
End-to-End Bandwidth Estimation for Congestion
Control in Packet Networks

Luigi Alfredo Grieco1 and Saverio Mascolo2

1 Dipartimento d’ Ingegneria dell’ Innovazione, Università di Lecce
Via Monteroni, 73100 Lecce, Italy
alfredo.grieco@unile.it

2 Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari

Via Orabona 4, 70125 Bari, Italy
mascolo@poliba.it

Abstract. Today TCP/IP congestion control implements the additive
increase/multiplicative decrease (AIMD) paradigm to probe network capacity
and obtain a “rough” but robust measurement of the best effort available
bandwidth. Westwood TCP proposes an additive increase/adaptive decrease
paradigm that adaptively sets the transmission rate at the end of the probing
phase to match the bandwidth used at the time of congestion, which is the
definition of best-effort available bandwidth in a connectionless packet
network. This paper addresses the challenging issue of estimating the best-
effort bandwidth available for a TCP/IP connection by properly counting and
filtering the flow of acknowledgments packets using discrete-time filters. We
show that in order to implement a low-pass filter in packet networks it is
necessary to implement an anti ACK compression algorithm, which plays the
role of a classic anti-aliasing filter. Moreover, a comparison of time-invariant
and time-varying discrete filters to be used after the anti-aliasing algorithm is
developed.

1 Introduction

The today dominant Internet is a global packet network that implements resource
sharing through statistical multiplexing. Packets are delivered hop by hop by a
connectionless network layer that employs store and forward switching using first in
first out (FIFO) queuing. The stability of the Internet and in particular the prevention
of congestion requires that flows use some form of end-to-end congestion control to
adapt the input rate to the available bandwidth [1,2,4,5]. Thus the goal of obtaining an
end-to-end estimate of the bandwidth available for a TCP connection is crucial in
order to design more efficient and fair congestion control algorithms.

Today TCP congestion control was introduced in the late eighties [1,2] and follows
the additive increase/multiplicative decrease probing paradigm (AIMD) [6]. The
additive phase linearly increases the transmission rate until the network capacity is hit
and the sender becomes aware of congestion via the reception of duplicate
acknowledgments (DUPACKs) or the expiration of a timeout. Then the sender reacts

to light congestion (i.e. 3 DUPACKs) by halving the congestion window (fast
recovery) and sending again the missing packet (fast retransmit), and to heavy
congestion (i.e. timeout) by reducing the congestion window to one (multiplicative
decrease phase). After a timeout or at the beginning of the connection, the TCP enters
a faster increasing phase that is exponential and aims at grabbing the best-effort
available bandwidth faster.

The AIMD paradigm can be viewed as an endless series of cycles, having a linear
or exponential increasing phase and a multiplicative decreasing phase, which aim at
continuously probing the network capacity to obtain a “rough” but robust
measurement of the best effort bandwidth that is available for a TCP connection. As
reported in [1], “This mechanism can insure that network capacity is not exceeded,
but it cannot insure fair sharing of that capacity”. In fact, it has been shown that the
throughput of a TCP connection is proportional to the inverse of its round trip time
[13], which favors shorter connections. Furthermore, today TCP is not well suited for
wireless links since losses due to unreliable radio channels are misinterpreted as a
symptom of congestion thus leading to an undue reduction of the transmission rate
and low utilization of a wireless path. As a consequence, today TCP requires
supplementary link layer protocols such as reliable link-layer or split-connections
approach to efficiently operate over wireless links [20].

Westwood TCP proposes to improve fairness and efficiency of congestion control
by introducing an innovative end-to-end bandwidth estimation algorithm. In
particular, Westwood TCP leaves unchanged the probing phase of classic TCP but it
substitutes the multiplicative decrease phase with an adaptive decrease phase, which
sets the control windows by taking into account the bandwidth estimate. It has been
shown that Westwood TCP increases the TCP throughput over wireless links,
increases the fairness in bandwidth allocation w.r.t. Reno TCP and is friendly towards
Reno TCP [12,19].

