qM
τC

.

Thus, the maximum queuing delay is:

mM = m(tM ) =
1

τ

(√
2τqM
C

+
qM
C

)
=

√
2
T q
τ

+
T q
τ
.

(24)
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Figure 6. Effect of the adaptive threshold in the case of a single GCC flow over a 1Mpbs link with queue size T q = 150ms
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The proposition is proved by observing that if the condition
(18) holds, it turns out that mM < γ.

To experimentally validate the issue of using a constant
threshold, Figure 6 (a) shows a real experiment (see Section V
for details on the testbed) where a single GCC flow is started
over a 1 Mbps bottleneck link with a drop-tail queue whose
maximum queuing time is T q = 150 ms. Figure 6 compares
the GCC rate, the RTT, and the fraction of lost packets in
the case of a static setting of the threshold (Figure 6 (a))
and in the case of the adaptive threshold (Figure 6 (b)).
With a static threshold γ, the delay-based controller becomes
ineffective and is not able to react in the presence of delay
inflation. This is due to the fact that the maximum value of
the delay variation, which depends on T q , is smaller than γ .
On the other hand, Figure 6 (b) shows that using the adaptive
threshold, γ(t) follows m(t) with a slower time constant
and, when m(t) overshoots γ(t), the delay-based algorithm
can reduce the sending rate. Figure 6 (b) also shows that
the controller is able to avoid packet losses, i.e. fl(t) = 0

throughout the whole duration of the experiment. To further
show the benefits of the adaptive threshold, Figure 7 compares
the cumulative distribution function of the measured RTT
in the two experiments reported in Figure 6. The measured
median value of the RTT is very close to the propagation delay
RTTmin = 50 ms, whereas thanks to the adaptive threshold
5th percentile of the RTT is reduced from 130 ms to 90 ms.

Effect of a concurrent TCP flow on the delay variation. In
this paragraph, we show that the threshold must be adaptive
to avoid the starvation of a GCC flow in the presence of a
concurrent loss-based flow. Towards this end, we consider a
single GCC flow with a concurrent long-lived TCP flow. We
show that a static setting of the threshold might lead to the
starvation of the GCC flow. In this scenario, the one-way delay
variation can be expressed as the sum of two components:

m(t) = m1(t) +m2(t) =
r1(t) + r2(t)

C
− 1 (25)

where m1(t) and m2(t) are the queuing delay variations of
the GCC and the TCP flow respectively and r1(t) and r2(t)
are the corresponding sending rates.

In the following, we show that the maximum delay variation
m2,M due to a TCP flow can be much larger than that of a
GCC flow. In particular, by using similar arguments employed
to derive (24) we obtain:

m2,M =
max(q̇(t))

C
=

max(r2(t))− C
C

. (26)

A well-known and widely used approximation of the TCP
throughput is r2(t) = w(t)/RTT (t) [44], where w(t) is the
congestion window of the TCP flow and RTT (t) is the round
trip time. The maximum value that the congestion window
can assume is the queue size qM plus the in-flight bytes
C · RTTmin [45], i.e. max(w(t)) = qM + C · RTTmin,
whereas the minimum value of RTT (t) is the round trip
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Figure 8. One GCC flow vs one TCP flow. Bottleneck parameters: queue size T q = 350ms, link capacity C = 1000kbps

propagation RTTmin. Thus, it turns out that max(r2(t)) =
qM/RTTmin + C which yields to:

m2,M =
qM

RTTmin · C
=

T q
RTTmin

, (27)

The ratio between m2,M and m1,M is given by:

m2,M

m1,M
=

1

RTTmin

T q√
2
T q

τ +
T q

τ

(28)

It is clear that, when T q increases, the ratio monotonically
increases. Since in this case m(t) contains the component
m2(t) due to the TCP flow, if m2(t)� m1(t) the GCC flow
will decrease Ar not because of self-inflicted delay, but due
to the queuing delay provoked by the TCP flow. This means
that using a static threshold γ, the TCP flow would starve the
GCC flow when large queues are used.

