
1

Understanding the Dynamic Behaviour of the

Google Congestion Control for RTCWeb
Luca De Cicco, Member, IEEE, Gaetano Carlucci, and Saverio Mascolo, Senior Member, IEEE

Abstract—Real-time communication over the Internet is of ever
increasing importance due the diffusion of portable devices, such
as smart phones or tablets, with enough processing capacity to
support video conferencing applications. The RTCWeb working
group has been established with the goal of standardizing a set
of protocols for inter-operable real-time communication among
Web browsers. In this paper we focus on the Google Congestion
Control (GCC), recently proposed in such WG, which is based
on a loss-based algorithm run at the sender and a delay-
based algorithm executed at the receiver. In a recent work we
have shown that a TCP flow can starve a GCC flow. In this
work we show that this issue is due to a threshold mechanism
employed by the delay-based controller. By carrying out an
extensive experimental evaluation in a controlled testbed, we
have found that, when the threshold is small, the delay-based
algorithm prevails over the loss-based algorithm, which contains
queuing delays and losses. However, a small threshold may lead
to starvation of the GCC flow when sharing the bottleneck with
a loss-based TCP flow.

Keywords—Real-time communication, RTCWeb, RMCAT, con-
gestion control

I. INTRODUCTION

According to a recent report by Cisco, today video traffic
accounts for the most part of the global Internet traffic [4].
Despite the fact that video conference applications have been
widely used over the Internet since more than one decade, an
inter-operable and efficient set of standard protocols, specifi-
cally designed for audio/video flows, is still not available. Such
applications generate delay-sensitive flows, i.e. the user per-
ceived quality is affected, among other factors, by the latency
of the connection [13]. Consequently such flows typically do
not employ the TCP, which implements reliability through
retransmissions at the cost of delayed delivery of packets,
but favor the UDP that does not retransmits lost packets.
Unfortunately, UDP does not implement congestion control.

Implementing an effective congestion control algorithm
for video conferencing applications is crucial, to both avoid
network congestion collapse, and meet real-time constraints,
while mitigating packet losses due to congestion. Thus, well-
designed delay-sensitive applications must adapt to network
available bandwidth at least to some extent, such as in the
case of Skype [6], [7] and other applications [22].

L. De Cicco, G. Carlucci, and S. Mascolo are with the Dipartimento di
Ingegneria Elettrica e dell’Informazione at Politecnico di Bari, Via Orabona
4, 70125, Bari, Italy Emails: l.decicco@poliba.it, g.carlucci@poliba.it, mas-
colo@poliba.it

This work has been partially supported by the Italian Ministry of Education,
Universities and Research (MIUR) through the PLATINO project (PON01
01007).

0 50 100 150 200 250 300 350 400
0

500

1000

1500

kb
ps

Time (s)

Available
bandwidth

GCC flow
TCP flow

Figure 1. One GCC flow sharing a 1Mbps bottleneck with one TCP flow

The IETF working group (WG) RTP Media Congestion
Avoidance Techniques (RMCAT) has been established in 2012
to propose the standardization of congestion control algo-
rithms using the RTP [20]. Another working group, the IETF
RTCWeb, aims at standardizing a set of protocols to enable
inter-operable real-time communication among Web browsers.
Among all the proposals submitted to the mentioned working
groups, the one made by Google [16] has been already
implemented in Chrome and Firefox browsers.

A preliminary experimental investigation of the Google
Congestion Control (GCC) can be found in [5]. The algorithm
is based on two controllers: a loss-based controller, executed at
the sender, that probes the available bandwidth, and a delay-
based one, running at the receiver, that aims at keeping the
delay low. In [5] it has been shown that GCC provides low
delay and a high channel utilization in the case there is no
competing traffic, but it does not show a friendly behavior
when it shares the bottleneck with a TCP flow.

Figure 1 shows the sending rate of one GCC flow and
one TCP flow sharing a 1Mbps bottleneck with a propagation
round trip time of 50ms. The figure clearly shows that the
GCC flow gets starved by the TCP flow starting at t = 95s.

The aim of this paper is to further investigate the reasons
of such unfriendly behavior when GCC flows coexist with
concurrent TCP traffic. We have found that the cause of
the unfriendly behavior is in the delay-based controller that
employs a static threshold mechanism to trigger a sending rate
reduction when an inflated one-way-delay is measured at the
receiver.

In particular, through a customized and fully automated
testbed allowing bandwidth, propagation times, and threshold
to be set, we investigate to what extent the value of the
threshold affects the performance of the congestion control
algorithm in terms of 1) channel utilization, 2) queuing delays,

2

3) losses, and 4) friendliness when sharing the bandwidth with
a concurrent TCP flow.

