
End-to-End Bandwidth Estimation for Congestion 
Control in Packet Networks 

Luigi Alfredo Grieco1 and Saverio Mascolo2 

1 Dipartimento d’ Ingegneria dell’ Innovazione, Università di Lecce 
Via Monteroni, 73100 Lecce, Italy 
alfredo.grieco@unile.it 

 
2 Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari 

Via Orabona 4, 70125 Bari, Italy 
mascolo@poliba.it 

Abstract. Today TCP/IP congestion control implements the additive 
increase/multiplicative decrease (AIMD) paradigm to probe network capacity 
and obtain a “rough” but robust measurement of the best effort available 
bandwidth. Westwood TCP proposes an additive increase/adaptive decrease 
paradigm that adaptively sets the transmission rate at the end of the probing 
phase to match the bandwidth used at the time of congestion, which is the 
definition of best-effort available bandwidth in a connectionless packet 
network. This paper addresses the challenging issue of estimating the best-
effort bandwidth available for a TCP/IP connection by properly counting and 
filtering the flow of acknowledgments packets using discrete-time filters. We 
show that in order to implement a low-pass filter in packet networks it is 
necessary to implement an anti ACK compression algorithm, which plays the 
role of a classic anti-aliasing filter. Moreover, a comparison of time-invariant 
and time-varying discrete filters to be used after the anti-aliasing algorithm is 
developed.  

1 Introduction  

The today dominant Internet is a global packet network that implements resource 
sharing through statistical multiplexing. Packets are delivered hop by hop by a 
connectionless network layer that employs store and forward switching using first in 
first out (FIFO) queuing. The stability of the Internet and in particular the prevention 
of congestion requires that flows use some form of end-to-end congestion control to 
adapt the input rate to the available bandwidth [1,2,4,5]. Thus the goal of obtaining an 
end-to-end estimate of the bandwidth available for a TCP connection is crucial in 
order to design more efficient and fair congestion control algorithms.  

Today TCP congestion control was introduced in the late eighties [1,2] and follows 
the additive increase/multiplicative decrease probing paradigm (AIMD) [6]. The 
additive phase linearly increases the transmission rate until the network capacity is hit 
and the sender becomes aware of congestion via the reception of duplicate 
acknowledgments (DUPACKs) or the expiration of a timeout. Then the sender reacts 



 

to light congestion (i.e. 3 DUPACKs) by halving the congestion window (fast 
recovery) and sending again the missing packet (fast retransmit), and to heavy 
congestion (i.e. timeout) by reducing the congestion window to one (multiplicative 
decrease phase). After a timeout or at the beginning of the connection, the TCP enters 
a faster increasing phase that is exponential and aims at grabbing the best-effort 
available bandwidth faster. 

The AIMD paradigm can be viewed as an endless series of cycles, having a linear 
or exponential increasing phase and a multiplicative decreasing phase, which aim at 
continuously probing the network capacity to obtain a “rough” but robust 
measurement of the best effort bandwidth that is available for a TCP connection. As 
reported in [1], “This mechanism can insure that network capacity is not exceeded, 
but it cannot insure fair sharing of that capacity”. In fact, it has been shown that the 
throughput of a TCP connection is proportional to the inverse of its round trip time 
[13], which favors shorter connections. Furthermore, today TCP is not well suited for 
wireless links since losses due to unreliable radio channels are misinterpreted as a 
symptom of congestion thus leading to an undue reduction of the transmission rate 
and low utilization of a wireless path. As a consequence, today TCP requires 
supplementary link layer protocols such as reliable link-layer or split-connections 
approach to efficiently operate over wireless links [20]. 

Westwood TCP proposes to improve fairness and efficiency of congestion control 
by introducing an innovative end-to-end bandwidth estimation algorithm. In 
particular, Westwood TCP leaves unchanged the probing phase of classic TCP but it 
substitutes the multiplicative decrease phase with an adaptive decrease phase, which 
sets the control windows by taking into account the bandwidth estimate. It has been 
shown that Westwood TCP increases the TCP throughput over wireless links, 
increases the fairness in bandwidth allocation w.r.t. Reno TCP and is friendly towards 
Reno TCP [12,19]. 