It is worth remarking that the end-to-end bandwidth estimation mechanism
proposed in Westwood TCP, and that we are going to investigate in this paper, is built
on the standard probing mechanism of today TCP, that is, it is based on probing the
network capacity using the slow-start and congestion avoidance phases. A congestion
episode at the end of a probing phase points out that all the best-effort available
bandwidth has been grabbed. Therefore, an estimate of the used bandwidth at the end
of a probing phase is, by definition, an estimate of the available best effort bandwidth
in a statistically multiplexed packet network. The latter observation is valuable to be
kept in mind because the used bandwidth exhibits high variability with time in packet
networks due to statistical multiplexing, whereas the available best-effort bandwidth
might not.

The end-to-end bandwidth estimation algorithm is a critical issue. The basic idea
reported in [12] is to get an estimate of the used bandwidth by counting and low-pass
filtering the flow of ACK packets during the data transfer. In particular, when an
ACK arrives it can be argued that a certain amount of data has been delivered since
the previous ACK arrival time and a sample of the used bandwidth can be computed.
Bandwidth samples must be low-pass filtered to obtain the low frequency components
of the used bandwidth because congestion is only due to the low-frequency
components of the traffic [9]. Low-pass filtering using discrete-time filter is a
challenging goal due to the fact that ACK packets do not arrive at constant sampling

intervals since packets networks are asynchronous systems. In particular, ACK
packets experience congestion along the backward path they traverse and arrive
bunched. The latter phenomena, known as ACK compression [14], provokes
considerable bandwidth overestimate that is disruptive of the adaptive decrease
mechanism and leads to connection starvation.

The disruptive effects of ACK compression on the bandwidth estimation algorithm
were not evident in the original paper on TCP Westwood because the phenomena of
ACK compression was negligible in the considered scenarios. They were shown in
[19] along with a new filtering technique and a mathematical model for the long-term
Westwood TCP throughput.

This paper is entirely devoted to the challenging issue of end-to-end bandwidth
estimation in packet networks. In particular it is shown that ACK compression
generates aliased bandwidth samples that lead to greatly overestimate the used
bandwidth. Therefore, it is necessary to implement an anti ACK compression
algorithm, which plays the role of a classic anti-aliasing filter, before using any
discrete-time filter in packet networks. Time-invariant and time-varying discrete
filters are compared. Simulation results show that it is possible to obtain an estimate
of available bandwidth which enhances the performance of TCP congestion control.

The paper is organized as follows: Section 2 summarizes the related work; Section
3 describes the Westwood TCP congestion control algorithm; Section 4 focuses on
time-varying and time-invariant discrete-time filters for low-pass filtering and
bandwidth estimation; Section 5 introduces the anti-aliasing filter and test time-
invariant and time-varying discrete-time filters using the ns-2 simulator [15]; finally,
Section 6 draws the conclusions.

2 Related Work

TCP Vegas is the first significant example of congestion control algorithm that
partially departs from the AIMD paradigm by proposing two estimates: (a) the
expected connection rate cwnd/RTTmin and (b) the actual connection rate cwnd/RTT,
where RTT is the round trip time and RTTmin is the minimum measured RTT [11].
When the difference between the expected and the actual rate is less than a threshold
�>0, the cwnd is additively increased. When the difference is greater than a threshold
�>� then the cwnd is additively decreased. When the difference is between � and �,
cwnd is kept constant [11]. Vegas can be viewed as the first attempt to use a
bandwidth estimation scheme to improve the internet congestion control. However, it
should be noted that Vegas employs the actual sending rate cwnd/RTT rather than the
rate of the returning ACKs to infer congestion; the sending rate cwnd/RTT is a
measure of bandwidth that is based on the number of sent packets (cwnd) and not on
the number of acknowledged packets. As a consequence, it does not take into account
that a fraction of sent packets could be lost and could not correspond to an actual
bandwidth capacity, that is, the Vegas actual rate overestimates the used bandwidth.