The paper is organized as follows: Section II reviews the
literature related to congestion control for delay-sensitive flows
and active queue management for containing queuing delays;
Section III describes the GCC algorithm and provides details
on the role of the threshold in the receiver side controller;
Section IV describes the experimental automated testbed;
Section V presents the experimental results and Section VI
concludes the paper.

II. RELATED WORK

Delay-sensitive traffic, such as the one generated by video-
conferencing applications, requires low queuing delays and
packet losses, while ensuring a good channel utilization and
fairness when competing with homogeneous and heteroge-
neous traffic. It is well-known that TCP, the most used transport
protocol, is not suitable for real-time applications since it
favors reliability through retransmissions over packet delivery
timeliness; furthermore, since the standard TCP infers conges-
tion when losses are detected, its probing phase tends to fill the
bottleneck queue and, as a consequence, flows can be affected
by delays that are unacceptable for real-time communication
[9], especially in cellular networks that employ significantly
large buffers possible yielding to several seconds of queuing
delay [14], [1].

Two complementary approaches can be employed to tackle
this issue: end-to-end, placing the control in the end-points, and
active queue management (AQM), addressing the problem in
the routers.

The first research efforts on the transport of delay-sensitive
traffic were focused on the design of delay-based TCP conges-
tion control variants to minimize end-to-end latency (see [2]
and more recent proposals [3], [11]). The main issues which
have been addressed in delay-based algorithms are related to
measurements [19] and fairness when sharing the bottleneck
with loss-based flows [3], [10], [11]. In [10] it has been shown
that TCP Vegas [2], a well-known delay-based algorithm, is not
able to get the fair share when competing with TCP NewReno
or TCP Westwood+. To tackle such fairness issues, in [3],
[11] the proposed algorithms are able to infer the presence of
concurrent loss-based flows and switch to a loss-based mode,
returning to delay-based operations when loss-based flows
are no longer present. Recently, a stochastic-based approach
has been proposed to contain delays while maximizing the
throughput [21]; it has been shown that the algorithm outper-
forms applications such as Skype, Facetime and Hangout in a
single flow scenario, however, the performance in the case of
multiple flows sharing a bottleneck has not been evaluated yet.

The Network Assisted Dynamic Adaptation (NADA) con-
gestion control algorithm [23] has been recently proposed
within the IETF RMCAT working group. The simulation
results have shown that the algorithm is able to contain queuing
delays and to provide a good fairness when several NADA
flows share the bottleneck.

The Google Congestion Control (GCC) has been proposed

within RMCAT and RTCWeb1 working groups [16]. GCC
has been implemented in Google Chrome and Firefox. A
preliminary investigation on GCC has been conducted in [5].

AQM algorithms were originally proposed to tackle the
"Lock-Out" phenomenon and absorb packet bursts while main-
taining the steady-state queue size low. Despite the fact
that many algorithms have been proposed over the past two
decades, the wide adoption of those algorithms has been
slowed down mainly due to difficulty in tuning the algorithms
parameters. Recently, several AQM algorithms [17], [18] have
been proposed to tackle the bufferbloat phenomenon [9]. Codel
[17] (Controlled Delay Active Queue Management) aims at
containing the queuing latency, instead of the queue length,
while maximizing the throughput. Codel does not require
any parameter tuning so it works across a wide range of
conditions, with different links and round trip times. Codel
rationale is the following: using per-packet timestamp, the
algorithm computes the packet sojourn time in the queue, and
based on this value, it evaluates whether the packet should be
dropped or not. Another recent proposal is PIE (Proportional
Integral controller Enhanced) [18] that, similarly to Codel, is
self-tuning and aims at controlling the queuing latency. PIE
employs a PI controller which computes a random probability
to mark or drop packets, based on a target queuing latency.
Authors argue that PIE require less computational efforts wrt
Codel since PIE does not need to track the per-packet sojourn
time.

III. GOOGLE CONGESTION CONTROL

Figure 2 shows the architecture of the Google Conges-
tion Control (GCC) that is composed of two algorithms: the
receiver-side controller computes the rate Ar and sends it
to the sender; the sender-side controller computes the target
sending bitrate As that cannot exceed Ar. In this paper we
mainly focus on the receiver-side congestion controller that
aims at keeping the queuing delay small. The description
reported in the following is based on both the draft [16] and
an analysis of the Chromium code base.