It is worth remarking that the end-to-end bandwidth estimation mechanism 
proposed in Westwood TCP, and that we are going to investigate in this paper, is built 
on the standard probing mechanism of today TCP, that is, it is based on probing the 
network capacity using the slow-start and congestion avoidance phases. A congestion 
episode at the end of a probing phase points out that all the best-effort available 
bandwidth has been grabbed. Therefore, an estimate of the used bandwidth at the end 
of a probing phase is, by definition, an estimate of the available best effort bandwidth 
in a statistically multiplexed packet network. The latter observation is valuable to be 
kept in mind because the used bandwidth exhibits high variability with time in packet 
networks due to statistical multiplexing, whereas the available best-effort bandwidth 
might not. 

The end-to-end bandwidth estimation algorithm is a critical issue. The basic idea 
reported in [12] is to get an estimate of the used bandwidth by counting and low-pass 
filtering the flow of ACK packets during the data transfer. In particular, when an 
ACK arrives it can be argued that a certain amount of data has been delivered since 
the previous ACK arrival time and a sample of the used bandwidth can be computed. 
Bandwidth samples must be low-pass filtered to obtain the low frequency components 
of the used bandwidth because congestion is only due to the low-frequency 
components of the traffic [9]. Low-pass filtering using discrete-time filter is a 
challenging goal due to the fact that ACK packets do not arrive at constant sampling 



 

intervals since packets networks are asynchronous systems. In particular, ACK 
packets experience congestion along the backward path they traverse and arrive 
bunched. The latter phenomena, known as ACK compression [14], provokes 
considerable bandwidth overestimate that is disruptive of the adaptive decrease 
mechanism and leads to connection starvation.  

The disruptive effects of ACK compression on the bandwidth estimation algorithm 
were not evident in the original paper on TCP Westwood because the phenomena of 
ACK compression was negligible in the considered scenarios. They were shown in 
[19] along with a new filtering technique and a mathematical model for the long-term 
Westwood TCP throughput.  

This paper is entirely devoted to the challenging issue of end-to-end bandwidth 
estimation in packet networks. In particular it is shown that ACK compression 
generates aliased bandwidth samples that lead to greatly overestimate the used 
bandwidth. Therefore, it is necessary to implement an anti ACK compression 
algorithm, which plays the role of a classic anti-aliasing filter, before using any 
discrete-time filter in packet networks. Time-invariant and time-varying discrete 
filters are compared. Simulation results show that it is possible to obtain an estimate 
of available bandwidth which enhances the performance of TCP congestion control. 

The paper is organized as follows: Section 2 summarizes the related work; Section 
3 describes the Westwood TCP congestion control algorithm; Section 4 focuses on 
time-varying and time-invariant discrete-time filters for low-pass filtering and 
bandwidth estimation; Section 5 introduces the anti-aliasing filter and test time-
invariant and time-varying discrete-time filters using the ns-2 simulator [15]; finally, 
Section 6 draws the conclusions. 

2 Related Work 

TCP Vegas is the first significant example of congestion control algorithm that 
partially departs from the AIMD paradigm by proposing two estimates: (a) the 
expected connection rate cwnd/RTTmin and (b) the actual connection rate cwnd/RTT, 
where RTT is the round trip time and RTTmin is the minimum measured RTT [11]. 
When the difference between the expected and the actual rate is less than a threshold 
�>0, the cwnd is additively increased. When the difference is greater than a threshold 
�>� then the cwnd is additively decreased. When the difference is between � and �, 
cwnd is kept constant [11]. Vegas can be viewed as the first attempt to use a 
bandwidth estimation scheme to improve the internet congestion control. However, it 
should be noted that Vegas employs the actual sending rate cwnd/RTT rather than the 
rate of the returning ACKs to infer congestion; the sending rate cwnd/RTT is a 
measure of bandwidth that is based on the number of sent packets (cwnd) and not on 
the number of acknowledged packets. As a consequence, it does not take into account 
that a fraction of sent packets could be lost and could not correspond to an actual 
bandwidth capacity, that is, the Vegas actual rate overestimates the used bandwidth.  

