IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997 347

Event-Based Feedback Control for Deadlock
Avoidance in Flexible Production Systems

Maria Pia FantiMember, IEEE,Bruno Maione,Member, IEEE,Saverio MascoloMember, IEEE,
and Biagio TurchianoMember, IEEE

Abstract—Modern production facilities (i.e., flexible manu- process activities, transportation operations, information flow,
facturing systems) exhibit a high degree of resource sharing, a etc.

situation in which deadlocks (circular waits) can arise. Using Automated production systems (and FMS’s in particular)

digraph theoretic concepts we derive necessary and sufficient L - . .
conditions for a deadlock occurrence and rigorously characterize €Xhibit @ high degree of resource sharing. Since the parts

highly undesirable situations (second level deadlocks), which @advancing through the system compete for a finite number
inevitably evolve to circular waits in the next future. We as- of resources, a deadlock (or “deadly embrace”) may occur.
sume that the system dynamics is described by a discrete eventpeadlock is a highly unfavorable situation in which the parts
dynamical model, whose state provides the information on the in a set request access to resources held by other parts in the

current interactions job-resources. This theoretic material allows deadlock implicati f
us to introduce some control laws (named restriction policies) S@Me Set. A deadlock implicating a set of parts can propagate to

which use the state knowledge to avoid deadlocks by inhibiting Other parts, eventually crippling the whole system that remains
or by enabling some transitions. The restriction policies involve blocked indefinitely. Only aborting one or more parts involved
small on-line computation costs, so they are suitable for real- jn the deadlock and granting the released resources to other
time implementation. For a meaningful class of systems one of implicated parts can resolve this situation.

these policies is the least restrictive deadlock-free policy one can . . .
find, namely it inhibits resource allocation only if leads directty ~ Even if deadlock occurs in many different contexts, the

to a deadlock. Finally, the paper discusses the computational problem has attracted considerable attention in computer sci-
complexity of all the proposed restriction policies and shows some ence, since deadlocks lead to critical situations in multitasking

examples to compare their performances. environments. Some of these approaches use graph models
Index Terms—Deadlock avoidance, discrete event dynamical to represent interactions between jobs and resources. Among
systems, FMS control. the relevant works and tutorial papers we quote [2], [7], [9],

[11], [14], and [15]. In particular, Coffmast al.[2] give four
conditions for a deadlock to occur (mutual exclusion, wait-for

) . condition, no-preemption and circular wait).

HE RECENT researches in automated production facil- peagiock prevention and deadlock avoidance approaches
ities, including flexible manufacturing systems (FMS’S)y, ot allow the system to enter a deadly embrace state. In

I. INTRODUCTION

, deadlock avoidance approaches ex-

and low v_arlety products, can no longer cope with the rap«L;gmine the current system state to elude a deadlock occurrence
technp Ioglca! change and with th-e new market trend toward g, o next future. In the context of automated manufacturing,
gve_r Increasing demand for varletyr.] O(;] the con(;rgr¥ FMS_ﬁw interest for these problems is relatively recent. However
y mtegratlmg computer SVSte’.“S' ardware and 1n ormatign, strategies for deadlock prevention and deadlock avoidance
flows, provide manufacturers with flexibility and efficiency. Ain manufacturing systems differ from those in computers in

FMS co_n5|sts of a sx_at of Wor_kstat_lons, each one capab_letﬁ)g fact that the system configuration and the way the system
processing parts of different kind simultaneously. Parts (Jobé

. . erates play a fundamental role. Moreover in the FMS'’s the
pieces) enter the system and follow different routes throu%

the workstations. receivina service according to orescrib t three conditions given by Coffmaet al. [2] are always
W lons, receiving vice a ng X Prescribefiesent. Indeed pieces use resources (buffer spaces, machines,
sequences of operations. The flexibility of FMS'’s relies o

. . (i?rts, etc.) in exclusive mode, jobs hold onto resources while
a programmable transportation system connecting the work-

. - . xr/vaiting for the next resource of their operation sequence
stations and on a sophisticated computer control supervisifg . .
ard resources cannot be forcibly removed from the pieces

utilizing them until the operation completion. Hence deadlock

Manuscript received January 15, 1994, revised June 26, 1995. This wegkexcluded only if the fourth condition fails to hold.
was supported in part by 40% MURST funds and by the Italian National Coun- . . .
cil under Contract C.N.R. 93.00917.PF67 of “Progetto Finalizzato Robotica.” The simplest way of preventing deadlock in automated

This paper was recommended for publication by Associate Editor M. Siv@anufacturing system is to outlaw concurrency right at design

and Editor A. Desrochers upon evaluation of the reviewers’ comments. stage, by defining a Iayout that does not allow circular waits
The authors are with the Department of Electrical and Electronic Engineer- . .

ing, Polytechnic of Bari, Bari 70125, Italy. among jobs concurring for resources. In other words, the sys-

Publisher Item Identifier S 1042-296X(97)01391-8. tem layout must allow all the parts to flow in the same direction

1042-296X/97$10.00] 1997 IEEE

348 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

or, in any case, jobs in process must be restricted to typesolution approaches. Using the same model, Kumatah
following a unidirectional route. On the other hand, batchind.0] propose an approach to deadlock avoidance. The method
the jobs to be produced according to their flow direction and a complete look ahead procedure, performed before the
processing one batch at a time are obvious planning strategie®vement of any part between machines and before the arrival
for deadlock prevention. However, these approaches unne€-a new part into the system.
essarily restrict the producible part-mix, reduce the machineln this paper we define deadlock avoidance policies, suitable
utilization and undermine the flexibility of the productiorfor real-time implementation. Such policies are simple and
system, by removing the possibility of exploiting alternativeequire no look ahead or a look ahead of just one step. For
routing strategies. In conclusion, the higher the requestdcking the job flow through the system, we refer to a discrete
flexibility the greater is the necessity of defining deadloclevent dynamical system (DEDS) model [4], [5], [19] even if
free scheduling policies. The work of Viswanadhathal we do not treat it in detail. We only need to assume that,
[18], of Banaszak and Krogh [1], WysHt al. [16] and, more at any instant, the system state describes the jobs in process,
recently, of Hsieh and Chang [8], and Ezpeletaal. [3] are the resources that parts currently hold and will acquire before
remarkable contributions in this direction. In particular, usinthe processing completion and, finally, the sequence of all the
Petri net (PN) model Viswanadhast al. [17], [18] propose resources necessary to process each job. As time moves on,
some techniques for deadlock prevention and avoidancetlire state changes at any event occurrence. As events relevant
FMS’s. The authors define a deadlock prevention policy usifigr the deadlock analysis, we consider those corresponding to
an exhaustive path analysis of the reachability graph of thew jobs entering the system and to jobs progressing from
PN. However, this approach is feasible for reasonably smalte resource to another one or leaving the system. On this
systems only. The authors also introduce a deadlock avoidabhesis we define feedback and on-line control rules, which
policy to allocate resources in real-time and use a PN modeluse the knowledge of the current system’s state to inhibit
look ahead into the future system evolution on a finite horizo¢or enable) the occurrence of the above mentioned events. In
However, this avoidance technique does not prevent the systeanticular, such rules (restriction policies) allow us to define
from deadlock, but it makes infrequent this event. Thereforelasses of deadlock-free scheduling policies involving on-line
if a deadlock arises, suitable recovery strategies are necessalgorithms with low computational complexity. In dealing
Banaszak and Krogh [1] propose a PN named productiarith this problem we refer to the digraph theory to introduce
Petri net (PPN) to model concurrent job flow and dynamisvo digraphs, the former describing the whole sequence of
resource allocation in a FMS. They also introduce a deadlomsources that each job needs to orderly acquire and the latter
avoidance technique based on the notion of restriction poliogpresenting the current system’s state and future resource
for allocating resources. This approach inhibits some transequirements. In particular, the Working Procedure Digraph
tions of the PPN according to a feedback law, which takelefines once for all the potential interactions among the whole
into account the current marking. The main quality of thproduction mix and the sequences of resources required by
method is its low complexity that makes it a good candidatach part in the mix. On the other hand, for any system’s state
for real-time control applications. However, it may imposéhe Transition Digraph describes the current interactions by
unnecessary constraints on resource allocation, resultingindicating both the resources currently held by jobs in process
reduced performance measures. and the resources requested by the same parts in the next
To overcome the drawbacks of the approaches proposedfbtpre. Using such digraphs allows us to derive necessary
Banaszak and Krogh [1] and by Viswanadhanal. [18], and sufficient conditions for deadlock occurrence and for
Hsieh and Chang [8] combine the ideas of these methathe identification of critical situations (named Second Level
and formulate a deadlock avoidance controller (DAC) bas&kadlocks or SLD, for brevity), which are not circular waits,
on a PN model, named controlled Petri net. They consideresen if they necessarily evolve to deadlocks in the next future.
class of FMS’s where a manufacturing operation may requiich conditions provide the theoretic framework allowing the
multiple resources. DAC allows transitions involving resourcdsrmulation of restriction policies for deadlock avoidance.
allocation only if they enjoy a sufficient condition to avoid The paper is organized as follows. Section Il introduces
deadlock (Sufficient Validity Test). However, the advantages basic notations and preliminary ideas by defining the Working
this method are paid by an increased complexity in comparisBrnocedure Digraph and the Transition Digraph. Section lll
with the approach proposed by Banaszak and Krogh. Namejyves necessary and sufficient conditions for deadlock occur-
executing the Sufficient Validity Test may require a trueence, by relating deadlocks to the presence of cycles in the
simulation of the job flow in the system, at each transition. Transition Digraph. Section IV discusses the problem of SLD
Recently, Ezpeletat al. [3] formulate a policy that prevents by developing theoretic principles to identify and characterize
deadlock by keeping live the PN modeling the productiosuch situations. Moreover it enlightens the mechanism of inter-
system. The authors use an interesting approach to derive dlsion among cycles of the Working Procedure Digraph, which
control policy, based on the properties of structural elemenisovides the key for understanding the complex phenomenon
of the PN, named siphons. of a SLD occurrence. Section V introduces the deadlock-free
On the basis of a graph-theoretic approach, Weslal. scheduling policies and Section VI discusses their complexity
[16] derive a model for deadlock detection and avoidan@®ncerning both off-line and on-line computations. Section VII
in manufacturing systems. They present an algorithm fprovides some examples and Section VIII gives the conclu-
deadlock detection, to be used in conjunction with deadlosions.

FANTI et al. EVENT-BASED FEEDBACK CONTROL 349

I

O ;

Iy I r

le le
(@) (b)

Fig 1. DigraphsDwi, Dw2 and Dy for Example 1.