A. The sender-side congestion control

The sender-side controller is a loss-based congestion control
algorithm that acts every time tk the k-th RTCP report message
arrives at the sender or every time tr the r-th REMB message,
which carries Ar, arrives at the sender. The frequency at
which RTCP reports are sent is variable and it depends on the
backward-path available bandwidth; the higher the backward-
path available bandwidth, the higher is the RTCP reports
frequency. The REMB format is an extension of the RTCP
protocol [20] that is being discussed within the RMCAT
WG2 (see also Section III-B). The RTCP reports include the
fraction of lost packets fl(tk) computed as described in [20].
The sender uses fl(tk) to compute the sending rate As(tk),

1http://datatracker.ietf.org/wg/rtcweb/
2http://tools.ietf.org/html/draft-alvestrand-rmcat-remb-02

3

 Processing
REMB

Sender−side
Congestion
Controller

Arrival
filter

Remote Rate
 Controller

OverUse
Detector

Remote State
 Region

RTP packets

REMB

RTCP

RTP packets

Receiver
σ

γ

Ar

s

m(i)
γ̄

Network

As

Figure 2. Google congestion control architecture showing the receiver internal structure

measured in kbps, according to the following equation:

As(tk) =

max{X(tk), As(tk−1)(1− 0.5fl(tk))} fl(tk) > 0.1

1.05(As(tk−1) + 1kbps) fl(tk) < 0.02

As(tk−1) otherwise

(1)

where X(tk) is the TCP throughput equation used by the
TFRC [8]. The rationale of (1) is the following: 1) when
the fraction lost is considered small (0.02 ≤ fl(tk) ≤ 0.1),
As is kept constant, 2) if a high fraction lost is estimated
(fl(tk) > 0.1) the rate is multiplicatively decreased, but not
below X(t), whereas, 3) when the fraction lost is consid-
ered negligible (fl(tk) < 0.02), the rate is multiplicatively
increased.

After As is computed through (1), the following assignment
is performed to ensure that As never exceeds the last received
value of Ar:

As ← min(As, Ar). (2)

B. The receiver-side controller

The receiver-side controller is a delay-based congestion con-
trol algorithm which computes Ar according to the following
equation:

Ar(ti) =

ηAr(ti−1) Increase

αR(ti) Decrease

A(ti−1) Hold

(3)

where, ti denotes the time the i-th group of RTP packets
carrying one video frame is received, η ∈ [1.005, 1.3], α ∈
[0.8, 0.95], and R(ti) is the receiving rate measured in the
last 500ms. Figure 2 shows a detailed block diagram of the
receiver-side controller that is made of several components
described in the following.

The remote rate controller is a finite state machine (see
Figure 3) in which the state σ of (3) is changed by the signal
s produced by the over-use detector based on the output of
the arrival-time filter. The remote state region block sets the
threshold γ employed by the over-use detector according to the
operating region of the receiver. The REMB Processing decides
when to send Ar to the sender through a REMB message based
on the value of the rate Ar. Finally, it is important to notice
that Ar(ti) cannot exceed 1.5R(ti).

In the following we give more details on each block.

HoldIncr. Decr.

normal/underuse

underuse

overuse

normal overusenormal
underuse

overuse

Figure 3. Remote rate controller finite state machine [16]

1) The arrival-time filter: The goal of the arrival-time filter
is to estimate the queuing time variation m(ti). To the purpose,
it measures the one way delay variation dm(ti) = ti − ti−1 −
(Ti−Ti−1), where Ti is the timestamp at which the i-th video
frame has been sent and ti is the timestamp at which it has been
received. The one way delay variation is considered as the sum
of three components [16]: 1) the transmission time variation,
2) the queuing time variation m(ti), and 3) the network jitter
n(ti). In [16] the following mathematical model is proposed:

d(ti) =
∆L(ti)

C(ti)
+m(ti) + n(ti) (4)

where ∆L(ti) = L(ti)−L(ti−1), L(ti) is the i-th video frame
length, C(ti) is an estimation of the path capacity, and n(ti)
is the network jitter modeled as a Gaussian noise. With this
model, it is possible to extract from the one way delay variation
d(ti) the queuing time variation m(ti). In particular, in [16] a
Kalman filter computes θ(ti) = [1/C(ti), m(ti)]

⊺ to steer to
zero the residual d(ti)−dm(ti) and filter out the measurement
noise.

2) The over-use detector: Every time ti a video frame is
received, the over-use detector produces a signal s that drives
the state σ of the FSM (3) based on m(ti) and a threshold γ.
The Algorithm 1 shows in details how s is generated: when
m(ti) > γ, the algorithm tracks the time spent in this condition
by increasing the variable tOU of the frame inter-departure
time ∆T . When tOU reaches tOU = 100ms and m(ti) >
m(ti−1), the overuse signal is generated. On the other hand,
if m(ti) decreases below γ, the underuse signal is generated,
whereas the normal signal is triggered when −γ ≤ m(ti) ≤ γ.