The first attempt to exploit ACK packets for bandwidth estimation is the packet 
pair (PP) algorithm, which tries to infer the bottleneck available bandwidth at the 
starting of a connection by measuring the interarrival time between the ACKs of two 



 

packets that are sent back to back [21]. Hoe proposes a refined PP method for 
estimating the available bandwidth in order to properly initialize the ssthresh [22]: the 
bandwidth is calculated by using the least-square estimation on the reception time of 
three ACKs corresponding to three closely-spaced packets. Allman and Paxson 
evaluate the PP techniques and show that in practice they perform less well than 
expected [23]. Lai and Baker propose an evolution of the PP algorithm for measuring 
the link bandwidth in FIFO-queuing networks [16]. The method consumes less 
network bandwidth while maintaining approximately the same accuracy of other 
methods, which is poor for paths longer than few hops. Jain and Dovrolis proposes to 
use streams of probing packets to measure the end-to-end available bandwidth, which 
is defined as the maximum rate that the path can provide to a flow, without reducing 
the rate of the rest of the traffic [7]. Finally, they focus on the relationship between 
the available bandwidth in a path they measure and the throughput of a persistent TCP 
connection. They show that the averaged throughput of a TCP connection is about 20-
30% more than the available bandwidth measured by their tool due to the fact that the 
TCP probing mechanism gets more bandwidth than what was previously available in 
the path, grabbing part of the throughput of other connections. A similar technique 
has been proposed in [3]. It uses sequences of packet pairs at increasing rates and 
estimates the available bandwidth by comparing input and output rates of different 
packet pairs. Estimating the available bandwidth at the beginning of a TCP 
connection is a different and much more difficult task than measuring the actual rate a 
TCP connection is achieving during the data transfer as it is done by Westwood TCP 
[12]. In particular, Westwood TCP low-pass filters the flow of returning ACKs to get 
an estimate of the bandwidth a TCP connection is using. However, the filter proposed 
in [12] does not work properly in the presence of ACK compression because of 
aliasing. In particular, when in the presence of ACK compression, the estimation 
algorithm described in [12] causes an overestimate of the bandwidth that is disruptive 
of the Westwood adaptive decrease mechanism and leads to starvation and fairness 
disruption [19]. 

3 Westwood TCP Congestion Control  

TCP-W is a sender-side only modification of the TCP stack. It proposes an end-to-end 
bandwidth estimation algorithm that is built on the standard probing mechanism of 
today TCP. It implements slow-start and congestion avoidance phases such as classic 
Reno TCP to probe the network but, after congestion, it employs the estimate of the 
best-effort available bandwidth B to properly set the congestion window and the slow-
start threshold. In particular, when a TCP-W sender receives 3 DUPACKs, it sets both 
ssthresh and cwnd equal to max[2,(B*RTTmin)/seg_size], where RTTmin is the 
minimum measured RTT and seg_size is the size of the sent segments. On the other 
hand, when a timeout expires, ssthresh is set as in the previous case whereas cwnd is 
set equal to 1 segment.  

It is important to notice that the setting ssthresh=(B*RTTmin)/seg_size provides a 
slow-start threshold that follows exactly the best-effort available bandwidth as it is 
computed by the TCP Westwood sender (RTTmin/seg_size is a scale factor). Therefore, 



 

the effective ability of Westwood TCP to track the available bandwidth can be tested 
by plotting the ssthresh. 

The adaptive decrease mechanism improves the stability of the standard TCP 
multiplicative decrease algorithm since it can ensure that the congestion window is 
reduced enough in the presence of heavy congestion and not too much in the presence 
of light congestion or losses not due to congestion, such as in the case of radio links. 
Clearly, a key requirement in order to have a properly working adaptive decrease 
mechanism is that the bandwidth estimate is correct.  

To conclude this background section we also notice that the adaptive setting of the 
control windows increases the fair allocation of available bandwidth to different TCP 
flows. This can be intuitively explained by considering that the window setting of 
TCP Westwood tracks the estimated bandwidth so that, if the estimate is a good 
measurement of the fair share, then the fairness is improved (for a mathematical proof 
of this results see [19]). Moreover, the setting  cwnd=B*RTTmin sustains a transmission 
rate cwnd/RTT=B*RTTmin/RTT that is less than the bandwidth B estimated at the time 
of congestion: as a consequence, the considered TCP flow clears out its path backlog 
after a congestion episode thus leaving room for coexisting flows, and improving 
statistical multiplexing and fairness. 

4 Bandwidth Estimation Algorithms 

This section focuses on the issue of estimating the used bandwidth by counting ACK 
packets and by filtering the information they convey.  

Fig. 1 depicts the end-to-end sender-based bandwidth estimation framework. It 
shows a Westwood TCP sender injecting data segments into the Internet and 
receiving ACKs from the receiver. When an ACK is received at time tk, it means that 
a certain amount of data dk has been received by the TCP receiver. In particular, on 
ACK reception, the following sample of bandwidth used by the TCP connection can 
be computed: 
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where tk�1 is the time the previous ACK was received and 1���� kkk tt  is the last 
interarrival time. Since congestion is due to low-frequency components of used 
bandwidth, samples (1) must be low-pass filtered by using a discrete-time filter. The 
latter is a delicate task because samples (1) contain high frequency components due to 
the fact that ACK packets can come back to the sender bunched as well as equally 
spaced. As a consequence, any discrete-time low-pass filter will remarkably 
overestimate the available bandwidth due to the phenomena of aliasing.  