To experimentally validate the theoretical findings, Figure 8
shows a real experiment which has been run by employing the
testbed described in Section V. Figure 8 shows a GCC flow
which competes with a TCP flow over a 1 Mbps bottleneck
link with a drop-tail queue whose maximum queuing time is
T q = 350 ms. Figure 8 (a) shows that, when a static threshold
is used, the GCC flow gets starved. In particular, when the TCP
flow is started, m(t) begins to oscillate above the threshold
γ mainly due to the queuing delay variation induced by the
TCP flow m2(t), which triggers a large number of overuse
signals. Consequently, the remote rate controller FSM enters
the decrease mode which reduces the value of Ar according
to (13). On the other hand, Figure 8 (b) shows that the
adaptive threshold avoids the starvation and provides fairness
between GCC and TCP flow. In particular, after TCP is started,
γ(t) follows m(t) with a smaller time constant which avoids
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Figure 9. Experimental testbed

the generation of numerous consecutive overuse signals and
prevents the starvation of the GCC flow.

V. TESTBED

Figure 9 shows the experimental testbed employed to
emulate a WAN scenario. Further details on how to reproduce
the experiments are available on-line [15]. The testbed consists
of four Linux machines equipped with a Linux kernel 3.16.0.
Two nodes, each one running several sessions of Chromium
browsers [14] and an application to generate or receive TCP
long-lived flows, are connected through an Ethernet cable.
Thus, the behavior of GCC flows when competing against TCP
flows can be analyzed. Another node runs a web server which
handles the signaling required to establish the video calls
between the browsers. The last node is the testbed controller
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that orchestrates the experiments via ssh commands. The
testbed controller undertakes the following tasks: (i) it places
the WebRTC calls starting the GCC flows; (ii) it sets the link
capacity C and the bottleneck queue size T q on Node 1; (iii) it
sets the propagation delay RTTmin on Node 2; (iv) it starts
the TCP flows when required.

The bottleneck queue is placed on Node 1 and employs
a drop-tail queuing discipline8. The queue size qM has been
set by considering the maximum time required to drain the
buffer T q , i.e. qM = T q · C. The round trip propagation
delay RTTmin = 50 ms, which is the sum of the propagation
delays on the direct and reverse path (25 ms each) has been
set on Node 2 through the NetEm Linux module, whereas
the bottleneck queue size T q has been set in the range
[150, 700] ms and C in the range [500, 6000] kbps according
to a large measurement study on the edge network [54]. We
have used a Token Bucket Filter (TBF) to set the ingress link
capacity C of Node 1.

Video and TCP settings. The TCP sources employ the
CUBIC congestion control which is the default in Linux
kernel. The congestion window, the slow-start threshold, the
RTT, and the sequence number are logged. A Web server9

provides the HTML page that handles the signaling between
the peers using the WebRTC JavaScript API [11]. The same
video sequence is used to enforce experiments reproducibility.
To this purpose, we have used the “Four People”10 YUV test
sequence which is cyclically repeated. Chromium encodes the
raw video source with the VP8 video encoder11. We have
measured that, without any bandwidth limitation, VP8 limits
the sending bitrate As(t) to a maximum value of 2Mbps.

Metrics. In order to quantitatively assess the performance of
GCC we consider QoS metrics such as packet loss ratio,
average bitrate, and delay which are known to be well
correlated with QoE metrics through, for instance, the IQX
hypothesis [55]. Following this approach has the advantage
of using metrics that are not sensitive to application specific
aspects, such as the employed video encoder. Moreover,
splitting the evaluation of QoE metrics from QoS metrics
also follows the guidelines defined within the IETF RTP
Media Congestion Avoidance Techniques (RMCAT) working
group [13]. In particular, we consider:

• Channel Utilization U = Rr/C, where C is the known
link capacity and Rr is the measured average received
rate;

• Loss ratio l = (bytes lost)/(bytes sent);
• 5th, 25th, 50th, 75th and 95th percentile of queuing

delay, measured as RTT (t) − RTTmin over all the
RTT samples reported in the RTCP feedback during the
experiments;

• Jain’s Fairness Index: JFI(t) =
(
∑N

i=1 xi(t))
2

N
∑N

i=1 xi(t)2
, where

8The interplay of GCC with other queuing disciplines has been separately
addressed in [42].

9https://apprtc.appspot.com/
10https://people.xiph.org/~thdavies/x264_streams/FourPeople_1280x720_

30/
11http://www.webmproject.org/
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Figure 10. GCC Rate, fraction loss, RTT and delay variation dynamics in
the case of a single GCC with variable link capacity

xi(t) is the measured instantaneous throughput of the i-th
flow and N is the total number of competing flows.