Il. BASIC DEFINITIONS AND NOTATIONS the specific order in which resources appear in all the operation
Let us consider a production system, consisting of-R Seduences. We assume that the reader is familiar with the basic
reSOUrCes . 79, - - -, 7r_1, to which the jobs access, as they?'€ments of digraph theory. So ldky = (&, Ey) be the
flow through the system. For our purposes, we use the teffigraph associated witw € W, where N and £y, represent
“resources” only to refer to the direct means of productiof® N0de set and the edge set, respectively. Each vertax in
i.e., to the facilities (machines, buffers, carts of transportatii?"€SPONdS to aresoureg so that we use the same symbols

systems) which provide service for parts. Each part ent P vert|ces_ and resources, "_GN’ = R. An edgee;r, is an
the system and advances through it, holding one resouft gered pairs, 7m) of nodes inVsuch thate;, - (T?’T’")’
at a time in exclusive mode. In other words, different job wecFed fro.mri to Tm; belongs toE“’ < N x IV iff (if and
can not hold the same resource simultaneously. Flowif ly if) v, immediately followsr; in w. With these notions
through the system, each part follows a specific workin background, We'deflne the Working Procedure Digraph as
_ . A) w = (N, Ew), with

procedure, i.e., a strict order of succession in using the
resources necessary to provide the scheduled services..Bo, if
indicates the set of jobs we have to produce, each jpart/
follows a particular working procedure chosen in the set
W of the admissible operation sequences. At the handlingExample 1: Fig. 1 associates the digraphBqyy, Days
and processing completion, the part leaves the system. &yd Dy, with wy = (r1,72,73, 74,76), w2 = (75,71,73,
convention, however, we consider it as a job acceding tor@ r1,rg), and withW = {wy, w2}, respectively. Each edge
fictitious resource. Consequently, the set of all the availablef Dy, is marked by the working procedures involving it.
resources isR = {r; i = 1,2,---, R}. For example,w = Remark 1: In opposition to the digraph introduced by Wysk
(rs,r1, 74,73, 7R) Means that the job requests the resourcesal. [16], Dy is drawn once for all and does not change as
r3,71 andry in strict ordering; then it holds; again and, the jobs advance through the system. Morellgy does not
finally, it leaves the system. admit parallel edges.

At this point, to describe all the admissible working proce- Clearly the digraphDyy- depicts a static situation and is not
dures, it is convenient to introduce a digraph representationaifle to describe the progress of the jobs in process. Namely,

Ew = Ew. (1)
>

350 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

parts flowing through the system obey a dynamic mechanismzero or equal to one: in the first case the resouyds idle
in which they continuously acquire and release resourcém other words, no job holds;), whereas in the second one
Hence a dynamic and detailed model is necessary for trackirgis busy (i.e., a job holdsr;). In particular, the vertexy
a job’s complete experience as it enters the system and makas zero outdegree in any statesince the fictitious resource
transition from a resource to the next one and for determiniig ever at disposal. The indegree of a vertgx (m = 1, 2,
the time occurrence of each transition. Recently, DEDS models, R) is a nonnegative integer giving the number of jobs
have been used to describe concurrency and contention darrently requiringr,, as next resource. Isolated vertices, if
resources by multiple jobs in the system. Such models needaaiy, correspond talle resources that are not requested next.
explicit definition of scheduling policies, ruling the sequencing Not always a transition represented by an edge € En.
(determining the sequence of part loading into the system), g (for brevity: transitione;,,,) can be immediately executed.
dispatch timing (fixing the instants at which the pieces hawgamely, for the transitiore;,,, to occur,r,, must beidle in
to enter the system), the job routing (choosing the path eagle statey. In this case, we calt;,,, a feasibletransition for
part has to follow, to be processed), the service priority settifige stateg. Vice versa, ifr,, is busy we say thate;,, is a
(defining priorities for jobs concurring on the same resourcejlockedtransition forg. In other words, any edge dfr(q)
Here we do not treat DEDS models in detail but we refer i@presents eitherfeasibletransition, if it is incident to ardle
[4], [3], and [19]. Indeed, we only assume that a DEDS modgkrtex, or ablockedtransition, if it ends in dusynode. In the
S5 describes the production system and we denotg(bye ' sequel we denote ak(q) the set of thefeasibletransitions
the S-state at timet, where @ is the complete state set. Inin £, (q). Moreover, dealing withbusy/idle resources or
particular, at each time, ¢ must describe with feasible/blockedransitions, we implicitly refer to the
a) the set/y of the jobs in process, the resources currentljransistion DigraphD,(q), unless we specify the contrary.
held by each joly € Jgq, the working procedure asso- Example 2: Considering the working procedures of Exam-
ciated with such a job and, finally, the residual workingle 1, let.S be in the statey, with: Jq = {j1,J2,j3, ju};
procedure, i.e., the sequence of resources necessaryvtq;t"(jl) = wy; RW(L) = (r3,74,76); WP(j2) = wy,
eachj € Jq to complete the processing. RW(j2) = (ra,73,74,76); WP(j3) = w2, RW(j3) =
In the sequel, we use the symbBaIP(;) = w to indicate (r4,71,76¢); WP(ja) = RW(js) = wo. The solid lines in
that the jobj € Jq is processed according . Analogously, Fig. 2(a) form the Transistion Digrap1y(g). The blank
RW(j) designates the residual working procedure corresporuircles depict the idle vertices andrg, while edges pointing
ing to j andHR(j) andSR(j) stand for the first (holding the to r; represent feasible transitions. For convenience, Fig. 2(a)
job) and the second resourceRW (), respectively. Note that also depicts the second transitions (dashed lines) if they follow
if j € Jg, RW(j) contains two resources at least. Namely, bigasibletransitions in the residual working procedures.
assumption, a job leaving the system accedes to the fictitiouBBefore concluding this section, we show how to use the
resourcerr, but, once it acquiresy, it is removed from the digraph D1.(q) to provide a versatile representation of the
set Jq. Obviously, since WP, RW, HR, and SR are definettansition mechanism. Supposebe in the state at timet
on Jg, they depend on the current state, even if we drop tléd consider a working proceduwec . At such an instant
argumentq for simplicity. for a job 5 € J to enterS and to receive service according
As the time moves on, a state change takes place at apyw, the first resource inw must be necessarilidle. On
event occurrence. According to the above characterizationt@é occurrence of this evenf makes transition fromy to

g, we assume that a new statey’. Let D (q,w) = [N, E1v(gq, w)] indicate the
b) an event of the DEDS model occurs whenever a jobransition DigraphDr.(¢'). If r,, andr, are, respectively,
acquires and/or releases a resource. the first and the second resourceun then E1.(q) U {emp}

Of course a DEDS model may also consider more eve¥iglds the edge sekqr. (¢, w). Clearly rr, is idle in Drx(q)
types than assumption b) does. However point b) indicates #ié busyin D (g, w). o
only events relevant to our discussion. Finally, we assume thatAnalogously, let a jolyj € Jq hold r; at a given instant

1) the occurrences of system events are strictly ordereddpd request access tq,, i.e., HR(j) = r; andSR(j) = rm.
time. Moreover letr,, be idle at time ¢, i.e., ¢ € Er(q).
The information given by the state and the state transitig'©_transitionc;., oceurring whenj leavesr; to hold ry,
dates the state fromto ¢'. In particular, if Dr.(q, ¢;m) =

mechanism allows us to approach the concurrent flow I ‘ denotes the T ition Di h ated
multiple jobs in the system, which all compete for a finite sét '’ T,“(q’ ¢im)] denotes the Transition Digraph associate
ét_h ¢, the edge seti1,(q, ¢;r) results from the following

of resources. In considering this problem, a digraph represenvly _
tion is useful to describe the dynamic interaction job—resourcé)é).eratIon executed 0Binv(g) :

Thus we define a subgraph bk, named Transition Digraph 1) rempving the edge;,,, from Erx(q); .

Dr(q) = [N, Er(q)], as follows: edge:;,, € Er,(q)iffajob ~ 2) adding the edge,,, to Ex.(qg), provided thatRW(;)

j € Jg holdsr; in the statey and requires,,, as next resource: contains three resources at least andis the third
i.e., HR(j) = r; andSR(j) = 7. Hence,D1.(q) describes resource iNRW(j).

all the next transitions of jobs if. Remarkable properties of In conclusion,r; is idle and r,, is busy (if m # R)
this digraph are the following. First, in a generic stateny in Dm(q, e). Of course all the remaining nodes keep
vertexr; (¢ =1, 2,---, R —1) has outdegree [6] either equalunchanged th&usy/idlecondition they had inDr,(g).

FANTI et al. EVENT-BASED FEEDBACK CONTROL 351

The next result confirms that the deadlock is related to
the presence of cycles [6] iD1.(¢). It is quite intuitive
and reminds us of an analogous result due to Wgslal.
[16]. However, usingD1,(g) makes unnecessary the circuit
validation requested by Wysét al.

Theorem 1: Necessary and sufficient condition fgrto be
a deadlock state fof, is that there is at least one cycle in
D (q).

Proof: Sufficiency.

Let v be a cycle of Dr,(q). Clearly each vertex ofy
represents @usyresource. Then, ifRp is the set of such
resources and/p is the set of jobs holding them, we get
HR(Jp) = Rp. Moreover, we inferSR(.Jp) C Rp because
edges outgoing from vertices iR, are incident to vertices
in the same set. By Definition 1, this proves the sufficiency
of the Theorem.

Necessity.

Suppose there exist two nonempty subséts C Jq and
Rp C R satisfying (2) and (3). We are therefore led to
conclude that each edge &I, (¢g) starting from a vertex in
Rp is directed to a vertex still belonging t&p. In other
Wy words, no vertex fromR — Rp is reachable from any vertex
in Rp. Furthermore, by (2) all the resources i), arebusy,
so that the corresponding nodes have outdegree equal to one
in D1.(g). Hence any vertex iR is the first node of a walk
[6] consisting of an infinite sequence of edges, that join nodes
from Rp. Since the cardinality of? is finite, this walk must
contain a cycle.

According to the above theorem,fis a cycle ofD1,(q)

(b) we say thaty is in deadlock condition inD(¢) and that

Fig. 2. (a) Transistion Digraph for Example 2. (b) Transistion DigrapDy, (g) shows a deadlock. The above consideration allows us
Dre(g,e51)- to restate Theorem 1 as follows. L&y contain G cycles
and lety, = (N,, E,) n € {1,2,---,G} be one of them,

With reference to Example 2, Fig. 2(b) shows the Transitionhere N,, C N and E,, C Ey . With this notation,y, is in
Digraph D (g, e51) resulting fromDr.(¢) of Fig. 2(a). deadlock condition inDp(g) iff:

r = HR(jy) r; = HR(j)

r, = HR(j3) ry = HR(jy)

Dr(q .es5;)

Ill. N ECESSARY ANDSUFFICIENT CONDITIONS FORDEADLOCK En ETr(Q) = En: ()

We begin this section by introducing a formal definition of

deadk_ack_ stat.e fors. _ additional elements of evidence from Theorem 1.