The first attempt to exploit ACK packets for bandwidth estimation is the packet
pair (PP) algorithm, which tries to infer the bottleneck available bandwidth at the
starting of a connection by measuring the interarrival time between the ACKs of two

packets that are sent back to back [21]. Hoe proposes a refined PP method for
estimating the available bandwidth in order to properly initialize the ssthresh [22]: the
bandwidth is calculated by using the least-square estimation on the reception time of
three ACKs corresponding to three closely-spaced packets. Allman and Paxson
evaluate the PP techniques and show that in practice they perform less well than
expected [23]. Lai and Baker propose an evolution of the PP algorithm for measuring
the link bandwidth in FIFO-queuing networks [16]. The method consumes less
network bandwidth while maintaining approximately the same accuracy of other
methods, which is poor for paths longer than few hops. Jain and Dovrolis proposes to
use streams of probing packets to measure the end-to-end available bandwidth, which
is defined as the maximum rate that the path can provide to a flow, without reducing
the rate of the rest of the traffic [7]. Finally, they focus on the relationship between
the available bandwidth in a path they measure and the throughput of a persistent TCP
connection. They show that the averaged throughput of a TCP connection is about 20-
30% more than the available bandwidth measured by their tool due to the fact that the
TCP probing mechanism gets more bandwidth than what was previously available in
the path, grabbing part of the throughput of other connections. A similar technique
has been proposed in [3]. It uses sequences of packet pairs at increasing rates and
estimates the available bandwidth by comparing input and output rates of different
packet pairs. Estimating the available bandwidth at the beginning of a TCP
connection is a different and much more difficult task than measuring the actual rate a
TCP connection is achieving during the data transfer as it is done by Westwood TCP
[12]. In particular, Westwood TCP low-pass filters the flow of returning ACKs to get
an estimate of the bandwidth a TCP connection is using. However, the filter proposed
in [12] does not work properly in the presence of ACK compression because of
aliasing. In particular, when in the presence of ACK compression, the estimation
algorithm described in [12] causes an overestimate of the bandwidth that is disruptive
of the Westwood adaptive decrease mechanism and leads to starvation and fairness
disruption [19].

3 Westwood TCP Congestion Control

TCP-W is a sender-side only modification of the TCP stack. It proposes an end-to-end
bandwidth estimation algorithm that is built on the standard probing mechanism of
today TCP. It implements slow-start and congestion avoidance phases such as classic
Reno TCP to probe the network but, after congestion, it employs the estimate of the
best-effort available bandwidth B to properly set the congestion window and the slow-
start threshold. In particular, when a TCP-W sender receives 3 DUPACKs, it sets both
ssthresh and cwnd equal to max[2,(B*RTTmin)/seg_size], where RTTmin is the
minimum measured RTT and seg_size is the size of the sent segments. On the other
hand, when a timeout expires, ssthresh is set as in the previous case whereas cwnd is
set equal to 1 segment.

It is important to notice that the setting ssthresh=(B*RTTmin)/seg_size provides a
slow-start threshold that follows exactly the best-effort available bandwidth as it is
computed by the TCP Westwood sender (RTTmin/seg_size is a scale factor). Therefore,

the effective ability of Westwood TCP to track the available bandwidth can be tested
by plotting the ssthresh.

The adaptive decrease mechanism improves the stability of the standard TCP
multiplicative decrease algorithm since it can ensure that the congestion window is
reduced enough in the presence of heavy congestion and not too much in the presence
of light congestion or losses not due to congestion, such as in the case of radio links.
Clearly, a key requirement in order to have a properly working adaptive decrease
mechanism is that the bandwidth estimate is correct.

To conclude this background section we also notice that the adaptive setting of the
control windows increases the fair allocation of available bandwidth to different TCP
flows. This can be intuitively explained by considering that the window setting of
TCP Westwood tracks the estimated bandwidth so that, if the estimate is a good
measurement of the fair share, then the fairness is improved (for a mathematical proof
of this results see [19]). Moreover, the setting cwnd=B*RTTmin sustains a transmission
rate cwnd/RTT=B*RTTmin/RTT that is less than the bandwidth B estimated at the time
of congestion: as a consequence, the considered TCP flow clears out its path backlog
after a congestion episode thus leaving room for coexisting flows, and improving
statistical multiplexing and fairness.

4 Bandwidth Estimation Algorithms

This section focuses on the issue of estimating the used bandwidth by counting ACK
packets and by filtering the information they convey.