In this section we will first show through simulations that both time-invariant and 
time-varying discrete-time filters fail to estimate the used bandwidth due to aliasing 
effects. Then, we will introduce an anti ACK-compression algorithm that plays the 
classic role of an anti-aliasing filter in packet networks [10]. 

We consider the following three types of discrete-time low-pass filters, which are 
all obtained by discretizing a first-order low-pass continuous filter: 



 

� A time-varying filter obtained by discretizing the continuous filter using a 
Zero Order Holder (ZOH) [10]; 

� A time-invariant filter obtained using a ZOH;  
� A time-varying filter obtained by discretizing the continuous filter using the 

bilinear approximation [10].  
In order to compare the three filters above, we employ the topology in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Bandwidth estimation scheme. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Topology for testing the discrete-time filters. 
 

It consists of a duplex 5Mbps bottleneck link shared by one persistent TCP 
Westwood (TCP-W) source implementing the New Reno feature [17], and one 
ON/OFF constant bit rate UDP source transmitting data at 1Mbps during the ON 
period that lasts 100s and is silent during the OFF period that lasts 100s too. On the 
reverse path, 40 TCP-W sources implementing the New Reno option provoke 
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congestion along the TCP Westwood ACK path and excite ACK compression. 
Packets are 1500 Bytes long whereas ACKs are 40 Bytes long. The bottleneck buffer 
size is set equal to the link capacity times the round trip time of the forward TCP 
connection whose value is 250ms. All TCP sinks implement the delayed ACK option 
[2]. The initial congestion window has been set equal to 3 segments [18]. In the first 
set of simulations, the UDP source is turned OFF to test various estimation algorithms 
in the presence of constant available bandwidth environment, then it is turned ON to 
investigate the estimate behavior in the presence of time varying available bandwidth. 

4.1 A time-varying discrete time filter using a ZOH 

The first filter we consider is obtained discretizing a first order low-pass continuous 
filter with time constant � by using a zero order holder (ZOH). The discretization 
procedure is described below:  

A sample of used bandwidth (1) is considered as an impulse, which arrives every 
time tk the sender receives an ACK. The impulsive sample is interpolated via a zero 
order holder, which generates a piecewise constant signal. The continuous piecewise 
constant signal is filtered by a first order single pole low-pass continuous filter with 
time constant �. The output of the time-continuous filter is sampled at tk times. Such 
steps lead to the following discrete time filter: 
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� . The Infinite Impulse Response filter (2) is identical to the one 
proposed in [8] to estimate the arrival rate of a flow at network edges.  

Fig. 3 (a) plots the used bandwidth samples and Fig. 3 (b) the used bandwidth 
estimate obtained using a TCP-W sender implementing the filter (2). It is worth 
noticing that, in this case, time-varying coefficients counteract the non-uniform 
sampling time and mitigates the effects of ACK compression. In order to illustrate 
high frequency components due to ACK compression, Fig. 3 (a) shows bandwidth 
samples feeding the filter (2). It should be noticed that bandwidth samples exhibit a 
peak value equal to 375 Mbps. Such a value is equal to the returning link capacity 
(5Mbps) times the ratio between the segments size (1500Bytes) and the ACKs size 
(40Bytes), times two to take into account that each ACK acknowledges two segments 
because of the delayed ACK option [2].  

Even though filter (2) mitigates ACK compression, it does not work for every 
value of � due to aliasing effects. In fact, Fig. 4 shows the over estimate that is 
obtained by using a filter with time constant �=0.1s.  

4.2 A discrete time invariant filter 

By considering a constant interarrival time k��� , the filter (2) gives the following 
time-invariant filter: 
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Fig. 5 (a) plots samples (1) of the used bandwidth and Fig. 5 (b) plots the output of 
the filter (3) with 9.0��  when fed by these samples. Fig. 5 (b) shows that the filter 
overestimates the available bandwidth up to more than 10 times. The reason is that 
bandwidth samples of Fig. 5 (a) contain aliased frequency components due to ACK 
compression.  
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Fig. 3. Used Bandwidth: (a) Samples; (b) Output of the filter (2). 
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Fig. 4. Estimate of the used bandwidth using the filter (2) with �=0.1s. 
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Fig. 5. Used bandwidth: (a) Samples; (b) Output of the filter (3). 