Definition 1: Let ¢ € Q. If there exist two nonempty Definition 2: Let ~, be a cycle ofDy. We defineCycle
subsets/p C Jq and Rp C R such that: Capacityof ,, the integerC(~,,) = Card(N,,) = Card(E,,),
where Card) stands for “cardinality of --.”

Now, we give two definitions that allow us to deduce

HR(Jp) =Iip 2) Definition 3: Let~, be a cycle ofDy;. The Overlap Degree
SR(Jp) C Rp (3) of 4, in stateq is the integeOg(v,) = Card[E, N Er:(q)].
] Because of Theorem 1 and Definition 3 we can immediately
thengq is a deadlock state fof. state the following corollary.

By the above definition, each job ify, remains indefinitely corollary 1: Necessary and sufficient condition for the
blocked because it is waiting for husy resource held by cycle 5, of Dy to be in deadlock condition Dy (q), is
another job inJp. that Og(v,) = C(vn)-

Example 3: Let the system of Example 1 be in statavith: Now, let
Jg = {j1,J2,J3,da}; WP(j1) = w1 = (r1,72,73,74,76);

RW(j1) = (73,74, 76); WP(j2) = w1, RW(j2) = (72,73, 74,

76); WP(js) = w2 = (r5,71,73,74, 71,76),RW(j3) =

(rasr1,76); WP(js) = wa, RW(jy) = (r1,73,74, 71,76)-

Putting Jp = Jgq and Rp = {r1,72,73,74f, We get where the minimum refers to all the cycles by and where
HR(Jp) = Rp, SR(Jp) = {r1,rs3, ra} C Rp. Hence, we putCy = o if Dy is acyclic. The following corollary
by Definition 1, q is a deadlock state. directly follows from Theorem 1 and Corollary 1.

Co = min C(vy) (5)
Dy

352 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

Corollary 2: Necessary condition fog to be a deadlock
state is thaDy; contains at least one cycle and thigtsatisfies
the following relation

Card(Jq) > Co. (6)

IV. SECOND LEVEL DEADLOCK

Deadlocks are highly undesirable. However, it is also pos-
sible that some critical situations occur that are not deadlocks,
even if they necessarily evolve to circular waits in the imme-
diate future. In this section we develop theoretic principles to
identify and characterize such circumstances, which are called
SLD. Subsequently, the conditions for a SLD occurrence allow
us to introduce deadlock-free control rules. To begin with, we
give the following definition.

Definition 4: Let ¢ be not a deadlock state f&t. We say
thatg is a SLD state folS, if there exist two nonempty subsets
Js C JgandRs C R, with Card(Js) < Card(Rs) satisfying
the following properties:

D4a) HR(Js) - Rs,SR(Js) C Rs;

D4b) all the resources belonging[tis—HR(.Js)] areidle; cycle vs = ({rs,7e, 77,72}, {ese, cer, €2, €28}) shows a

D4c) for each jobj € Js such thatSR(j) € [Rs — deadlock involving the job sefjs, js, j2, js}-

HR(Js)], the transition releasingdR(j) to hold Next we introduce an original result, which establishes
SR(4) leads to a deadlock involving jobs dof only, & nhecessary and sufficient condition for an actual SLD. It
ie., Jp C Js. is based on both the Working Procedure Digraph and the

For simplicity, in the sequel we denote Hys the set of Transition Digraph and it is consistent with other partial results

feasibletransitions inDx, (¢) defined by D4c), i.e Es = {cim obtained in a rather intuitive form [10], [16].

Fig. 3. Working Procedure Digraph for Example 4..

€ Epl(q): r; € HR(Jg), rm € [Rs — HR(J)]} Theorem 2: Let ¢ be not a deadlock state féf Necessary
Definition 4 identifies a critical situation in which each?Nd sufficient condition foy to be a SLD state is that there
job of Js either is blocked, because it requests access toei‘;fsrt]S ﬁ” ordered cycle st = {1, -, n, -,y } In Dw,
resource held by another part jf, or leads to a deadlock onSUch that, putting
acquiring the next resource in its Residual Working Procedure. Nr, = U N, (7a)
The following example clarifies the idea of SLD. T,
Example 4: Consider a systen§ with R = 9, W = {w;, Er, = UEn (7b)
w2, TU3}, w1 = (7)17 T7,72,78,73,T4,78, 7)9)7 w2 = (7)57 78,76, r,

77, 7‘9), w3 = (7‘3, T4, T8, 71,77, 7‘9). Flg 3 ShOWSDVV. More-

. the following conditions hold true:
over, let the current stalgbe characterized bylg = {j; i = g

SN SN S SN Th2a) there exists only ondéle resource inNr, , say
1! 2!' : 77}7WP(J1) _WP(JQ) — WP(J3) —1111,WP(]4) et . o?
WP(js) = wa, WP(js) = WP(jr) = ws;RW(j) = Tm, and it is SL_Jch thatV,, N Ny — {r,,} for any
TU1,RW(j2) = (7)777)277)877)377)47 7)877)9)7RW(].3) = (7)27 Yy Th € FO’ Wlth Tn # Th .Moreove.r., for each
rs,73, 74,78, 70), RW(js) = (re,77,79), RW(j3) = wa, ¥, € I',, there is only ondeasibletransition inE,,,
RW(JG) = w3, RW(J7) = (7‘4,7‘8, 7‘1,7‘7,7‘9). In view of say CF,(W")' X i i i
Definition 4, q is a SLD state withJs = Jg, Rs = {r; i = Th2b) .FO enjoys the fo!lpwmg cyclic relationzy,,4+1 is
1, 2,---,8} where Card(Js) < Card(Rs), HR(Js) = {r: in deadlock condition _ml_)Tr(q, er(vn)) for_@ =
i = 1,---,7}, SR(Js) = {ra,ra, 7,78}, [Rs — HR(Js)] 1,2,--.,H — 1 and~; is in deadlock condition in
= {rg} and rg is idle. Fig. 4 shows digraphD.(q): the Dry(g, er(va))-

idle resourcesrs and r9 are indicated by blank circles. The o) .

nonblocked jobs inJs are js, js, and jr, so that the first 1he Proof is given in the Appendix

transitions in their residual working procedures form the set The cyclic relation established by Theorem 2 exhibits for-
Es = {eases8,ca8}. If j7 executes transitioreys, then it mally the condition of “interaction among circuits” underlying
establishes:g; (dashed line in Fig. 4) as its next transitiorma SLD. This condition is clearly depicted by the following
and this edge deadlocks the cycle = ({r1,r7,72,73}, example.

{e17, €72, €28, €s1 }) involving jobs in the sey i, jo, js, j7}- Example 5: Consider the syster§ of Example 4 and the
Analogously, if j3 makes transitionesg, then egs becomes corresponding SLD state depicted by Fig. 4. The cycle set
its next transition and deadlocks the job g%, js,j7} in {y1,72} of Dw (see Fig. 3 and Example 4) satisfies Th2a).
the cycleys = ({rs,r3,74}, {es3,e34,ca8}). Finally, if j5 Namely, {rgs} = N; N N, is the only idle resource. In
executese;s, it establishesegg as its next transition. Henceaddition, ess = ep(11) and ess = ep(y2) are the only

FANTI et al. EVENT-BASED FEEDBACK CONTROL 353

r7=HR(j) T4
e .
()
(3 I3
(@
/£ ‘ w3
. { m . . nZ,
r3:HR(J()) W, r4=HR(|7) I‘5=HR(]5) O n25
Fig. 4. Transition Digraph for Example 5.
feasible transitions belonging tg; and s, respectively. In n%
DTr(qa 628), €28 dead'OCkS’)/Q; in DTr(q, 648),648 deadlocks
T1-
It is also worthwhile to note that; does not belong td’,. O 02
Namely the intersectioV; "Nz = {r~, 72, rs} violates Th2a).) 4
ns

Moreover~s is deadlocked by;s, which belongs neither to
~1 nor to ~,. (b)

At this point we useDyy to determine all the potential cyclic Fig. 5. (a) Transition Digraph for Example 6. (b) Second Level Digraph for
relations among its circuits. To this aim, each cyclelnf, is Example 6.

collapsed into a vertex of a new digraph, called SLD, defined i)
as follows. By comparing the properties of the d&t stated by Theorem

Definition 5: Let {y1,72,---,7¢} be the complete set of 2 and the definition of Second Level Digraph we conclude
all the cycles of Dyy. The Second Level DigraptD2, — that all the potential situations of SLD are related to second
(N2,E2,) associates a vertex? with each cycley, of level cycles. However, not all the second level cycles indicate

Dy, 0 thatN?2 = {n2,--- n2,---nZ}. Moreover, the edge potential SLD. The next example clarifies this point.

2, = (n,n?) belongs toE%,, iff: Example 6: Let a systemS consist of R= 4 resources
18 3 S 4 - .
D5a) ~, and~, have only one vertex in common (say,) With W = {wi,w2, ws,wa} where wy = (11,72,73,
and; T1,74), W2 = (7‘277’177’4);1{13 = (r3,72,74) _a”d wq =
D5b) there exists a working procedugee W, containing ("1:73:74)- Fig. 5(@) exhibits the correspondingy, which
verticesr;,r,, andr, in strict order of succession, ONtaINS five cyclesy, = ({ri,r},{crz,ea1}), 72 =
with e;,,, € E), and emp € Es. ({ra;7s}, {e2s,ea2}),v3 = ({rs,mi), {es,e3}),va =
({ri,72,73} {e12, eas,ea}),ys = ({r1, 73,72}, {ews,

Now we introduce the following definition.

Definition 6: Let~2 = (N2, E2) be a cycle ofD%, (second
level CyCIe) and lefl’, = {717 YRyt '7,71371}7 with Th =
(N, Eyp,) for h = 1,2,---, P,, be the set of cycles iDy
corresponding to the vertices iV2. The Capacity,C(+2),
of the second level cyclg? equals the number of resource
associated with the cycles in,,:

€32, €21 1). Fig. 5(b) shows that the Second Level Digraph has
only one cyclen? = ({n3,n3,n3}, {1, €35, 3, }). However
+? does not correspond to a potential SLD. This is because
the first level cycles leading tg? (i.e., v1,72, andys) do not
ghare a unique vertex as Th2a) requests.