VI. EXPERIMENTAL EVALUATION

In this Section, we present the experimental results obtained
by employing the testbed described in Section V. The goal
is to check if GCC satisfies the real-time communication
requirements defined in [43] i.e., low queuing in the absence
of concurrent heterogeneous traffic and a reasonable share
of bandwidth when competing with other homogeneous or
heterogeneous flows. In particular, we have considered a
scenario where a single GCC runs under different bottleneck
conditions, a scenario where GCC shares the bottleneck with
long and short-lived TCP flows, and finally a scenario where
a variable number of GCC flows share the bottleneck. It is
important to notice that in a typical video conferencing session
peers are connected to edge networks and bottlenecks are
generally in the uplink interfaces [54].

A. Single GCC flow

We start the experimental evaluation by considering a single
GCC flow over a bottleneck. We consider two cases: the first
one aiming at checking how GCC adapts its sending rate when
step-like changes of the link capacity occur; the second one
refers to a home network scenario in which only a video
conference session is using the network.

Variable link capacity. In this Section, we investigate how
a GCC flow adapts its sending rate when step-like changes
of the link capacity occur. In particular, the link capacity C
varies as a staircase: starting from C equal to 500 kbps, C is
increased every 50 s of 500 kbps until a capacity of 2000 kbps
is reached. Then, C is decreased using the same pattern.
The round trip propagation delay RTTmin has been set to
50 ms. Figure 10 shows that the GCC sending rate is able
to quickly match the variable link capacity C. Furthermore,
GCC contains the queuing delay since the RTT is kept close

https://apprtc.appspot.com/
https://people.xiph.org/~thdavies/x264_streams/FourPeople_1280x720_30/
https://people.xiph.org/~thdavies/x264_streams/FourPeople_1280x720_30/
http://www.webmproject.org/
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to RTTmin during the entire video call. Overall, the average
measured channel utilization is roughly equal to 86%. We can
conclude assessing that GCC is able to track the link capacity
while limiting packet loss and maintaining low queuing delays.

Different bottleneck conditions with constant link
capacity. In this Section we investigate the performance of
a single GCC flow over a bottleneck with a constant link
capacity. The capacity C of the bottleneck has been set to C ∈
{500, 1000, 1500, 2000} kbps and three values of the queue
size have been considered, i.e. T q ∈ {150, 350, 700}ms. For
each of the considered 12 couples (C, T q), we have run 10
video calls whose duration is 300 s and we have evaluated
the metrics defined in Section V by averaging over the 10
experiments. Figure 11 shows the metrics grouped by the
value of the queue size T q; each group contains a bar which
shows the metric for a particular value of C in terms of
the average channel utilization U , the average loss ratio and
queuing delay percentiles. The channel utilization is slightly
above 90% in every experiment regardless the parameters C
and T q . GCC is able to avoid losses when T q = 350 ms or
T q = 700 ms whereas in the case of T q = 150 ms some losses
are measured. Queuing delays are depicted using a box and
whisker plot in logarithmic scale: the bottom and top of the
box are respectively the 25th and 75th percentile, whereas the
red band in the box is the median; the end of the whiskers
represents the 5th and 95th percentile. Let us focus on the
influence of the link capacity C on the queuing delays. We
notice that in all the experiments 95th percentile is larger as the
link capacity decreases: this is due to the fact that the arrival
filter measures a larger delay variation at lower link capacity
according to equation (1). Let us focus on the influence of
the bottleneck queue size T q . When T q = 150 ms, the 95th
percentile for C = 500 kbps is limited by the small queue
size at the expense of some losses due to overflow. As the
value of T q increases, its influence on the queuing delays
becomes less remarkable, proving that GCC is able to properly
contain queuing delays. Moreover, Figure 11 shows that the
median value of queuing is maintained below 3 ms in every
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of a GCC flow with a TCP flow over a bottleneck with different constant
capacity C ∈ {1000, 2000, 3000} kbps and bottleneck queue size Tq ∈
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experiment.

B. GCC flow with TCP flows

We now consider the case of one GCC flow when sharing
the bottleneck link with one TCP flow. This scenario aims at
verifying if GCC is able to fairly share the link capacity with
a long-lived TCP flow under different bottleneck conditions.