 

4.3 A time varying filter using the bilinear transformation 

As in the previous section, a sample of used bandwidth (1) is computed every time tk 
the sender receives an ACK. By assuming, for the time being, that inter-arrival time 
between samples is uniform and equal to � , the continuous first order low-pass filter 
is discretized using the bilinear transformation [10], which leads to the following 
discrete-time filter: 
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4.3.1 The filter of Westwood TCP 
To take into account that the inter-arrival time of bandwidth samples is not uniform, 
the following time varying form of the filter (5) has been employed in Westwood 
TCP [12] : 
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where k�  is the inter-arrival time between the (k-1)-th sample and the k-th sample. In 
order to satisfy the Nyquist-Shannon sampling Theorem, the inter-arrival time k�  
must be less than 2/� . Therefore if it happens that 2/���k , then the filter is fed by 
N virtual samples with inter-arrival time 2/�  and amplitude equal to 0, where 

)/2( ofinteger fkN ���� . Moreover, an additional samples kb  feeds the filter with 
inter-arrival time equal to 2/���� Nk . In the following, we set s1��  unless 
otherwise specified.  

Fig. 6 reports the used bandwidth samples and the estimated used bandwidth 
obtained using the filter (6). As it can be viewed, the filter greatly overestimates the 
bandwidth because of ACK compression that generates aliased samples. In the 
original Westwood TCP paper [12] this phenomena was not evident because the ACK 
compression was weak in the considered scenarios. 
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Fig. 6. Used Bandwidth: (a) Samples; (b) Output of the filter (6). 



 

5 Anti Aliasing Filter in Packet Networks 

We have seen that ACK compression generates bandwidth samples containing aliased 
frequency components that cannot be low-pass filtered using a digital filter. 
Therefore, similarly to the case of filtering an analog signal, which requires the analog 
signal be pre-filtered by an anti-aliasing filter before using a discrete-time filter, also 
in packet networks it is necessary to implement a sort of anti-aliasing filter. The basic 
idea to implement an anti-aliasing filter in packet networks is to group the ACKs 
received in a sufficiently large time interval T and compute a unique corresponding 
bandwidth sample. This operation has the effect of smoothing single ACKs, which 
corresponds to filter out high frequency components. In particular, ACKs received 
during the last RTT are grouped into a unique bandwidth sample that is computed by 
considering the total data acknowledged over the RTT.  To show that the proposed 
algorithm avoids ACK compression effects, we consider the same scenario 
investigated in the previous simulations. It is worth noting that the anti-aliasing 
algorithm generates one bandwidth sample for each RTT (that is the sampling time � 
is equal to RTT). Assuming a constant RTT, the � coefficient in filter (3) can be set 
accordingly to (4). The difference between the time-invariant filter (3) and the time-
varying filters (2) and (6) is that filter (3) employs a constant coefficient �, whereas 
filters (2) and (6) dynamically adjust their coefficients by taking into account the last 
samples interarrival time. The latter feature is important to provide proper filtering 
also in scenarios with large RTT variance.  

In order to employ the time-varying filter (6), it is still necessary to satisfy the 
Nyquist-Shannon sampling theorem, that is, it must be 2/���k  [10]. To be 
conservative, we assume 4/fk ��� . Thus, if it happens that 4/���k  then we 
interpolate and re-sample by creating )/4(integer �kN ���  virtual samples kb  that 
arrive with the inter-arrival time 4/�  and one more sample kb  arriving with inter-
arrival time 4/������ NT k .  

It should be noticed that filter (2) already implements interpolation and resampling 
through the ZOH that keeps constant the signal during the last interarrival time. 
However, the coefficient of the filter (2) requires the computation of an exponential 
that is harder than computing a ratio as in the case of filter (6). In the following of the 
paper we will test the behavior of filters (3), (6) and (2) after an anti-aliasing filtering 
stage. 

5.1 Bandwidth estimates in the presence of constant available bandwidth 

We consider the same scenario described in Fig. 2. Fig. 7 (a) shows the bandwidth 
samples computed using the anti-aliasing procedure, whereas Fig. 7 (b) shows the 
output of the filter (3) which is fed by anti-aliased samples.  
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Fig. 7. Used bandwidth: (a) Anti-aliased samples; (b) Output of the filter (3). 
 