The only second level cycles representing potential condi-
tions of SLD belong to a subsé&f defined as follows:

Iy
C(72) = Card| | | Ny, . 8 A
() = Car <U ,) (8) 2 = {42 of D% Card(ﬂ Nh) =1

h=1
indi 2 2 h=1
Moreover we indicate a)y(v;,) the Overlap Degree of;, and Cardy, N Ny,) = 1

in the stateq, where
foranyh, k € {1,2,---, P,} with h #£ k}. (10)

P,
Og(v2) = ZOq(’Yh)- 9) An element fromI'? corresponds to a set of cycles of
h=1 Dy, that are disjoint but for a vertex shared by all of them.

354 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

n2, transitione;,,,. Vice versa we definenabledthe not inhibited
events.
At ths point we define the Control Rules by introducing the
setsX; C @ x W and X, C Q x Ey as follows:

X1 ={(q,w) € Q x W: the first resource ol is idle
in g}
Xy = {(q7 ei"l) € Q X EVV: Cim € EF(q)}
nZ,

Then the Control Rule for 1-type events is a function

Fig. 6. Second Level Digraph for Example 7.
)) . f1: X1 —{0,1} (11)

Obviously, in Example @2 is empty so that no SLD can
occur. On the contrary]™ is not empty in the following \here filg,w) = 0 (fi(g,w) = 1) means that, forS in

example. the statey, every 1-type event associated wighis inhibited

Example 7: Fig. 6 shows the Second Level Digrag,, (enabled). Similarly, a Control Rule for 2-type events is a
for the system of Examples 4 and 5, whose Working Procedy{gction

Digraph contains three cycles (see Fig. 3):= ({r1,77,72,
7’8}7{617767276287 681})772 = ({7’877’377’4}7{68376347648}) for Xo — {0’1} (12)
and v3 = ({rs,76,77, 72}, {€s6, €67, €72, €28}). We note a
second level cycley? = (N2, E?) where N2 = {n},n3}
and E? = {¢?,,¢3,}. Since Ny N Ny = {rs},~v7 is in 2.

Remark 2: We have shown that, i§ is a SLD state, there
exists an ordered cycle s&t, in Dy satisfying Th2a) and
Th2b). Furthermore, Definition 5 shows thas corresponds
to a second level cycle (say?) from I'2. Moreover, for each
v € T it holds: Og(vx) = [C(w) — 1] (see Lemma 1 in
Appendix). Thus the topological properties of $&tand (8)
and (9) lead toOg(v3) = [C(72) — 1].

The following corollary is a consequence of Remark 2.

Corollary 3: Let ¢ be a SLD state. The Second Leve
Digraph D%, has a cycley? € I'2, whose overlap degree
in the stateg is Og(+2) = [C(+2) — 1].

where f2(q, ¢;m) = 0 (f2(q, e;m) = 1) indicates that, folS in
the statey, 2-type event associated with theasibletransition
eim 1S inhibited (enabled).

We name restriction policy a paitfi, f2). Clearly, a re-
striction policy can select enabled events to avoid deadlock.
However, since it keeps events from occurring, a restriction
policy itself can eventually lead to a situation similar to a
deadlock, which is known as restricted deadlock (RD) in [1].
A trivial example is the following: assume that the Control
EulefQ be f2(q, eim) = 0 for every(q, e;) € X5. Clearly, no

nabled transition exists and jobs in process remain indefinitely
blocked, since no resource can be released. The next definition
formulates this concept in details.

Definition 7: Let ¢ € @@ be not a deadlock state féf and

V. DEADLOCK AVOIDANCE TECHNIQUES let (f1, /2) be a restriction policy. We say thatis a RD state
Efficient use of resources in flexible production systenfer S under(f1, f2), if:

requires a real-time control strategy optimizing throughput, p7a) there exist two nonempty sefg C JgandRr C R

resource utilization, etc. In this section, our concern is avoiding such thatHR(Jg) C Rr, SR(Jr) C Rg and all the
deadlock rather than developing a complete strategy for re- resources ifRr — HR(JR)] areidle;

source management. In other words, our aim is to propose realp7h) for eachj € Jx with SR(j) € [Rr — HR(JR)], f2
time control rules that avoid deadlock by allocating resources inhibits thefeasibletransition fromHR(5) to SR(;).

at each event occurrence, on the basis of information on the Moreover, such transition remains inhibited if no job
current system state. in Jg releases the resource that it currently holds.

As stated earlier in Section Il, resource acquiring/releasindThe conditions of the above definition lead to “indefinite
events are relevant for the underlying DEDS model. In partiB]ocking." Namely, each jolj € Jx keeps on holdingIR(5)

ular, the DEDS model must consider two event types: hqefinitely, because it requires a transition which is biocked
1) a new job enters the system (1-type event); or inhibited. Such a transition can not become feasible and
2) a job progresses from a resource to another one, okHabled unless a job ifi; releases its currently held resource.
leaves the system (2-type event). So a typical circular wait occurs.

We identify 1-type event by a paij,w), wherej € J is Remark 3: By Definition 7, only the Control Rulg’z may
the job enteringS andw € W is the working procedure thatlead to a RD. Restricted deadlock, indeed, is independent of
the job has to follow. Furthermore, we specify 2-type event bff. Of course, iff2(q, ¢;n) = 1 for every(q, e;) € X (i.e.,
afeasibletransitione;,, € Er(q) wheregq is the current state f, does not inhibit any transition), there exists no RD state
of S. An event isinhibited if we keep it from occurring. For for S.
example, eventj,w) is inhibited when we prevent the job Obviously, deadlock avoidance must prevent both dead-
j € J from enteringS to execute the working procedute lock and RD from occurring. This motivates the following
Similarly, e;,,, € Fr(q) is inhibited when we do not allow the definition.

FANTI et al. EVENT-BASED FEEDBACK CONTROL 355

Definition 8: Let g C @ and (f1, f2) be a restriction Proof: Comparing Definition 3 and (14) leads to
policy. Moreover, assume that, for evegy € Qo, any state Og(v,) < Card[Jg(v,)]. Thus, owing to the condition on
g € @ reachable fromy, under(fi, f2) is not a deadlock or ¢, and to the application of RP2, we haw(v,) < C(vx)

a RD state. In this case, we say thatstarting atQ)y, under for any cycle~, of Dy and for any stateg reachable from

the restriction policy(f1, f2), is deadlock-free. go- Hence by Corollary 15 can not reach a deadlock state.
Now we are ready to introduce the first two restrictiotn addition, by Remark 3¢ can not be a RD state faf under
policies that falsify necessary conditions for a deadlock othe RP2. .
currence. The first one is quite simple and puts a bound onNext we consider a restriction policy that controls both 1-
the jobs in process. type and 2-type events to avoid deadlocks. To put the least
Restriction Policy 1 (RP1):Let (¢, w) € X;. We put restrictive constraints on the resource assignment, this control
rule avoids only transitions immediately leading to a deadlock,
fi(gq,w) =1 if Card(Jg) <(Co — 1) by using a one-step look ahead procedure.
fi(g,w) =0 otherwise Restriction Policy 3 (RP3):
f2(g,eim) =1 for any(q, cim) € Xo. filg,w) =1 if Dp(q,w) does not contain any cycle

, i . fi(g,w) =0 otherwise
The following Proposition proves that RP1 avoids deadlock.

Proposition 1: Let Q, C (be the state subsed, = /2(¢¢m) =1 if Dn(g; ein) does not contain any cycle
{go € Q: Card(Jq,)<Cp}. Systems, starting atQo, is f2(g;eim) =0 otherwise.
deadlock-free under the Restriction Policy 1.

Proof: By the definitions of), and of the Control Rule X .
f1, itholdsCard(Jg) < Cy in any reachable state Therefore, not avoid RD_ as th_e following example clearly shows.
according to Corollary 25 can not reach a deadlock state, EX@mple 8: Consider the systent’ and the stateg of
Finally, by Remark 3¢ can not be a RD state faf under the Example 4. By Definition 9, 't_fOHOWS thay is a RD ;tate
RP1. for S under RP3. Indeed puttindr = Jg,Rr = {r; i =

At this point, we need some notations to easily introduck 2,---,8}, we getHR(Jp) = {ri @ = 1,2,---,7} C
the second restriction policy. So i € W, we define the L& SR(Jr) ={r2,14, 77,75} C Ry, [Rp—HR(Jp)] = {rs}
following cycle set: Whe_rerg is |d|_e_. Moreover, the functioryf, of RP3 _|nh|b|ts the_

feasibletransitionsess, e4g and esg. Such transitions remain
inhibited if no job in .Jz releases the resource it currently
holds.
The above considerations call for a characterization of RD.
%he next proposition shows that if systeshis under RP3,
RD and SLD coincide.
Proposition 3: Let us definef, according to Restriction
.) Policy 3. For anyf;, necessary and sufficient condition for
Jq(rm) =1{J € Jg: the setl,, N By is not empty g € Q to be a RD state foiS under (fi, f2) is thatq is a
with w = WP(j)}. (14) SLD state.
Proof: Necessity.

Thus, Jg(7») contains all the jobs in process under working Let g be a RD state forS under(f1, f2). By Definition 7,

procedures involving edges of,. Given these notations we there exist two subsettr C Jg andRr C R satisfying D7a).

Although RP3 prevents deadlock from occurring, it might

Ly = {7 of Dyy: the setE,, N Eqy is not empty. (13)

in common with Dyy. Furthermore, for anyy, of Dy, and
g € 2, we introduce the following job set:

define the second restriction policy. Moreover, for each € Jg with SR(j) € [Rr—HR(Jr)], RP3
Restriction Policy 2 (RP2):Let (¢, w) € X;. We put gives f»(q, ¢;m) = 0, wherer; = HR(j) andr,, = SR(j).
Hence, due to the definition ofs, ¢;,, leads to a deadlock.
filg,w) =1 if, for any~, € 'y, it holds: Transitione;,, remains inhibited if no job in/i releases the
CardJg(7v,)] < C(vn) — 1; resource that it currently holds. Thus, if we ideally remove

all the jobs in(Jg — Jgr) from the system.;,, remains
still inhibited. This leads us to recognize that the deadlock
f2(g,eim) =1 for any(g, cim) € Xo. condition of D, (g, ;) is characterized by a job subsks C
Jr. When compared with Definition 4 in whiclis = Jg and
The next result shows how we can apply the above rg, — Ry the above considerations prove the necessity.
striction policy to prevent the occurrence of events leading to Syfficiency
deadlock. Bearing in mind Definition 4, the proof follows on using
Proposition 2: Let ()o C @) be the state subset the same arguments developed for proving necessity. o
Note that if['? is empty, by Corollary 3 no SLD can arise
Qo = {go € Q: CardJg, (v,)] < C(v,) for eachy, of Dy }. and, in this case, RP3 is deadlock-free. Moreover it is the least
restrictive policy one can find because it inhibits only events
System S, starting at()y, is deadlock-free under the Re-leading immediately to a deadlock. In all the remaining cases
striction Policy 2. we must modify f; to falsify one or more of the necessary

fi(g,w) =0 otherwise

356

conditions for a SLD occurrence. To this point, putting

Cf =min C(vy) (15)

(with C3 = oo if I'? is empty) we define a further restriction

policy.
Restriction Policy 4 (RP4):

fi{g,w) =1 if D.(q,w) does not contain any cycle
and CardJg) < (C§ — 2);
fi(g,w) =0 otherwise

f2(q,¢:m) =1 if D1y(q,e;n) does not contain any cycle

f2(q,¢im) =1 otherwise.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

Restriction Policy 5 (RP5):

filg,w) =1 if D1.(q,w) does not contain any cycle
and it holds Card Jg(v2)] < [C(72) — 2]
for everyy? € I'2;
fi(q,w) =0 otherwise

f2(q,eim) =1 if D1y(q, ;) does not contain any

cycle

f2(q,¢e:m) =0 otherwise.
Given the above definition, we prove the next result.
Proposition 5: Let Qg C) be the state subset

Qo = {go € Q: CardJq, (v;)] <[C(;) — 1] for every
7% € I'? andg, is not a deadlock state.