3) The remote state region: This block computes the thresh-
old γ as follows: by default γ = γ with γ = 25/60ms,
however, when the system is considered to be close to the
congestion, the threshold is halved, i.e. γ = γ/2. In particular,
γ is halved when σ = decrease or when Ar is considerably
lower that the incoming bitrate R(t).

4

1 if |mi| > γ then
2 if mi > 0 then
3 tOU ← tOU +∆T ;
4 if tOU > t̄OU then
5 if mi ≥ mi−1 then
6 tOU ← 0;
7 s← Overuse;

8 else
9 tOU ← 0;

10 s← Underuse;

11 else
12 tOU ← 0;
13 s← Normal;

Algorithm 1: Over-use Detector pseudo-code

 Node controller 1

on/off on/offTCP
Sink

TCP
Source

Node controller 2

GCC flow (UDP)
TCP flow

Commands
WebRTC signaling

on/off

Web Server

on/off

Node 2Node 1

Testbed Controller

d

b
d

q

γγ

Traffic
shaper

shaper
Traffic

Figure 4. Experimental testbed

4) Remote rate controller: This block computes Ar ac-
cording to (3) by using the signal s produced by the over-
use detector, which drives the finite state machine shown in
Figure 3.

5) REMB Processing: This block notifies the sender with
the computed rate Ar through REMB messages. The REMB
messages are sent either every 1s, or immediately, if Ar(ti) <
0.97Ar(ti−1), i.e. when Ar has decreased more than 3%.

IV. EXPERIMENTAL TESTBED

A. Testbed

Figure 4 shows our experimental testbed consisting of four
Linux machines: two nodes running one Chromium browser3

and IPerf to generate or receive long-lived TCP flows; another
node runs a web server which handles the signalling required to
establish the video calls between the browsers; the last node is
the testbed controller which orchestrates the experiments. The
testbed controller undertakes the following tasks: 1) it places
the WebRTC calls in an automated way; 2) it sets the threshold

3http://code.google.com/p/chromium/

γ employed by the receiver-side controller on both Node 1 and
2; 3) it sets the one-way delay d on both Node 1 and 2 resulting
in a round-trip propagation delay RTTm = 2d; 4) it sets the
available bandwidth b and the buffer size q on Node 1, that
represents the bottleneck.

The bottleneck, that emulates the WAN scenario, has been
created through the NetEm linux module that imposes a
one-way delay d in both the directions and with the token
bucket filter (tbf) queuing discipline4 that creates a bandwidth
constraint b for the traffic received by Node 1. The buffers size
on Node 1 have been set in the range [15, 75]kB according to
the measurements reported in [15]. The considered bandwidths
constraints are in the range [500, 3000]kbps which are the
typical of ADSL uplink speeds and cable connections [15].

We have modified the WebRTC sources to log the key
congestion control algorithm variables and allow the threshold
γ to be set through a configuration file.

The TCP Source uses the TCP Cubic congestion control,
the default version used by the Linux kernel, and logs the
congestion window, the slow-start threshold, the RTT, and the
sequence number.

The web server5 provides the HTML pages that handle the
signaling between the peers using the PeerConnection

javascript API.
The node controller employs several bash scripts to send

via ssh the commands to set up the testbed and manage the
experiments.

The same video sequence is used as input to the WebRTC
video encoders to enforce experiments reproducibility. To-
wards this end, the Linux kernel module v4l2loopback6 is
used to create a virtual webcam device which cyclically repeats
the Foreman7 YUV test sequence. We have measured that,
without bandwidth limitations, the WebRTC encoder limits
As(t) to the maximum value of 2Mbps while the minimum
value for As(t) is 50kbps. Finally, the audio stream has been
turned off since its bit rate can be considered negligible.

B. Metrics

In the following we describe the metrics employed to assess
the performance of GCC in the considered scenarios. For each
experiment, we compute the following metrics:

• Channel Utilization U = R/b, where b is the known
available bandwidth and R is the average received rate
measured by using tcpdump;

• Loss ratio l = (packets lost)/(packets received), mea-
sured by the traffic shaper tool;

• number of delay-based decrease events ndd, i.e. the
number of times that a received REMB message reduces
the sending rate As to the rate Ar computed by the
delay-based controller according to (2);

• Queuing delay Tq, measured averaging the value
RTT (t) − RTTm, over all the RTT samples reported
in the RTCP feedbacks during an experiment.