A comparison of Fig. 7 (a) and Fig. 3 (a) shows that now there is no overestimate 

of the bandwidth samples due to aliasing. Once the bandwidth samples are obtained 
as shown in Fig. 7 (a), a further stage of discrete-time filtering extracts the low 
frequency components of the used bandwidth as it is shown in Fig. 7 (b). Analogous 
results have been obtained with filters (6) and (2). 

5.2 Bandwidth estimates in the presence of time varying available bandwidth 

In this section we investigate the behavior of the three low pass filters introduced 
above in the presence of a time-varying available bandwidth when bandwidth samples 
are properly prefiltered using the anti-aliasing procedure. To the purpose, the scenario 
in Fig. 2 has been considered with the UDP source turned ON. The RTT of the 
considered TCP connection is 100ms. At first, the reverse traffic has been turned OFF 
to observe the output of various filters without disturbances, and then the reverse 
traffic has been turned ON to test the filters in a realistic scenario with ACK 
compression.  

Figs. 8 (a) and (b) report the estimate of the used bandwidth obtained using the 
filter (6) with and without reverse traffic, respectively. As it can be viewed, the 
reverse traffic affects the estimate of the used bandwidth because of ACK congestion.  
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Fig. 8. Estimate of the used bandwidth with filter (6): (a) without reverse traffic; (b) with 
reverse traffic. 

 



 

However, it should be considered that Westwood TCP employs the estimate of the 
used bandwidth for setting the slow start threshold (ssthresh) only after a congestion 
episode, that is when the used bandwidth represents the best effort available 
bandwidth. For this reason, the effect of reverse traffic is much weaker on the 
ssthresh dynamics, which represents the estimate of the best-effort available 
bandwidth. This is shown in Fig. 9. Similar results have been obtained by employing 
the filters (3) and (2). 
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Fig. 9. Congestion window and slow start threshold with filter (6): (a) without reverse traffic; 
(b) with reverse traffic. 

It is interesting to compare the ssthresh of Westwood TCP w.r.t the ssthresh of 
Reno TCP, which is plotted in Fig. 10. The comparison points out that the ssthresh of 
Westwood is larger than the one of Reno. This proves that the proposed bandwidth 
estimate enhances the ability of TCP congestion control to match the available 
bandwidth, which provides better utilization of network bandwidth. 
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Fig. 10. Congestion window and slow start threshold of Reno: (a) without reverse traffic; (b) 
with reverse traffic. 

5.3 Bandwidth estimates obtained by many concurrent TCP flows  

In this section, we investigate the bandwidth estimates of many Westwood TCP 
flows competing for the same bottleneck capacity. We would like that, given a link 
capacity C shared by N flows each flow obtains an estimate of the used bandwidth 
oscillating around the fair-share C/N and a ssthresh which is close to the available 
bandwidth. This would prove that the end-to-end bandwidth estimation algorithm can 



 

improve the fairness of TCP congestion control in bandwidth allocation. We consider 
a single bottleneck scenario similar to the one depicted in Fig. 2, where a 10Mbps 
FIFO bottleneck is shared by 10 TCP-W persistent flows with RTTs ranging 
uniformly from 25ms to 250ms. Figs. 11 (a) and (b) show the estimates of the used 
bandwidth and of the best effort available bandwidth ssthresh*Seg_size/RTTmin, 
respectively, obtained by the 10 TCP-W connections using the filter (6). Similar 
results have been obtained for filters (2) and (3). Fig. 11(a) shows that the used 
bandwidth estimates oscillate around the fair-share C/N, which is denoted by the 
dashed line. Furthermore Fig. 11(b) shows that the estimates of the best effort 
available bandwidth are less oscillating and closer to the fair share C/N. Similar 
results have been obtained by using the filters (3) and (2). 
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Fig. 11. Bandwidth estimates of 10 Westwood flows implementing the filter (6): (a) Used 
Bandwidth; (b) Available Bandwidth. 

6 Conclusions 

This work has focused on end-to-end bandwidth estimation schemes to be used for 
TCP congestion control. It has been shown that it is necessary to implement an anti-
aliasing filter before using discrete-time filters in packet networks. Simulation results 
have shown that anti-aliasing plus low-pass discrete time filtering provide a reliable 
estimate of the used bandwidth that, when coupled with a probing congestion control 
algorithm, gives also a reliable estimate of the best-effort available bandwidth. This 
estimate enhances the efficiency of TCP congestion control [12,19].  
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