The next result shows that no deadlock may occur under

RPA4.
Proposition 4: Let Qg C () be the state subset:

Qo ={go € Q: Card(Jq,) <(C§ — 1) andgy is not a
deadlock statp

Systems, starting from@)o, is deadlock-free under Restric-
tion Policy 5.
Proof: The condition on the initial statg, and the RP5
guarantee that eaghreachable frong,, is not a deadlock state.
Moreover, sinc&@g(~2) < Card [Jg(v2)], it holds Og(~3) <

[C(72) — 1] for any cycley2 € I'2. Therefore, by Corollary

Then the systens, starting fromQ, is deadlock-free under 3, @ SLD can not occur and, by Proposition 3, neitperan
the Restriction Policy 4. be a RD state fol5 under RP5. Hence the Proposition. e

Proof: Let ¢ € @ be any state reachable frogy < Note that, ifI*? is empty (C7 = oc), RP3, RP4, and RP5

Qo under RP4. Such a Policy prevenisfrom being a coincide.

deadlock state. In addition, the definition of the Control Rule Before concluding this section, we remark that RP1 and
£, leads tOCard(Jq) <(CZ-1). Sincqu(,yQ) < Card(Jq) RP2 need no look ahead. Moreover RP3, RP4, and RP5 use a

the necessary condition of Corollary 3 is violated and, bymPle look ahead of one step only.

Proposition 3,q is not a RD state forS under RP4. This
COMPUTATIONAL COMPLEXITY
Tp introduce the next restrlctlon2 pol2|cy, it is necessary to tha computational complexity deeply affects the chances
define two more sets. So lef = (N7, E7}) be a second level 5 4 geadlock avoidance policy shall succeed. In particular,
. . . 5

Dy associated with vertices fronV,,. For anyw € W, wWe o5 time applications. To discuss the computational complex-

define the following set: ity of the just introduced restriction policies, we distinguish

the real-time algorithms. The second ones characterize the

algorithms which are employed once, before the proper real-

In other termsI2, collects all the second level cycles from O what concerns RP1, the only off-line computation

I'? corresponding to sets of first level cycles, where each dayolves the minimum capacity’o. This parameter can be

second level cycle? and any statg € @, we introduce the Starting from each vertex iy, and ending in the same

following subset ofJg: vertex. An algorithm of such a kind requirés{[card(N)]*}

only in memorizing and in updating the number of jobs in

progressCard(Jg).

from Dy, with their capacities and to build up a relation

between working procedures and cycles, for identifying the

Dw and working procedures is an input datum, determining

Set Jq(fy,%) collects all the jobs ofJq following working cycles fromDy, becomes the main problem. To this aim, the

associated withy2. At this point we can derive the fifth in O{[Card(N)+Card(E)](c;+1)} time, wherec; represents

restriction policy. the number of cycles fromvyy [13]. Of course, the complexity

Iy =

D,

U Eh> N Ew

h=1

Jg(2) = {j € Jg: the set<

completes the proof. . VI.
cycle and letl’, = {1, v2,---,vp, } be the set of cycles in ¢onuo) Jaws with low computational effort are necessary in
P between on-line and off-line costs. The first ones concern
{%21 eI <U Eh> N Ey is not empt>}. (16)
h=t time control.
has at least one edge in common witly,. Moreover, for any easily computed by searching the (nontrivial) shortest path
operations [13]. On the other hand, the on-line burden lies
To apply RP2, it is necessary to determine off-line the cycles
is not empty, withw = WP(j)}. a7
setsI'y [see (13)]. Since the relationship between edges of
procedures, that involve some edge of the first level cydechnical literature provides algorithms for generating cycles

FANTI et al. EVENT-BASED FEEDBACK CONTROL 357

of these algorithms becomes prohibitive,dif is very high corresponding to the buffer in the Working Procedure Digraph.
(e.g., if Dy is complete). However, in many real systems, thEor this reason, cycles fromy, sharing only one vertex are
adjacency matrix ofDyy is fairly sparse so that determiningnot allowed.
all the cycles in such a digraph is not too time-consuming.
The on-line computational costs required by RP2 consists
only in updating the number of jobs in process corresponding
to each working procedure. Namely, the relation betweenNow we present three examples to show the characteristics
working procedures and cycles determined off-line allows wd restriction policies introduced in the previous section. In the
to calculateCard[Jg¢(v,)] for any cycle fromDyy,. first two examples RP3 is deadlock-free. Hence it is the less
RP3 demands no off-line computations. Moreover, it needsstrictive policy one can use. On the contrary, RP3 can not
a little on-line computational effort for transforming.(q) be applied to the third example becaud¥eis not empty. So,
into Drv(q,w) (or Dr.(q,e:m)), (see Section Il) and for assuming throughput as performance index, we use simulation
checking if such a new digraph contains a cycle. A depth-firsi compare Restriction Policies 1, 2, 4, 5, and the control law
search algorithm [13] can easily perform this check, startingtroduced by Banaszak and Krogh (RPBK) [1].
with the edge just added tDr.(g) for obtaining Dr.(q, w) Before introducing the examples, we briefly discuss some
or Dr(q,e:;m). Namely, the complexity of the depth-firstmodeling issues that are relevant in the context of our interest.
search algorithm iD[Card(N)], because the outdegree ofThe approach proposed in this paper considers only systems
the vertices ofD1,(g) equals zero or one. with single resources. The Example C in the following shows
To implement RP4 it is necessary to generate off-lin@ case study of this kind.
the cycles fromDy, and the digraphD3%,. Moreover, the A problem that arises is related to the representation of
cycles fromD%, with their capacities, the subsEt and the a set of multiple items composing the same resource type
minimum capacityC3 must be specified. Buildind)3, can (multiple resource). This issue is of undoubted interest because
be performed inD[(c;)2L] operations, wherd. indicates the the automated manufacturing systems may have many multi-
sum of the lengths of all the working procedures (i.e., thgle resources (i.e., buffer with multiple spaces, multiserver
sum of resources appearing in all the working proceduresachines, etc.). At a first glance, a straightforward solution to
counting repetitions). Moreover, generating the cycleg)éf the problem consists in replacing a multiple resource with as
and characterizing® need O{[c; + Card(E%/)](c2 + 1)} many independent resources as the corresponding component
and O(c; c;) operations, respectively, wheeg indicates the items. However, the drawback of this modeling method lies
number of second level cycles. Finally, applying RP4 requiré® a considerable rise in the number of working procedures
the same on-line computations as RP3 and, in addition, tigpresenting the paths of jobs in the system. Indeed, since a job
on-line updating ofCard(.Jg). requiring a multiple resource can occupy any one of the single
RP4 and RP5 are based on the same off-line computatibdependent items corresponding to this resource, the route of
steps. Moreover, to use RP5 it is necessary to determine €é#&eh job type formally generates a set of working procedures.
relationship between working procedures and second levdlis makes the method unsuitable from a practical point of
cycles, for characterizing the sef¥, (see (16)). Such a Vview.
relationship and the number of jobs in process for eachln some cases, however, we can easily model multiple
working procedure allow us to update the cardinality of eadgsources by means of a fairly limited extension of our
set Jq(%%) on-line, as a job enters or leaves the systerfRrmalism. To this aim, let us observe that the different items
RP5 also demands the on-line modification of the Transitiéi @ multiple resource are indistinguishable from the functional
Digraph and the detection of its possible cycles. point of view; that the jobs leave a multiple resource one at a
To sum up, the off-line computational cost is small, in théme; and finally, that a multiple resource is deadlocked only if
case of RP1 and RP3, while it depends on the number @k its component items arieusy.The previous considerations
cycles fromDy and D?., in the case of RP2, RP4, and RP5allow us to model a multiple resource as a sequence of unit
When the number of cycles is not too high (as it is the cagesources or, equivalently, by only one vertex fihy and
in many real applications), simple algorithms are known fdh Dr:(g). Such a single vertex must be considereasy
performing the off-line computations. Since the five policiegnly if the multiple resource is completely full and must be
have small on-line computational costs, they are all suitafiegarded asdle in all the remaining cases. This statement
for real-time applications. is completely consistent with the model developed in this
Finally, a remark about RP3 is appropriate. Namely, thRaper, provided that the destination of the first job leaving
policy uses a one-step look ahead procedure, it is simple dh& resource is known. The problem is easily solved in the
requires low computational cost but, as we have already noté&llowing situations.
it needs thatl™? is empty. In such a case, RP3 is the least 1) The order in which jobs leave the multiple resource
restrictive policy one can implement: namely, it inhibits only is fixed. In this case the next transition of the first
the events immediately leading to a deadlock. Finally, itis also job releasing the resource identifies the edg®ig (¢)
interesting thaf™? is empty in many cases. F.e. this happens uniquely. e.g., this happens for jobs in a buffer subject
in FMS'’s consisting only in some workstations equipped with to a First In First Out discipline.
input (or output) buffers. In fact, the vertex corresponding to 2) All the jobs hosted by the multiple resource require the
any work station is always preceded (or followed) by the node same next resource in the Residual Working Procedure.

VIl. EXAMPLES

358 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

Fig. 7. Flexible Manufacturing System with three work cells (Example A).

Clearly, the edge representing the corresponding tran-
sition is uniquely determined. e.g., this condition holds
true when an input buffer serves only one machine (or
a set of identical machines represented by a vertex).