Fig. 1 depicts the end-to-end sender-based bandwidth estimation framework. It
shows a Westwood TCP sender injecting data segments into the Internet and
receiving ACKs from the receiver. When an ACK is received at time tk, it means that
a certain amount of data dk has been received by the TCP receiver. In particular, on
ACK reception, the following sample of bandwidth used by the TCP connection can
be computed:

k
k

kk
k

k
d

tt
d

b
�

�
�

�

�1
 (1)

where tk�1 is the time the previous ACK was received and 1���� kkk tt is the last
interarrival time. Since congestion is due to low-frequency components of used
bandwidth, samples (1) must be low-pass filtered by using a discrete-time filter. The
latter is a delicate task because samples (1) contain high frequency components due to
the fact that ACK packets can come back to the sender bunched as well as equally
spaced. As a consequence, any discrete-time low-pass filter will remarkably
overestimate the available bandwidth due to the phenomena of aliasing.

In this section we will first show through simulations that both time-invariant and
time-varying discrete-time filters fail to estimate the used bandwidth due to aliasing
effects. Then, we will introduce an anti ACK-compression algorithm that plays the
classic role of an anti-aliasing filter in packet networks [10].

We consider the following three types of discrete-time low-pass filters, which are
all obtained by discretizing a first-order low-pass continuous filter:

� A time-varying filter obtained by discretizing the continuous filter using a
Zero Order Holder (ZOH) [10];

� A time-invariant filter obtained using a ZOH;
� A time-varying filter obtained by discretizing the continuous filter using the

bilinear approximation [10].
In order to compare the three filters above, we employ the topology in Fig. 2.

Fig. 1. Bandwidth estimation scheme.

Fig. 2. Topology for testing the discrete-time filters.

It consists of a duplex 5Mbps bottleneck link shared by one persistent TCP
Westwood (TCP-W) source implementing the New Reno feature [17], and one
ON/OFF constant bit rate UDP source transmitting data at 1Mbps during the ON
period that lasts 100s and is silent during the OFF period that lasts 100s too. On the
reverse path, 40 TCP-W sources implementing the New Reno option provoke

TCP-W

Router

Forward
traffic

Backward
traffic

Bottleneck link TCP-W
Sink

40 TCP-W
connections

40 TCP-W
Sinks

 Sender

Sink
Router

UDP UDP

Data flow

INTERNET

Westwood
sender

Segments sent

Returning ACKs

Anti-ACK
compression

Discrete-time
low-pass filter

B
an

dw
id

th

es
tim

at
e

congestion along the TCP Westwood ACK path and excite ACK compression.
Packets are 1500 Bytes long whereas ACKs are 40 Bytes long. The bottleneck buffer
size is set equal to the link capacity times the round trip time of the forward TCP
connection whose value is 250ms. All TCP sinks implement the delayed ACK option
[2]. The initial congestion window has been set equal to 3 segments [18]. In the first
set of simulations, the UDP source is turned OFF to test various estimation algorithms
in the presence of constant available bandwidth environment, then it is turned ON to
investigate the estimate behavior in the presence of time varying available bandwidth.

4.1 A time-varying discrete time filter using a ZOH

The first filter we consider is obtained discretizing a first order low-pass continuous
filter with time constant � by using a zero order holder (ZOH). The discretization
procedure is described below:

A sample of used bandwidth (1) is considered as an impulse, which arrives every
time tk the sender receives an ACK. The impulsive sample is interpolated via a zero
order holder, which generates a piecewise constant signal. The continuous piecewise
constant signal is filtered by a first order single pole low-pass continuous filter with
time constant �. The output of the time-continuous filter is sampled at tk times. Such
steps lead to the following discrete time filter:

kkkkk bbb �����
�

)1(ˆˆ 1 �� (2)

where �
�

/kek
��

� . The Infinite Impulse Response filter (2) is identical to the one
proposed in [8] to estimate the arrival rate of a flow at network edges.

Fig. 3 (a) plots the used bandwidth samples and Fig. 3 (b) the used bandwidth
estimate obtained using a TCP-W sender implementing the filter (2). It is worth
noticing that, in this case, time-varying coefficients counteract the non-uniform
sampling time and mitigates the effects of ACK compression. In order to illustrate
high frequency components due to ACK compression, Fig. 3 (a) shows bandwidth
samples feeding the filter (2). It should be noticed that bandwidth samples exhibit a
peak value equal to 375 Mbps. Such a value is equal to the returning link capacity
(5Mbps) times the ratio between the segments size (1500Bytes) and the ACKs size
(40Bytes), times two to take into account that each ACK acknowledges two segments
because of the delayed ACK option [2].