4http://lartc.org/
5http://code.google.com/p/webrtc-samples/
6https://github.com/umlaeute/v4l2loopback
7http://www.cipr.rpi.edu/resource/sequences/sif.html

5

Table I. PARAMETERS EMPLOYED IN THE EXPERIMENTAL EVALUATION

Parameter Values

Chromium

γ (ms) 10/60, 15/60,..., 60/60, 65/60

Call duration (s)
1 GCC 300

1 GCC vs 1 TCP 400

Bottleneck

q - Queue length (kB) 15, 30, 45, 60, 75

RTTm(ms) 50

b - Bandwidth (Mbps)
1 GCC 0.5, 1.0, 1.5, 2.0

1 GCC vs 1 TCP 1.0, 2.0, 3.0

V. RESULTS

In this section we present the experimental results obtained
by employing the testbed described in Section IV. In total, we
have measured more than 1200 video calls established between
two Chromium browsers, corresponding to roughly 120 hours
of calls.

Two scenarios have been considered: (S1) a single GCC flow
over a bottleneck; (S2) a GCC flow sharing the bottleneck with
a TCP flow. Table I summarizes the bottleneck (queue length,
RTT, bandwidth) and GCC flow parameters (the threshold γ)
employed in the experimental evaluation.

For both the considered scenarios, and for each of the com-
binations of the parameters shown in Table I, we have run three
experiments and evaluated the metrics defined in Section IV-B
by averaging over the three experiments. For the single GCC
flow scenario b ∈ {0.5, 1.0, 1.5, 2.0}Mbps, whereas in the “one
GCC vs one TCP” scenario b ∈ {1.0, 2.0, 3.0}Mbps.

In particular, the effect of the threshold γ on the metrics
defined in Section IV-B will be investigated; moreover we will
assess to what extent GCC satisfies the requirements defined by
the IETF RMCAT8 working group9. Among the requirements,
the algorithm should provide low queuing and jitter delays
when in the absence of competing heterogeneous traffic and
a reasonable share of bandwidth when competing with other
homogeneous or heterogeneous flows. In particular, a video
flow should not get starved when sharing the bottleneck with
other flows, and it should not starve the other flows.

A. Investigating the influence of γ on the performance of a
single GCC flow accessing a bottleneck

In this Section we investigate the influence of the threshold
γ on the performance of a single GCC flow over a bottleneck
link using the parameters shown in Table I. In this scenario
720 experiments have been carried out resulting in 60 hours
of video calls.

Figure 5 shows the results obtained with a buffer size
equal to 30kB. Let us focus on the number of delay-based
decrease events ndd as function of the threshold γ: for each of
the considered bottleneck bandwidths, ndd decreases when γ
increases. The decrease of ndd is due to the fact that, with
a larger γ, a larger variation of m(ti) is allowed without
triggering the overuse signal according to Algorithm 1. Thus,
with a large γ, the algorithm favors the use of the loss-
based sender-side controller over the delay-based one. As a
consequence, a better channel utilization is achieved at the

8http://tools.ietf.org/wg/rmcat/
9http://tools.ietf.org/html/draft-singh-rmcat-cc-eval-02

10
60 60 60 60

15 20 25 30 35 40 45 50 55
60 60 60 60 60 60 6060

60 65

10
60 60 60 60

15 20 25 30 35 40 45 50 55
60 60 60 60 60 60 6060

60 65

10
60 60 60 60

15 20 25 30 35 40 45 50 55
60 60 60 60 60 60 6060

60 65

10
60 60 60 60

15 20 25 30 35 40 45 50 55
60 60 60 60 60 60 6060

60 65

U
 (

%
)

500 1000 1500 2000

500 1000 1500 2000

Lo
ss

es
 (

%
) 500 1000 1500 2000

Q
ue

ue
in

g
(m

s) 500 1000 1500 2000

90

95

100

105

100

50

0

6

4

2

0

100

50

0

n
d
d

γ

Figure 5. One GCC flow: Channel Utilization U , number of delay-based
decrease events ndd, packet loss ratio l, queuing delay Tq , in the case of q =
30 kB and a constant available bandwidth b ∈ {500, 1000, 1500, 2000}

Time(s)

10
8
6
4
2
0

−2
−4
−6
−8

−10
100500 150 200 250 300

m
s

m(ti) −γγ

(a) bi = 500kbps

8
10

6
4
2
0

−2
−4
−6
−8

−10
0 10050 150 200 250 300

Time(s)
m

s

m(ti) γ −γ

(b) bi = 2000kbps

Figure 6. Queuing delay variation m(ti) measured with γ̄ =25/60ms, qi =
30kB at bi = 500kbps and bi = 2000kbps

expense of a larger queueing delay and a higher packet loss
ratio.