Obviously, in determining the capacity of first and sec-
ond level cycles fromDyy, a vertex representing a multiple

resource must be taken into account as many times as #ig9. Flexible Manufacturing System with three work cells (Example B).
number of items of the resource. Examples A and B in the

following show two systems in which each multiple resource o policy proposed by Hsieh and Chang [8], the actions
IS l:cepresdgnted bly onlé/ gnedvertex.h d. th h | inhibiting or enabling transitions (i.e., the validity of a “control
hi conditions 1) zn)d O nhot. old, t e][] the reju tf y ction”) depend on the Sufficient Validity Test Algorithm. This
this paper can not be used in their present form, to deal Wit ; i, requires that a sufficient but not necessary condition

multiple-resourcg systems. In this case it is necessary to X80 deadlock avoidance be satisfied. More precisely, as the
such results, using a more general model. é'z;thors remark, “a control action may pass the Sufficient

h E)f<a|1npl_e A: Recer:tly,f Hsiehl and Chdangd[8t]) hane discukss lidity Test Algorithm using one specific priority rule while
the following example, formerly considered by Banaszak angq yhe test using another one.” Moreover for what concerns

Kroih [TI] ACerX|bICe magufagturlng Sfter? conhtams thrﬁ?he algorithm introduced by Banaszak and Krogh, this policy
work cells WC;, WG, and WC; (see Fig. 7), where eac puts nonnecessary constraints in using resources. In fact, as

work cell (WC; i = 1,2,3) consists of a machinés;, an : : I

. R 1 A shown by Hsieh and Chang, such a policy can inhibit some
input butffer /; and an output buffe®;. The capacity of both 5 sitiong even if they do not lead to deadlock.

I; and O; is of five spaces. This system produces jobs of aExampIe B: The system shown in Fig. 9 is made up of

single type, following the route three work cellsgt WC;, WC, and WCs). A two-space input
Is—-M3;—0O3—11 =M — Oy — Ir - My — O buffer (1), two identical machinegA/; ; and A, ») and a
~ I, — M, — Oy, single-space output bufféO;) constitutg the work celWCl.

Analogously, the work celWC; has an input buffer with two

We note that each input buffer can be described by a singlgaces, two identical machinés/, ; andMs,») and a single-
vertex of Dy, because, according to the previous note (see Zébace output buffefO,). Finally, work cell WCs includes a

each input buffer is followed by only one resource (i.e., by thg,o-space input-buffefls), a machineM; and a two-space

corresponding machine). Buffets, and Os can be modeled oy tpyt buffer(Os). The system produces two job-typés;
in the same way because they are always followedbyor gnq P;) following the routes:

what concerng)y, this buffer is followed either by or by

the fictitious resource, whch takes into account jobs at the end ROUtEF1): Iy — My, (or My 9) — Oy — I —

of the working procedure. Since on the processing completion M (or Mao) — Oy — I3 — M3z — O3
a job immediately leaves the system, also the buffgrcan RoOUte Py): Is — Ms — O3 — I — My (OF My)
be modeled by only one vertex. Clearly, there are two edges 0 I M M 0

outgoing from this vertex. The former reachigsand the latter — Oz = I = My (01 My 2) — O

ends in the fictitious resourde;). Fig. 8 shows the working Machinesi{; ; and M; » are identical and can be consid-
procedure digraph, also indicating the resource capacity ered as a single resource having multiplicity equal to two.
the multiple resources. In such a digraph there is one cy@ece they are always followed by buffér,, machinesM; ;

() involving WC; and WC,, whose capacityC(y) = 22 is and M, » correspond to a single vertex (sa¥), in Dy and

the total amount of the capacities &f, My, Oy, I, M, and Dr(g). Using the same arguments, we represkfit; and

O,. Clearly in this case the second level digraph is acyclitf, » with a unique vertex (sayM). Of course, since the
so thatI'? is empty and RP3 is deadlock-free. As we haveuffers I;, I, and I3 are, respectively, followed by, M,
already pointed out, RP3 is the least restrictive policy one cand M3, each of them corresponds to a unique vertex. Finally
define, because it limits the freedom in resource allocation e buffer O3 is a multiple resource, with capacity equal to
little as necessary to avoid deadlock. Namely, other policieso, containing jobs addressed fo and jobs which have
put unnecessary constraints on the resource allocation. ecgmpleted their processing. As in the previous example, we

FANTI et al. EVENT-BASED FEEDBACK CONTROL 359

Jjobs of Type 3 TABLE |
—_— I3 Iy MEAN AND STANDARD DEVIATION OF SERVICE TIMES FOR CASE 1 (ExamPLE C)
ry Iy Iy Iy rg T ry rg

n=45 [u=90 | p=45 | p=45§ u=90 | u=90 | u=30 [p=22.5

Jobs of Type 2 [f 6=9 | 6=18 | 0=9 | 0=9 | 0=18 | 0=18 | 0=6 | 6=4.5
—_— |
Iy

To apply RP1, we observe that the minumum capacity of
Jjobs of Type 1 cycles from Dy is Cy = 3. Hence such a policy does not
——® | L) Te allow more than two jobs in the system.

For what concerns RP2, we build up the relationship be-
tween working procedures and cycles, which identifies the

fOHOWing SetS:le = {717 ’727’73}7]-_‘1112 = {73} and Fw:; =
r; {71,72}. According to this policy, a new 1-type job can enter
the system only if it holdsCard[Jg(v1)] <3, Card[Jg(v2)]
Fig. 10. A robotized cell (Example C). <2 andCard[Jg(v3)] < 3. Analogously a new 2-type job can

be loaded into the system only if the relatiGard[Jg(v3)] <3
can considei0z as a vertex with two edges outgoing froms verified. Finally, a new 3-type job can be supplied to
it. The former reaches the resourtgand the latter ends in the system only if the constraint@ard[Jq(fyl)] <3 and
the fictitious resource. Note that each machine is preceded@%d[Jq(ny)] <2 are satisfied. Note thafq(ryl) = Jq(rm)
a unique resource (its input buffer) and is also followed hyecause both sets identify 1-type and 3-type in-process jobs.
a unique resource (its output buffer). For this reason, witho@h the other hand, the sdf(ys) collects 1-type and 2-type
drawing Da,, we can conclude that the Working Procedurgy-process jobs.
Digraph contains no set of cycles sharing only one resourceTo implement RP4 we have to determine the capacity of the
So, as in the previous example, the §8tis empty and we second level cycle. Sing8? = C(+?) = Card(N;UN,) = 6,
can apply RP3, with the minimum constraints in the freedoBuch a policy allows four jobs in the system simultaneously.
to allocate resources. To apply RP5 we determine the following sets}, =
Example C: Consider a system with six machinesljgu3 = {¥?}, while 1“121]2 is empty. Hence a 1-type (or a 3-
(r1,72,73, 14,75, and r¢) and two robotsr7) and rs) type) job can enter the system iffard[Jg(v#)] <4. On the
which transfer jobs from a machine to another one (seentrary, a 2-type job can always be loaded into the system.
Fig. 10). Hence we have R- 9, wherery is the fictitious Note that./q(+7) collects all the first-type and the third-type
resource. There are three jobs to produce, following théebs in-process.
working proceduresw;, w2 and ws, respectively. Each The quality of the policies described above is shown by im-
1-type job is automatically loaded on maching where the plementing a SIMAN simulation model [12] and by assuming
first operation takes place. Then the robet transfers the the system throughput as performance index. The following
job to the machiner,. Afterwards the robotrg transports conditions rule the simulation. First, the job types enter the
the job to machine-;. From here the piece directly goes orsystem following the periodic order: types 1, 2, 3, 1, 2, 3,
to machiner, and successively it is unloaded by robgt etc. Second, a job is loaded into the system as soon as the first
into an output buffer (of infinite capacity). Analogously eachesource of its working procedureide. Finally, the law “First
2-type job is directly loaded on machines, transferred to In First Out” rules the service priority setting. We simulate the
machinerg by robotrs and unloaded into the output buffersystem in four different working conditions denoted by Cases
by robot 7. Finally, each 3-type job is loaded on maching, 2, 3, and 4. Service times for each resource are generated
r3 and, from here directly transferred to maching Later randomly by a gamma distribution with meanand standard
robotrg carries the job to maching and robot; unloads it deviatione. In particular, in Case 1 the service times balance
into the output buffer. Therefore the working procedures atke workloads of the eight resources (machines and robots).
wy = {r1,7r7,72,7s, 3,74,78, 7o}, w2 = {r5,78,76, 7,79y Table | reportg: ando for each resource. On the other hand,
andwsg = {r3, 74, s,71,77,79}- Cases 2, 3, and 4 are unbalanced and all the resources, but one,
The corresponding Working Procedure Digraph has behave the same service times as Case 1. In particular, Case 2
used in Example 4 and is shown by Fig. 3. It has threessumes robat; as bottleneck, with service time distribution
cycles v1 = ({ri,77,72,78}, {e17,¢e72,¢28,€51}), 2 = characterized by: = 4.5 ando = 0.9. Moreover, resources
({7‘8,7‘3,7‘4}, {683, €34, 648}) and Y3 = ({7‘8,7‘6,7‘7,7’2}, T8 (Wlth n = 3 ando = 06) andTg (Wlth W= 10 ando = 2)
{ess, c67, €72, 28 }). The Second Level Digraph contains are, respectively, bottlenecks in Case 3 and Case 4.
unique cycley? = (N2, E?) where N7 = {n? n3} and In each simulation we use the method of batch means to
E? = {e2,,¢3,}, as Fig. 6 and Example 7 clearly indicatecompute the 95% confidence intervals for throughputs. To this
Moreover, sincey? belongs tol'?, RP3 can not be applied toaim, after a transient period corresponding to the completion
this case. Hence we report the results of a simulation studfy500 jobs, we simulate 60 000 completed parts, divided into
comparing RP1, RP2, RP4, RP5 and the control law proposé@l batches of the same size. Fig. 11 shows the throughputs for
by Banaszak and Krogh. each working condition. The width of the confidence interval

360 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

0.25 - deadlock-free only for particular, but not infrequent, systems.
On the other hand, in these cases it is the least restrictive policy

Starting from the results of this work, a more general approach
considering multiple resources in a graph-theoretic framework
will be developed in a next paper nowadays in progress.
Before concluding, a final consideration is in order. All the

avoidance approaches proposed in the literature offer both
advantages and drawbacks. Future researches should deter-
is less than 0.6% in any simulation, and confirms the goggine classes of system configurations for which a particular
precision of the throughput estimations. Fig. 11 also showgoidance method is more convenient than the remaining ones.
that throughput becomes higher and higher using restriction
policies in the following order: RP1, RP2, RP4, and RP5.

t :
h 024 one can find. Moreover, it is very simple because it only uses
r o oRPI a look ahead of one step.
S 0.15 ¢ % mRP2 The approach proposed in this paper considers only single
¢ - g BRP4 resources. However, the examples developed in Section V
h 01 T é BRP5 show that in some cases it is easy to extend our formalism
p o é BRPBK[{5 take into account multiple items of the same resource type.
LR z’

N Zu

F 75

o)

casel case?2 case3 case4

Fig. 11. Example C: throughput values (jobs per time unit).