Even though filter (2) mitigates ACK compression, it does not work for every
value of � due to aliasing effects. In fact, Fig. 4 shows the over estimate that is
obtained by using a filter with time constant �=0.1s.

4.2 A discrete time invariant filter

By considering a constant interarrival time k��� , the filter (2) gives the following
time-invariant filter:

kkk bbb �����
�

)1(ˆˆ 1 �� (3)

where

�
�

/��
� e (4)

Fig. 5 (a) plots samples (1) of the used bandwidth and Fig. 5 (b) plots the output of
the filter (3) with 9.0�� when fed by these samples. Fig. 5 (b) shows that the filter
overestimates the available bandwidth up to more than 10 times. The reason is that
bandwidth samples of Fig. 5 (a) contain aliased frequency components due to ACK
compression.

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0 100 200 300 400 500 600 700 800 900 1000
s

bp
s

Used Bandwidth Samples
Available bandwidth

a)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 100 200 300 400 500 600 700 800 900 1000
s

bp
s

Estimate of the Used Bandwidth
Available bandwidth

b)

Fig. 3. Used Bandwidth: (a) Samples; (b) Output of the filter (2).

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 100 200 300 400 500 600 700 800 900 1000

s

bp
s

Estimate of the Used Bandwidth
Available bandwidth

Fig. 4. Estimate of the used bandwidth using the filter (2) with �=0.1s.

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0 100 200 300 400 500 600 700 800 900 1000
s

bp
s

Used Bandwidth Samples
Available bandwidth

a)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0 100 200 300 400 500 600 700 800 900 1000
s

bp
s

Estimate of the Used Bandwidth
Available bandwidth

b)

Fig. 5. Used bandwidth: (a) Samples; (b) Output of the filter (3).

4.3 A time varying filter using the bilinear transformation

As in the previous section, a sample of used bandwidth (1) is computed every time tk
the sender receives an ACK. By assuming, for the time being, that inter-arrival time
between samples is uniform and equal to � , the continuous first order low-pass filter
is discretized using the bilinear transformation [10], which leads to the following
discrete-time filter:

��

�
��

��

��
�

�

�

��

�

2
ˆ

2
2ˆ 11 kkkk

bb
bb (5)

4.3.1 The filter of Westwood TCP
To take into account that the inter-arrival time of bandwidth samples is not uniform,
the following time varying form of the filter (5) has been employed in Westwood
TCP [12] :

k
kkkk

k
kk

bb
bb

��

�
��

��

��
�

�
�

��

�

2
ˆ

2
2ˆ 11 (6)

where k� is the inter-arrival time between the (k-1)-th sample and the k-th sample. In
order to satisfy the Nyquist-Shannon sampling Theorem, the inter-arrival time k�
must be less than 2/� . Therefore if it happens that 2/���k , then the filter is fed by
N virtual samples with inter-arrival time 2/� and amplitude equal to 0, where

)/2(ofinteger fkN ���� . Moreover, an additional samples kb feeds the filter with
inter-arrival time equal to 2/���� Nk . In the following, we set s1�� unless
otherwise specified.

Fig. 6 reports the used bandwidth samples and the estimated used bandwidth
obtained using the filter (6). As it can be viewed, the filter greatly overestimates the
bandwidth because of ACK compression that generates aliased samples. In the
original Westwood TCP paper [12] this phenomena was not evident because the ACK
compression was weak in the considered scenarios.

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0 100 200 300 400 500 600 700 800 900 1000

s

bp
s

Used Bandwidth Samples
Available bandwidth

a)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

0 100 200 300 400 500 600 700 800 900 1000

s

bp
s

Estimate of the Used Bandwidth
Available bandwidth

b)

Fig. 6. Used Bandwidth: (a) Samples; (b) Output of the filter (6).