In particular, this case considers the scenario where during
a video conference session a user shares a large file with the
other peer. The video call starts at t = 0 s and lasts 400 s
whereas the TCP flow is active for 200 s in the time interval
[100, 300] s as shown in Figure 8. The capacity has been set
to C ∈ {1000, 2000, 3000} kbps and the bottleneck queue size
to T q ∈ {150, 350, 700}ms [54]. For each of the 9 couples
(C, T q), we have run 10 experiments measuring the metrics
defined in Section V by averaging over the results obtained
in the 10 experiments. Figure 12 shows the metrics grouped
by the value of the queue size T q; each group contains a bar
which shows the metric for a particular value of C in terms of
the average channel utilization U , the average loss ratio and the
average value of queuing delay. In this case, we use the average
value of the queuing delay instead of the percentiles since
the TCP flow tends to fill the bottleneck queue; as expected
this results in measuring an average queue occupancy roughly
equal to its maximum length T q . Figure 12 shows that the
link capacity is fairly shared among GCC and TCP flows
when T q = 150 ms or T q = 350 ms whereas TCP slightly
prevails over GCC when the bottleneck queue size increases
to T q = 700 ms. This is made possible by the adaptive
threshold that, by reducing the sensitivity of the delay-based
controller, leads the GCC flow to be controlled by both the
loss-based and delay-based algorithms in the presence of
concurrent loss-based traffic. In fact, the value of the fraction
loss measured for the GCC flow for any value of the couples
(C, T q) is greater than zero confirming that the algorithm is
also operating in loss-based mode. One experiment dynamics
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has been previously shown in Figure 8(b) to describe the
adaptive threshold in Section IV.

To conclude this section, we point out that the same set
of experiments has also been run by employing the NewReno
congestion control in the place of CUBIC. The results obtained
with NewReno are comparable to those presented above for
CUBIC and, due to the lack of space, are not reported in this
paper. Nevertheless, a complete performance evaluation, in the
future, should also include different TCP congestion control
algorithms and consider flows with different round-trip times
to check for RTT fairness.

C. Multiple concurrent GCC flows

The aim of this Section is to investigate the GCC
intra-protocol fairness. This case considers the scenario where
video conference is used by more than one user, for example
in a home network scenario. Toward this end, we consider
a variable number of concurrent GCC flows n ∈ {2, 3, 4}
and the link capacity C varies in such a way that the
fair share Fs of the capacity among the flows is equal to
Fs = C/n ∈ {500, 1000, 1500} kbps, f.i. if n = 2, C is
set to C = Fs · n ∈ {1000, 2000, 3000}; the bottleneck queue
size has been set to T q = 350 ms in every experiment. Each
flow is started 20 s after the previous one and the experiment
lasts 200 s. For each of the 9 couples (n, Fs) we have
run 10 experiments and evaluated the metrics by averaging
over the 10 experiments. Figure 13 shows the dynamics of
one experiment where four GCC flows share the bottleneck
with a fair share Fs set to 1 Mbps (i.e. C =4 Mbps). This
experiment shows that GCC is not affected by the “late-comer
effect” [25]; the three GCC flows fairly share the link and the
measured Jain Fairness Index approaches 0.93. No packet is
lost during the whole duration of the experiment. Figure 14
summarizes the results obtained for each couple (n, Fs). The
results are grouped by the value of the number of concurrent
GCC flows n; each group contains a bar which shows the
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the case of variable number of concurrent GCC flows n ∈ {2, 3, 4} over a
bottleneck with different fair share Fs ∈ {500, 1000, 1500} kbps

metric for a particular value of Fs in terms of the average
channel utilization U , the average loss ratio and queuing delay
percentiles in logarithmic scale. First of all, we notice that the
number of concurrent flows does not remarkably influence the
metrics: the JFI measured in every experiment is above 0.9,
confirming that the algorithm provides intra-protocol fairness,
and the cumulative channel utilization is always kept above
85%. Some losses are measured only when Fs = 500 kbps.
For what concerns the queuing delays the results are similar to
the ones obtained in Section VI-A in the case of a single GCC
flow: the 95th percentile is larger as the link capacity decreases
whereas the median value is always kept below 3 ms exactly
as in the case of the single flow scenario. Overall we can
conclude that GCC is able to provide intra-protocol fairness
while maintaining at the same time low queuing delay and
losses.

VII. CONCLUSIONS

In this paper we have presented and evaluated the Google
Congestion Control (GCC) algorithm which is used to control
the sending rate of video conferencing applications. GCC has
been implemented in the open-source Chromium Web browser
and it has been adopted by the Google Chrome browser.
An extensive experimental evaluation has shown that GCC is
able to contain queuing delays while providing intra and inter
protocol fairness along with full link utilization.
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