Let us now investigate the influence of the available band-
width b on the performance of the algorithm: Figure 5 shows
that the larger the bandwidth, the steeper the decrease of ndd.
This is due to the fact that the queuing time Tq can be modelled
by the following equation [12]:

Tq(t) =
q(t)

b(t)
. (5)

Figure 6 compares the measured queuing delay variation m(ti)
when b is either 500kbps or 2000kbps: in the case b = 500kbps
the arrival filter measures a larger queuing delay variation
and, as a consequence, a larger number delay-based decrease
events is triggered; on the other hand, when b = 2000kbps,
a small queuing delay variation is measured and less delay-

6

10 20 30 40 50 600

5

4

3

2

1

Lo
ss

 %

q=15KB
q=30KB
q=45KB
q=60KB
q=75KB

ndd

(a) Loss ratio function of ndd. Data grouped by buffer size qi.

0 10 20 30 40 50 60

120

100

80

60

40

20

Q
ue

ui
ng

 (
m

s)

b = 500kbps
b = 1000kbps
b = 1500kbps
b = 2000kbps

ndd

(b) Queuing delay function of ndd. Data grouped by available bandwidth bi.

Figure 7. Queuing delay and loss ratio function of ndd

based decrease events occur. This explains the larger packet
losses exhibited by the GCC flow with higher values of b.

To get a further insight of the influence of ndd on the
performance of the algorithm, Figure 7 shows the packet loss
percentage and the queuing time as a function of ndd.

In particular, Figure 7(a) shows the pairs (ndd, l) grouped by
the value of the buffer size q; for each group we also show the
linear regression of the data. The negative slope of the linear
regression highlights the fact that the losses decrease when
the number of delay-based events increases. Furthermore, the
figure shows that the losses decrease when the buffer size
increases. Interestingly, when the buffer size is large enough,
the delay-based algorithm is able to completely avoid losses
as it can be inferred by looking at the samples on the x-axis.

Figure 7(b) shows the data grouped by the available band-
width b; for each group it is also shown the linear regression
of the data. As expected, the queuing delay is affected by
the available bandwidth b, exhibiting larger values of Tq for
smaller bandwidths according to (5). Moreover, for a fixed
value of b, the queuing time decreases when ndd increases,
confirming that the delay-based component of GCC is able to
contain the queuing delays.

B. The influence of the threshold γ on the friendliness with a
concurrent TCP flow

In this scenario we investigate the influence of γ on the
behavior of a GCC flow in the presence of a concurrent TCP
flow. The parameters employed in this scenario are summa-
rized in Table I. In total, in this scenario 540 experiments
have been carried out resulting in 60 hours of video calls.

10
60 60

15
60
20

60
25 30

60
35
60

40
60

45
60

50
60

55
60 60

60
60
65

80
60
40
20

10

10

10

10

0

4

2

0

6

100

�������� �
�
�
�

������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

U
 (

%
)

GCC TCP

3

2

1

0
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���� ��
��
��
��

(lo
g)

1000

1000

2000

2000

���
���
���

���
���
���

���
���
���

���
���
���

3000

3000

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�� �
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

Lo
ss

es
 (

%
)

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

30001000 2000

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

n
d
d

γ

Figure 8. A GCC flow with a concurrent TCP flow: channel utilization U ,
number of delay-based decrease events ndd, packet loss ratio l, in the case of
q = 30 kB and a constant available bandwidth b ∈ {1000, 2000, 3000}kbps

The GCC flow starts at t = 0s and a TCP flow is started at
t = 100s; every video call lasts 400s so that the GCC flow
and the TCP flow share the bottleneck for 300s. The metrics
defined in Section IV-B have been evaluated only in the time
interval t ∈ [100, 400] where both the GCC flow and the TCP
flow were sharing the bottleneck.

Figure 8 shows the measured metrics obtained with a buffer
size q = 30kB. Figure 8 clearly shows that the threshold γ
has a remarkable impact on the friendliness between the two
flows sharing the bottleneck: when γ is small, starvation of
the GCC flow occurs; in particular, when γ < 40/60ms we
observed the starvation of the GCC flow when b = 1000kbps;
on the other hand, with an increased value of γ, the GCC flow
was able to get the fair share. The number of delay-based
decrease events ndd is remarkably higher wrt the single flow
scenario: in particular, for low values of γ we have measured
ndd > 1000 whereas in the single flow scenario the maximum
value we have measured was less than 100 (see Figure 5).

To get a further insight, Figure 9 (a) shows the dynamics
of the queuing time variation m(ti), the signal s generated by
the over-use detector, and the congestion window (cwnd) of
the TCP flow in the case of γ = 25/60ms, b = 1000kbps, q =
30kB. It is clear that, when the TCP flow starts at t = 100s,
m(ti) oscillates over the threshold +γ having the effect of
generating a large number of overuse signals. Consequently,
the remote rate controller FSM (Figure 3) is driven to the
decrease mode reducing the value of Ar according to (3).