5 Anti Aliasing Filter in Packet Networks

We have seen that ACK compression generates bandwidth samples containing aliased
frequency components that cannot be low-pass filtered using a digital filter.
Therefore, similarly to the case of filtering an analog signal, which requires the analog
signal be pre-filtered by an anti-aliasing filter before using a discrete-time filter, also
in packet networks it is necessary to implement a sort of anti-aliasing filter. The basic
idea to implement an anti-aliasing filter in packet networks is to group the ACKs
received in a sufficiently large time interval T and compute a unique corresponding
bandwidth sample. This operation has the effect of smoothing single ACKs, which
corresponds to filter out high frequency components. In particular, ACKs received
during the last RTT are grouped into a unique bandwidth sample that is computed by
considering the total data acknowledged over the RTT. To show that the proposed
algorithm avoids ACK compression effects, we consider the same scenario
investigated in the previous simulations. It is worth noting that the anti-aliasing
algorithm generates one bandwidth sample for each RTT (that is the sampling time �
is equal to RTT). Assuming a constant RTT, the � coefficient in filter (3) can be set
accordingly to (4). The difference between the time-invariant filter (3) and the time-
varying filters (2) and (6) is that filter (3) employs a constant coefficient �, whereas
filters (2) and (6) dynamically adjust their coefficients by taking into account the last
samples interarrival time. The latter feature is important to provide proper filtering
also in scenarios with large RTT variance.

In order to employ the time-varying filter (6), it is still necessary to satisfy the
Nyquist-Shannon sampling theorem, that is, it must be 2/���k [10]. To be
conservative, we assume 4/fk ��� . Thus, if it happens that 4/���k then we
interpolate and re-sample by creating)/4(integer �kN ��� virtual samples kb that
arrive with the inter-arrival time 4/� and one more sample kb arriving with inter-
arrival time 4/������ NT k .

It should be noticed that filter (2) already implements interpolation and resampling
through the ZOH that keeps constant the signal during the last interarrival time.
However, the coefficient of the filter (2) requires the computation of an exponential
that is harder than computing a ratio as in the case of filter (6). In the following of the
paper we will test the behavior of filters (3), (6) and (2) after an anti-aliasing filtering
stage.

5.1 Bandwidth estimates in the presence of constant available bandwidth

We consider the same scenario described in Fig. 2. Fig. 7 (a) shows the bandwidth
samples computed using the anti-aliasing procedure, whereas Fig. 7 (b) shows the
output of the filter (3) which is fed by anti-aliased samples.

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 100 200 300 400 500 600 700 800 900 1000

s

bp
s

Used Bandwidth Samples
Available bandwidth

a)

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 100 200 300 400 500 600 700 800 900 1000

s

bp
s

Estimate of the Used Bandwidth
Available bandwidth

b)

Fig. 7. Used bandwidth: (a) Anti-aliased samples; (b) Output of the filter (3).

A comparison of Fig. 7 (a) and Fig. 3 (a) shows that now there is no overestimate

of the bandwidth samples due to aliasing. Once the bandwidth samples are obtained
as shown in Fig. 7 (a), a further stage of discrete-time filtering extracts the low
frequency components of the used bandwidth as it is shown in Fig. 7 (b). Analogous
results have been obtained with filters (6) and (2).

5.2 Bandwidth estimates in the presence of time varying available bandwidth

In this section we investigate the behavior of the three low pass filters introduced
above in the presence of a time-varying available bandwidth when bandwidth samples
are properly prefiltered using the anti-aliasing procedure. To the purpose, the scenario
in Fig. 2 has been considered with the UDP source turned ON. The RTT of the
considered TCP connection is 100ms. At first, the reverse traffic has been turned OFF
to observe the output of various filters without disturbances, and then the reverse
traffic has been turned ON to test the filters in a realistic scenario with ACK
compression.

Figs. 8 (a) and (b) report the estimate of the used bandwidth obtained using the
filter (6) with and without reverse traffic, respectively. As it can be viewed, the
reverse traffic affects the estimate of the used bandwidth because of ACK congestion.

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0 100 200 300 400 500 600 700 800 900 1000

s

bp
s

Estimate of the Used Bandwidth
Available bandwidth

a)

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0 100 200 300 400 500 600 700 800 900 1000

s

bp
s

Estimate of the Used Bandwidth

Available bandwidth

b)

Fig. 8. Estimate of the used bandwidth with filter (6): (a) without reverse traffic; (b) with
reverse traffic.

However, it should be considered that Westwood TCP employs the estimate of the
used bandwidth for setting the slow start threshold (ssthresh) only after a congestion
episode, that is when the used bandwidth represents the best effort available
bandwidth. For this reason, the effect of reverse traffic is much weaker on the
ssthresh dynamics, which represents the estimate of the best-effort available
bandwidth. This is shown in Fig. 9. Similar results have been obtained by employing
the filters (3) and (2).