Moreover RPBK is better than RP1, but it gives poor results APPENDIX
especially if compared with RP4 and RP5. Proving Theorem 2 requires some preparation that leads to
three lemmas. The details of the mechanism leading to the
VIIl. CONCLUSIONS deadlock of a cycle are the main concern of Lemma 1. In

.Igi')articular, the distribution obusy and idle resources inside
i . : " .
ea?g cycle is discussed and tfeasibletransition leading to the

In this paper we focus on the circular wait problem
automated production systems, by using a digraph theor eradlock is characterized. Lemma 2 establishes that the cycle

approach to develop necessary and sufficient conditions adlocked by a given transition is unique. Finally, Lemma

the occurrence of deadlocks and Second Level Deadlocks. I% . . .
3 uses the previous results to derive some important facts

particular, the definition of the Transition Digraph allows us . . . ;
: . : . . cgoncerning the configuration of theusy/idle resources that
to enlighten the mechanism of interaction among jobs an necessary characteristic of a SLD
resources that leads to such critical situations. We assume fRat,) y ' :
. . . . emma 1: Let the cycle~, of Dy be not in deadlock
the dynamics of the production system is described by a DEDS ™ ~. o
.) . C%Pdmon in D1, (q). Suppose there existsfaasibletransition
model whose state provides the information necessary to build . o o
" . . c;m in the stateq such thaty, is in deadlock condition in
the Transition Digraph. Only events that involve resourcg ; -
; .) : (¢, eim). Then, with reference to staig v, satisfies the
releasing or resource acquiring modify such a digraph. In tf}lﬁ ; .
- ST T . . t0llowing properties:
context, the control activity consists in inhibiting or in enabling
the above events in dependence of the current system’s statd-18) nodes fromv, represgn(C(fyn) — 1] busyresources
In other words, the control laws appear as restriction policies and oneidle resource; ,
preventing event occurrences that lead to deadlocks. The basit1P) 7m iS th§|dle resource ofN,, (with r,, # rr) and
idea is that such policies must falsify one of the necessary ri & Nn; o
conditions for the deadlock, derived in the paper. At the same-1€) €dges fromk:, M Exy(g) form an open path linking all
time, however, one must avoid that a condition of indefinite the vertices ofV,, and ending inr,,, with a feasible
blocking occurs as consequence of the restriction policies transition. Thus such a path contaiftS(v,) — 1]
themselves. edges (i.e.Og(vn) = [C(’yn-).— 1]) which represent
Any scheduling policy not involving events inhibited by [C(yn) — 2] blocked transitions followed by one
deadlock-free restriction policies is deadlock-free. Thus each fea5|bletr§1n5|t|on.
restriction policy implicitly identifies a class of scheduling Proof: L1a) is true. _
strategies. In Section IV we propose five restriction policies, By contradiction, assume L1a) false and consider two cases.
involving different computational complexities and perfor- 1) All the resources fron¥,, arebusyin the statey so that
mances. RP1 and RP3 have small off-line costs. On the other the outdegree of each vertex 8f, in Dr.(q) is equal
hand, the off-line computations pertaining to RP2, RP4 and to one. Now, ifOg(~,) = C(v»), Corollary 1 implies
RP5 have exponential worst-case complexity, because the that~, is in deadlock condition inDr(q), which is a
number of cycles in a digraph can be exponential in the contradiction. So consideDg(y,) < C(yn). Sincer,,
number of vertices. However, in many practical cases such is idle and all the nodes ofV,, are busy,it follows:
computations can be executed in a reasonably short time. r,, ¢ N,. Thus the digraph transformation &r.(q)
Moreover, they are carried out only once, before the proper leading toEr (g, ¢;,,) does not cancel or add any edge
on-line control. to £, N E1(g). Consequently, executing,,, keeps the
All the five restriction policies require small on-line com- Overlap Degree ofy,, unchanged, so that, is not in
putational costs, so that they are suitable for real-time imple- deadlock condition ifD1(g, ¢;,), in contradiction with
mentation. An interesting result concerns RP3. This policy is the assumption.

FANTI et al. EVENT-BASED FEEDBACK CONTROL 361

2) At least two resources fronV,, areidle in the stateg. Lemma 3: Let ¢ be a SLD state fol5 and letJs and Rs
Since twoidle resources can not becorbesyas result be the corresponding minimal sets. Then there exists & set
of a single transition, there exists feasibletransition, of cycles of Dy satisfying the following conditions:

leading ~,, in deadlock condition inD1(g,eim): @ L3a) for eachy, € I, there exists deasible transition

contradiction. e:m € Es such thaty, is in deadlock condition in

L1b) is true. D1y(q, eim);

By L1a), thefeasibletransitione;,, increases the number [3b) for each transitione;,, € FEs, there exists a
of busyresources ofV,, from [C(v,) — 1] to C(vy). Such cycle v, € I' which is in deadlock condition in
an increment occurs only #;,,, corresponds to a job leaving D1y(q, eim);

r; ¢ N, to occupy thedle resourcer,, € N,,. Finally, since | 3c) the setNt of all the vertices of the cycles frofi is
the outdegree ofy is zero, there is no cycle ibyy containing included in Rg;
the fictitious resource. Hence we get;, # rg. L3d) the set of all thefeasibletransitions of D1, (q) be-

Llc) is true. longing to cycles fronT is equal toEs;

By assumptiong;,,, makesy, to be in deadlock condition | 3e) in theq state, there exists only oridle resource in
in Dry(q, eim). Hence we get Nr (say rn). Such resource is common to all the

cycles fromI'.
E,NEn(q eim) = Ey (18) Proof: By Definition 4 and Theorem 1, for each,, €

Es there exists a cycle ofDy in deadlock condition in

D1,(q,e:m). SO, denoting withl™ the set of such cycles, we
where Card[E,, N En(@)] <C(7,) and Card[Ey N Ex(a, a0 now prove the statements of the Lemma.
eim)] = C(v,). According to the transformation mechanism L3a) and L3b) are true

leading fromD(g) 10 D1x(g, cim), the Setl, N Em(q, eim) g proof is a straightforward consequence of the construc-
differs from £, N E1y(gq) in the fact that it contains one more,.
edge which starts from,,, (say e, € Ey). It turns out that tion of I

™ P o L3c) is true.

edges inF,,NE1,(¢g) form an open path joining all the vertices Let 14, be a vertex ofy, € I'. By L3a), there existg;,,

from N, containing [C(+,,) — 1] edges and ending in,,. o o
Obviously, the last edge of such a path ieasibletransition. Eis such thaty,, is in deadlock condition i (g, eim_)' Two
cases can occur. If, # r,, then, by Lemma 1y is busy

Hence the proof.) i T . S
Remark A1: From the proof of L1c) it follows that there @0 HR(jo) = 7& where jo indicates the job holding it. If
rr = rm thenSR(jo) = i, wherejg is the job holdingr;.

exists a jobj € Jg havingr; ¢ N, and 7,7, € Ny, i) . :
respectively, as first, second, and third resourcBW(;). Obwously‘m both cases;,, Iead; to a deadlock involving
Thus, jo € Jp and, by D4c),jo € Js. Moreover D4a)

Remark A2: Assume thaty, satisfies Lemma 1. Since the/:) :
outdegree of any vertex dPr,(q) is one at most, if, € N, yieldsHR(jo) € Rs andSR(jo) € Rs. In any case the above
andey, € Ex(q), from L1a) and L1c) it follows that,, € v, ~&r9uments imply;, € ks and complete the proof.
andey, € E,. In other words, each edge dir,(g) outgoing ~ L3d) is true. _ -
from a vertex ofN,, is in E,, and, of course, ends in a node First we show that eacfieasible transition of D (q)
still belonging to NV,,. belonging to cycles. froml is in .ES. Let v, € F and

Now, it is natural to ask whether there exist several cyclégn € £r(¢) N E,. Since both vertices; and:, are in N,
deadlocked by the sanfeasibletransition. The next result L3C) givesri,ry, € Rs. Moreover, since:; is busyandry, is
enlightens this point. idle, D4b) leads tor; € HR(Js) andr,, € [Rs — HR(Js)].

Lemma 2: Let ¢ be not a deadlock state and let,, be Hence we conclude thai,, € Es. N
a feasibletransition of D, (q). If there exists a cycley, of Vice versa we show that eacfba3|bletran3|t|(_3n fromEs
Dy in deadlock condition ifD (g, ¢,), then-y,, is the only belongs to cycles frorh'. Assume the contrary, i.e., that there
cycle of Dyy in such a condition. exists afeasibletransitione;, € Es which belongs to no

Proof: By contradiction, assume thaby, contains a cycle fromI. By Remark A2, this means that, ¢ Nr.
cycle y,,, # 7. that is in deadlock condition i1, (g, ¢;r,). Hence, by L3c), the setRs, = Nr and Js, = {j € Jg:
According to L1b), this means that, € N, N N,,,. Since the HR(j) € Rs, } are proper subsets &fs and.Js. It is now easy
output degree of each vertex of the Transition Digraph is letssrealize thatis, and.Js, satisfy the conditions of Definition
or equal to one,DTr(q7 Cim) can not contain distinct cycles 4. ThereforeRs and.Js are not minimal, in contradiction with
with nodes in common. It followsy,, = -, and, hence, a the assumption.
contradiction. . L3e) is true.

Now let ¢ be a SLD state foiS and Js and Rs be the By Lla) there exists arndle vertex in Np (say 7,,,). To
corresponding job and resource sets enjoying the propertigove the unicity of this vertex, we proceed by contradiction.
stated in Definition 4. We say that such sets ani@imal, if In particular, we show that if there exists anotitie resource
no proper subsetBs, C Rs andJg, C Js exist enjoying the 7, € Nr, with v, # r,,, then Rg and .Js are not minimal, in
conditions of Definition 4. contradiction with the assumption.