This can be observed in Figure 10 (a), which shows the state
σ of the remote rate controller FSM, and in Figure 10 (b),
which shows the effects of σ on the rate Ar. In particular,
when the TCP flow joins the bottleneck at t = 100s, Ar

gets exponentially decreased from a value greater than the
available bandwidth b to roughly 50kbps in about 20s. Thus,
the REMB messages carrying Ar, that are periodically sent
by the receiver-based controller to the sender, make the delay-
based congestion controller to prevail over the loss-based

7

0 50 100 150 200 250 300 400350

Time(s)
0 50 100 150 200 250 300 350 400

50 100 150 200 250 300 400350

4

2

−2

0

−4

15
20

10
5

UnderUse

OverUse

Normal

0
0

m
s

pa
ck

et
s

TCP flow is active

s

TCP cwnd

m(ti) −γγ

(a) Complete dynamics

Time(s)

150 155 160 165 170 175 180

150 155 160 165 170 175 180

4
2
0

−2
−4

20
15
10
5
0

m
s

pa
ck

et
s

TCP cwnd

m(ti) −γγ

(b) Zoom of the time interval t ∈ [150, 180]

Figure 9. Queuing delay variation m(ti), TCP congestion window (cwnd),
and over-use detector signal s in the case of one GCC coexisting with a TCP
flow over a 1Mbps bottleneck with q = 30kB

controller. This undesired behavior is due to the fact that the
TCP congestion control loss-based algorithm tends to fill the
bottleneck queue causing the queuing delay to oscillate. The
arrival filter measures the queuing delay variation m(ti) due to
both the GCC flow and the TCP congestion control. We argue
that, in this experiment, the dynamics of m(ti) is mainly driven
by the dynamics of the TCP flow. To confirm this, Figure 9 (b)
shows the congestion window of the TCP flow and m(ti) in
the time interval t ∈ [150, 180]s. The figure clearly shows that
m(ti) follows the dynamics of cwnd and not that of the self-
induced delay.

For a given value of γ, the issue described above is less
remarkable in the presence of higher available bandwidths: in
fact, the measured queuing variation m(ti) will be lower (see
Figure 6) and it is more likely that it will oscillate within the
range [−γ̄, γ̄]; thus, overuse signals will not be generated and,
as a consequence, the loss-based algorithm will prevail over

0
Time(s)

50 100 150 200 250 300 350 400

Decrease

Increase

Hold

TCP flow is active σ

(a) Remote rate controller state σ

0 50 100 150 200 250 300

1500

1000

500

 (
kb

ps
)

Time(s)

Available bandwidth

A
r

(b) Remote rate Ar

Figure 10. Remote rate controller behavior in the case of one GCC coexisting
with a TCP flow over a 1Mbps bottleneck with q = 30kB

the delay-based one; this is confirmed by the number of delay-
based decreases events ndd that, for a given γ , is inversely
proportional to b.

In particular, Figure 11 shows the dynamics of m(ti) of two
experiment runs with b = 2000kbps, γ = 25/60ms, q = 30kB.
In the first run, shown in Figure 11(a), the queuing delay
variation induced by the TCP flow is well contained in the
range [−γ̄, γ̄] and the algorithm does not generate overuse
signal, thus behaving as a loss-based flow and achieving a
reasonable friendliness. Figure 11(b) shows that in the second
run, the value of γ is halved by the “remote state region”
(see Figure 2) thus generating a large number of over-use
signals causing the GCC flow starvation. At this point it is
important to notice that the situation gets worse with larger
buffer sizes. In fact, with a larger buffer, the queuing delay
variation induced by the TCP will be larger, leading the GCC
to starvation even for higher values of the available bandwidth.
Due to space constraints we cannot show the results for larger
buffers. However, we have found that the threshold γ that is
required to get a fair share increases with the buffer size.

VI. CONCLUSIONS

In this paper we have considered the Google Congestion
Control (GCC) that has been recently proposed within the
RTCWeb and RMCAT IETF working groups and implemented
in Google Chrome and Firefox web browsers. In our previous
work we have shown that GCC is not able to get the fair share
when coexisting with a TCP flow [5]. In this paper, we have
found in the remote rate controller the cause of such issue.
In particular, it turns out that a threshold γ has a significant
impact on the dynamics of the rate Ar computed by the remote
rate controller. An extensive experimental evaluation has been

8

50 100 150 250 300 350 4000 200
Time(s)

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

m
s

m(ti) −γγ

(a) γ is not halved: friendliness with the TCP flow is achieved

0 50 100 150 200 250 300 350 400
Time(s)

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

m
s

m(ti) −γγ

(b) γ is halved: the GCC flow gets starved

Figure 11. Measured queuing delay variation m(ti) in the case of concurrent TCP flow (b = 2000kbps, γ = 25/60ms, q = 30kB)

carried out to quantify the effect of γ on the channel utilization,
the queuing delay, the loss ratio, and the fairness achieved by
a GCC flow when coexisting with a TCP flow.