0.0E+00
1.0E+01
2.0E+01
3.0E+01
4.0E+01
5.0E+01
6.0E+01
7.0E+01
8.0E+01
9.0E+01
1.0E+02

0 100 200 300 400 500 600 700 800 900 1000

s

Se
gm

en
ts

cwnd
ssthresh

a)

0.0E+00
1.0E+01
2.0E+01
3.0E+01
4.0E+01
5.0E+01
6.0E+01
7.0E+01
8.0E+01
9.0E+01
1.0E+02

0 100 200 300 400 500 600 700 800 900 1000

s

Se
gm

en
ts

cwnd
ssthresh

b)

Fig. 9. Congestion window and slow start threshold with filter (6): (a) without reverse traffic;
(b) with reverse traffic.

It is interesting to compare the ssthresh of Westwood TCP w.r.t the ssthresh of
Reno TCP, which is plotted in Fig. 10. The comparison points out that the ssthresh of
Westwood is larger than the one of Reno. This proves that the proposed bandwidth
estimate enhances the ability of TCP congestion control to match the available
bandwidth, which provides better utilization of network bandwidth.

0.0E+00
1.0E+01
2.0E+01
3.0E+01
4.0E+01
5.0E+01
6.0E+01
7.0E+01
8.0E+01
9.0E+01
1.0E+02

0 100 200 300 400 500 600 700 800 900 1000

s

Se
gm

en
ts

cwnd
ssthresh

a)

0.0E+00
1.0E+01
2.0E+01
3.0E+01
4.0E+01
5.0E+01
6.0E+01
7.0E+01
8.0E+01
9.0E+01
1.0E+02

0 100 200 300 400 500 600 700 800 900 1000

s

Se
gm

en
ts

cwnd
ssthresh

b)

Fig. 10. Congestion window and slow start threshold of Reno: (a) without reverse traffic; (b)
with reverse traffic.

5.3 Bandwidth estimates obtained by many concurrent TCP flows

In this section, we investigate the bandwidth estimates of many Westwood TCP
flows competing for the same bottleneck capacity. We would like that, given a link
capacity C shared by N flows each flow obtains an estimate of the used bandwidth
oscillating around the fair-share C/N and a ssthresh which is close to the available
bandwidth. This would prove that the end-to-end bandwidth estimation algorithm can

improve the fairness of TCP congestion control in bandwidth allocation. We consider
a single bottleneck scenario similar to the one depicted in Fig. 2, where a 10Mbps
FIFO bottleneck is shared by 10 TCP-W persistent flows with RTTs ranging
uniformly from 25ms to 250ms. Figs. 11 (a) and (b) show the estimates of the used
bandwidth and of the best effort available bandwidth ssthresh*Seg_size/RTTmin,
respectively, obtained by the 10 TCP-W connections using the filter (6). Similar
results have been obtained for filters (2) and (3). Fig. 11(a) shows that the used
bandwidth estimates oscillate around the fair-share C/N, which is denoted by the
dashed line. Furthermore Fig. 11(b) shows that the estimates of the best effort
available bandwidth are less oscillating and closer to the fair share C/N. Similar
results have been obtained by using the filters (3) and (2).

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 200 400 600 800 1000

s

U
se

d
B

an
dw

id
th

 E
sti

m
at

es
 (b

ps
)

Fair share

a)

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 200 400 600 800 1000

s

A
va

ila
bl

e
B

an
dw

id
th

 E
st

im
at

es
 (b

ps
)

Fair share

b)

Fig. 11. Bandwidth estimates of 10 Westwood flows implementing the filter (6): (a) Used
Bandwidth; (b) Available Bandwidth.

6 Conclusions

This work has focused on end-to-end bandwidth estimation schemes to be used for
TCP congestion control. It has been shown that it is necessary to implement an anti-
aliasing filter before using discrete-time filters in packet networks. Simulation results
have shown that anti-aliasing plus low-pass discrete time filtering provide a reliable
estimate of the used bandwidth that, when coupled with a probing congestion control
algorithm, gives also a reliable estimate of the best-effort available bandwidth. This
estimate enhances the efficiency of TCP congestion control [12,19].