In particular, the results suggest that a static value of γ
should not be used. In fact, with the default value used by
Chromium browser, i.e. γ = 25/60ms, the GCC algorithm
obtained a satisfactory performance in the single flow scenario,
but failed to prevent starvation when coexisting with TCP
flows.

Regarding the single flow scenario, we have found that, if γ
is not too large, GCC provides a good channel utilization while
containing the queuing delays and packet losses. However,
when γ increases the loss-based algorithm prevails over the
delay-based one and larger queuing delays and packet losses
are measured.

On the other hand, in the case a of GCC flow sharing
the bottleneck with a TCP flow, a small value of γ makes
the delay-based algorithm to prevail over the loss-based one,
leading to the starvation of the GCC flow.

REFERENCES

[1] S. Alfredsson, G. Del Giudice, J. Garcia, A. Brunstrom, L. De Cicco,
and S. Mascolo. Impact of tcp congestion control on bufferbloat in
cellular networks. In Proc. of IEEE WoWMoM ’13, 2013.

[2] L. S. Brakmo and L. L. Peterson. Tcp vegas: End to end congestion
avoidance on a global internet. Selected Areas in Communications,
IEEE Journal on, 13(8):1465–1480, 1995.

[3] L. Budzisz, R. Stanojević, A. Schlote, F. Baker, and R. Shorten. On the
fair coexistence of loss- and delay-based tcp. IEEE/ACM Trans. Netw.,
19(6):1811–1824, Dec. 2011.

[4] Cisco. Cisco Visual Networking Index:Forecast and Methodology 2009-
2014. White Paper, June 2010.

[5] L. De Cicco, G. Carlucci, and S. Mascolo. Experimental investigation
of the google congestion control for Real-Time flows. In Proc of

ACM SIGCOMM 2013 Workshop on Future Human-Centric Multimedia

Networking (FhMN 2013), Hong Kong, P.R. China, Aug. 2013.

[6] L. De Cicco and S. Mascolo. A Mathematical Model of the Skype VoIP
Congestion Control Algorithm. IEEE Trans. on Automatic Control,
55(3):790–795, Mar. 2010.

[7] L. De Cicco, S. Mascolo, and V. Palmisano. Skype video congestion
control: An experimental investigation. Computer Networks, 55(3):558–
571, 2011.

[8] S. Floyd, M. Handley, J. Pahdye, and J. Widmer. TCP Friendly Rate
Control (TFRC): Protocol Specification. RFC 5348, 2008.

[9] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in the Internet.
Comm. of the ACM, 55(1):57–65, Jan. 2012.

[10] L. A. Grieco and S. Mascolo. Performance evaluation and comparison
of westwood+, new reno, and vegas tcp congestion control. ACM

SIGCOMM CCR, 34(2):25–38, 2004.

[11] D. A. Hayes and G. Armitage. Revisiting tcp congestion control using
delay gradients. In Proc. of NETWORKING ’11, pages 328–341. 2011.

[12] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A control theoretic
analysis of red. In Proc. of IEEE INFOCOM ’01, volume 3, pages
1510–1519, 2001.

[13] ITU-T. One-way transmission time. Recommendation G.114, May 2003.

[14] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G
networks. In Proc. of ACM IMC ’12, pages 329–342, 2012.

[15] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr:
illuminating the edge network. In Proc. of ACM IMC ’10, pages 246–
259, 2010.

[16] H. Lundin, S. Holmer, and H. Alvestrand. Google congestion control
algorithm for real-time communication on the world wide web. Draft

IETF, 2013.

[17] K. Nichols and V. Jacobson. Controlling queue delay. Comm. of the
ACM, 55(7):42–50, July 2012.

[18] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg. Pie: A lightweight control scheme to address
the bufferbloat problem. In Proc. of IEEE HPSR ’13, July 2013.

[19] R. S. Prasad, M. Jain, and C. Dovrolis. On the effectiveness of delay-
based congestion avoidance. In Proc. of PFLDNet ’04, volume 4, 2004.

[20] H. Schulzrinne, S. Casner, S. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. RFC 3550, Standard,
2003.

[21] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. In
Proc. of USENIX NSDI ’13, April 2013.

[22] Y. Xu, C. Yu, J. Li, and Y. Liu. Video telephony for end-consumers:
measurement study of google+, ichat, and skype. In Proc. of ACM IMC

’12, pages 371–384, 2012.

[23] X. Zhu and R. Pan. NADA: A Unified Congestion Control Scheme for
Real-Time Media. Draft IETF, Mar. 2013.