References

1. Jacobson, V.: Congestion avoidance and control, in Proceedings of ACM Sigcomm '88,
Stanford CA, August (1988) 314–329.

2. Allman, M., Paxson, V. and Stevens W.R.: TCP congestion control, RFC 2581, April
1999.

3. Melander, B., Bjorkman, M. and Gunningberg, P.: A New End-to-End Probing and
Analysis Method for Estimating Bandwidth Bottlenecks, in Proceedings of Global

Internet Symposium, 2000.
4. Clark, D.: The design philosophy of the DARPA Internet protocols, in Proceedings of

ACM Sigcomm’88, Stanford CA, August (1988) 106–114.
5. Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the Internet.

IEEE/ACM Transactions on Networking, Vol. 7(4), (1999), 458–472.
6. Dah-Ming Chiu, Jain, R.: Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks. Computer Networks and ISDN Systems, Vol. 17(1),
(1989) 1–14.

7. Jain, M., Dovrolis, C.: End to End Available Bandwidth: Measurement Methodology,
Dynamics, and Relation with TCP Throughput, in Proceedings of ACM Sigcomm 2002.

8. Stoica, I., Shenker, S. and Zhang, H.: Core-Stateless Fair Queueing: Achieving
Approximately Fair Bandwidth Allocations in High Speed Networks, in Proceedings of
ACM Sigcomm '98, Vancouver, Canada, August (1998) 118–130.

9. Li, S. Q., and Hwang, C.: Link Capacity Allocation and Network Control by Filtered
Input Rate in High speed Networks, IEEE/ACM Transaction on Networking, Vol. 3(1),
(1995) 10–25.

10. moAstr �� , K. J. and B. Wittenmark (1997). Computer controlled systems, Prentice Hall,
Englewood Cliffs, N. J, 1995.

11. Brakmo, L. S., and Peterson, L.: TCP Vegas: End-to-end congestion avoidance on a
global Internet. IEEE Journal on Selected Areas in Communications (JSAC), Vol. 13(8),
(1995) 1465–1480.

12. Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M., Wang, R.: TCP Westwood: End-to-End
Bandwidth Estimation for Efficient Transport over Wired and Wireless Networks, in
Proceedings of ACM Mobicom 2001, Rome, Italy, July (2001).

13. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP Throughput: A Simple
Model and its Empirical Validation, in Proceedings of ACM Sigcomm 1998, Vancouver
BC, Canada, September (1998) 303–314.

14. Mogul, J. C.: Observing TCP dynamics in real networks, in Proceedings of ACM
Sigcomm 1992, 305–317.

15. Ns-2 network simulator (ver 2). LBL, URL: http://www-mash.cs.berkeley.edu/ns.
16. Lai, K. and Baker, M.: Measuring Link Bandwidths Using a Deterministic Model of

Packet Delay, in Proceedings of ACM Sigcomm 2000, Stockholm, Sweden, August
(2000) 283 –294.

17. Floyd, S., Henderson, T.: NewReno Modification to TCP's Fast Recovery, RFC 2582,
April 1999.

18. Allman, M., Floyd, S., Partridge, C.: Increasing initial TCP’s initial window, RFC 2414,
September 1998.

19. Grieco, L. A., and Mascolo, S.: Westwood TCP and easy RED to improve Fairness in
High Speed Networks, in Proceedings of IFIP/IEEE Seventh International Workshop on
Protocols For High-Speed Networks, PfHSN02, Berlin, Germany, April (2002) 130–146.

20. Chaskar, H.M., Lakshman, T.V. and Madhow, U.: TCP Over Wireless with Link Level
Error Control: Analysis and Design Methodology, IEEE/ACM Transactions on
Networking, Vol. 7(5), (1999) 605–615.

21. Keshav, S.: A Control-theoretic Approach to Flow Control, in Proceedings of ACM
Sigcomm 1991, Zurich, Switzerland, September (1991) 3–6.

22. Hoe, J. C.: Improving the Start-up Behavior of a Congestion Control Scheme for TCP, in
Proceedings of ACM Sigcomm'96, Palo Alto, CA, August (1996) 270–280.

23. Allman, M. and Paxson, V.: On Estimating End-to-End Network Path Properties, in
Proceedings of ACM Sigcomm 1999, Cambridge, Massachusetts, August (1999) 263–
276.