With this notion as background, we state the following LetI'; be the subset df, collecting all the cycles containing
necessary conditions for the occurrence of a SLD. the vertexr,,,. Moreover let Ny, C Nr indicate the proper

362 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 3, JUNE 1997

subset of all the vertices fromy, belonging to cycles from Let I' be the set satisfying Lemma 3. We now show that
I';. We getr, ¢ Nr, because by Lla), represents the suitably ordering elements froin leads to a sef', satisfying
only idle resource fromNp,. With this as background we Th2a) and Th2b).

put Rs, = Nr, and Js, = {j € Jg: HR(j) € Rs,} and Let~, be any cycle fronT". By L1c), v,, possesses only one
show thatRs, and Js, satisfy the conditions established byedge representingfaasibletransition inD1.(q) (sayes(vx)).
Definition 4. Obviously, L3c) leads te, ¢ Rs and, since In addition, by L3d) it holds:#(v,) € Es and, by L3b), there
r¢ ¢ Nr, = Rs,, we clearly getRs, # Rs. exists a cycley, € I' in deadlock condition itDr,(q, er(v»))-

To begin with, we first observe that, by constructidty, Hence, is related toy; in the fact that “the onlyfeasible
and Js, satisfy both the property D4b) and the conditiofransition ofy,, deadlocksy,.” To exhibit this relation between
HR(Js,) C Rs,. Moreover, since by Remark A2 each edgeycles from[', it is convenient to build up a digrapB?(q),
from D1, (g) outgoing from a vertex ofNr, still ends inN,, by associating a vertex to each cycle and an edge from vertex

it holds SR(Js,) C Rs,. Hence D4a) is also verified. T t0 vertexyy, iff the only feasible transition of,, deadlocks

To complete our arguments we have to prove tat and 7. This new digraph enjoys the following properties:
Js, satisfy D4c). We first observe thgRs, — HR(Js,)] = 1) the outdegree of each vertex equals one. Namely, by
{rm}, by construction. Then let € Js, be such thafR(y) = Lemmata 1 and 2, each cycle frol has only one
rm. Puttingr; = HR(j), let +, indicate the cycle fronT" in feasibletransition in the statg, which deadlocks only
deadlock condition inDr(g, ¢;m). AS a result, L1b) yields one cycle froml;
rm € N, and hencey, € I';. Consequently, as the joj 2) by L3a) and L3d) the indegree of each vertex is greater
also all the jobs holding resources from are inJg,. Thus than zero.
the subset/p of jobs in deadlock condition iD1.(q, i) Clearly the above properties imply that the indegree of each

satisfies the relation/p C Js,. It follows that, for each vertex is one and thab?(q) is the union of disjoint cycles.

J € Js, such thatSR(j) € [Rs — HR(Js)], the transition We now show that, sinc&s and Js are minimal, D?(q) is
releasingHR(j) to hold SR(j) leads to a deadlock state fornothing but a unique cycle containing all the nodes associated
which Jp C Jg,. with the elements from the sét.

The above arguments show that there exist the properThis proof is by contradiction. So suppose that(q) is
subsetsRs, C Rs and Jg, C Jg satisfying conditions of the union of two or more disjoint cycles. Lét; C I' be
Definition 4. However this means thdts and Js are not the node set of one of such cycles ang, C N be the
minimal, which is the contradiction we had to show. corresponding set of nodes &fy belonging to cycles from

Finally, to complete the proof, it is sufficient to note that by';. Putting Rs, = Nr, andJs, = {j € J¢: HR(j) € Rs, }

L1a), each cycle froni® has onddle vertex: sor,, is common and using the same arguments that prove L3e), we can show

to all the cycles fronT". e thatRgs andJgs, satisfy conditions of Definition 4. Hendgs
Now we are ready to prove Theorem 2. and .Js are not minimal and the contradiction is established.
Proof of Theorem 2:Sulfficiency. To sum up,D?(q) is a unique cycle containing all the nodes

Our claim is that if there exists an ordered cycle Bgt associated with elements frof
satisfying Th2a) and Th2b), theg is a SLD state (see Now, puttingH = Card(I'), choose a node ab*(q), say
Definition 4). The proof is by construction. To begin with;1. The cycle of D*(q) establishes an ordering of the cycle

let Rs be the set of resources corresponding to the vertice&tI': I's = {v1,72,- -, 71}
of the cycles inl,: At this point we show thatf’, satisfies Th2a) and Th2b).
_ Th2a) is true.
}_25 - NFD_ 19 statement L3e) establishes thé_ contains only onedle
and letJs be the set of jobs holding resourcesfiy: resource (sayr,,) which is shared by all the cycles from
Js = {j € Jg: HR(j) € Rs}. (20) T. Now, given any two distinct cycles,, and v, € I,

we show thatr,, is the only resource shared by, and

~,. By contradiction, suppose there exists € N, N Ny,
by Remark A2, for any cycley, € I', each edge oy (g) with r, # r,. Clearly r, is busy. Therefore, by Remark

outgoing from a vertex inV,, ends in a node still belonging tops - -

. , €r(vn) = er(yn). Now let v, € T, be the cycle in
N,,. This means thafR(Js) C Rs. Moreover, (20) and Th2a) yoodiock condition iND1x(q, cr(1n)). The digraph D2(q)
leads to[fs — HR(Js)] = {rm} andCard(Js) < Card(Hs). contains two edges both ending ip, and outgoing from

Thus, all the resources ifRs — HR(Js)] areidle and we v and~,, respectively. This is a contradiction because the
conclude that D4a) and D4b) hold true. indegree of vertexy, must be one.

Finally, consider any jobj € Js with SR(j) € [Rs — Th2b) is true.
HR(Js)] (i-e. SR(j) =) and putr; = HR(j). Since by the proof follows immediately from the definition of
(19) and (20)r; is a vertex of a cycle fronT", (say 7,), D2(q).
Remark A2 yieldse;,, = er(y,). Hence, by Th2b), there
exists a cycle fronT’, in deadlock condition inD1y(g, ¢;m). REFERENCES

Because of (19) and (20), the jobs involved in such a deadlock . _ _ _

f bset/ Js, as D4c) requires [1] Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible
orm a Su. D CJs, q : manufacturing systems with concurrently competing process flows,”
Necessity. IEEE Trans. Robot. Automatpl. 6, pp. 724—-734, Dec. 1990.

The definition (20) impliesHR(Js) C Rs. Furthermore,

FANTI et al. EVENT-BASED FEEDBACK CONTROL

(2]
(3]

(4]

(5]
(6]
(7]
(8]

(9]
(20]

[11]
[12]
(13]
[14]
(18]

[16]

[17]

[18]

[19]

E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks ”
Comput. Surveysjol. 3, no. 2, pp. 67-78, June 1971.

J. Ezpeleta, J. M. Colom, and J. Maugz, “A Petri net based deadlock
prevention policy for flexible manufacturing systemd$BEE Trans.

Robot. Automat.yol. 11, pp. 173-184, Apr. 1995. y o
M. P. Fanti, B. Maione, G. Piscitelli, and B. Turchiano, “System .
approach to a generic software specification for Flexible Manufacturir ge——
System job flow managementlit. J. Syst. Sci.yol. 23, no. 11, pp. b
1889-1902, 1992. r
, “System approach to design generic software for FMS rea ¥

time control of flexible manufacturing system$EEE Trans. Syst., Man, b

Cybern. Avol. 26, pp. 190-202, Mar. 1996.

F. Harary,Graph Theory Reading, MA: Addison-Wesley, 1971.
A. N. Habermann, “Prevention of system deadlockSgmmun. ACM,
vol. 12, no. 7, pp. 373-378, 1969.

F. S. Hsieh and S. C. Chang, “Dispatching-driven deadlock avoidance
controller synthesis for flexible manufacturing system§&EE Trans.
Robot. Automatvol. 10, pp. 196-209, Apr. 1994.

R. C. Holt, “Some deadlock properties of computer syster@amput.
Surveysyol. 4, no. 3, pp. 179-196, Sept. 1972.

T. K. Kumaran, W. Chang, H. Cho, and R. A. Wysk, “A structured
approach to deadlock detection, avoidance and resolution in flexi-
ble manufacturing systems/ht. J. Prod. Res.vol. 32, no. 10, pp.
2361-2379, 1994.

S. S. Isloor and T. A. Marsland, “The deadlock problem: An overview,”
Comput.,pp. 58-78, Sept. 1980.

C. D. Pedgenj/ntroduction to SIMAN State College, PA: Systems
Modeling Corp. 1983.

E. M. Reingold, J. Nievergelt, and N. DeGpmbinatorial Algorithms:
Theory and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1977.

A Silberschatz, J. Peterson, and P. Gal¥merating System Concepts
Reading, MA: Addison-Wesley, 1992.

M. Singhal, “Deadlock detection in distributed systemSg@mput.,pp.
37-48, Nov. 1989.

R. A. Wysk, N. S. Yang, and S. Joshi, “Detection of deadlocks in flexiblc
manufacturing cells,TEEE Trans. Robot. Automatol. 7, pp. 853-859,
Dec. 1991.

N. Viswanadham and Y. NarahaRgrformance Modeling of Automated
Manufacturing Systems Englewood Cliffs, NJ: Prentice Hall, 1992.

N. Viswanadham, Y. Narahari, and T. L. Johnson, “Deadlock prevention
and deadlock avoidance in flexible manufacturing systems using Petri
net models,”IEEE Trans. Robot. Automatvol. 6, pp. 713-723, Dec.
1990.

B. P. Zeigler,Multifacetted Modeling and Discrete Event Simulation.
London, U.K.: Academic, 1984.

o

A1
3

Maria Pia Fanti (M'94) was born in Siena, ltaly,
on February 21, 1957. She received the degree |
electronic engineering from University of Pisa, Italy,
in 1983 .

She is currently an Assistant Professor with the
Department of Electrical and Electronic Engineer-
ing, Polytechnic of Bari, Italy. Her research focuses
on structural properties of linear systems and of

. FMS control and modeling.

I = =)
]

e

363

Bruno Maione (M’84) was born in Naples, Italy, on
April 30, 1940. He received the degree in electrical
engineering with honors from the University of
Naples in 1964.

He is currently a Full Professor of automatic
control with the Department of Electrical and Elec-
tronic Engineering Polytechnic of Bari, Italy. He
held the position of Faculty Dean at the Polytechnic
of Bari from 1986 to 1992. In 1983 and 1985
he was a visiting professor with the University of
Florida, Gainesville. His primary areas of research

and teaching are intelligent control, discrete event dynamical system modeling,
systems and control theory.

Saverio Mascolo(M'95) was born in Bari, Italy, on
March 1, 1966. He received the degree in electrical
engineering with honors in 1991 and the Ph.D.
degree in 1995 both from Polytechnic of Bari.

In 1995 he was a visiting scholar with the Depart-
ment of Computer Science, University of California,
Los Angeles. Since 1996 he has been a Researcher
with the Department of Electrical and Electronic En-
gineering of Polytechnic of Bari. His main research
interests include manufacturing systems and control
of high speed communication networks.

Biagio Turchiano (M'94) was born in Bitetto
(Bari), Italy, on July 25, 1953. He received the
degree in electrical engineering with honors from
University of Bari in 1979.

In 1984, he joined the Department of Electrical
and Electronic Engineering, Polytechnic of Bari, as
an assistant researcher. Currently, he is an Associate
Professor of automatic control at the Polytechnic
of Bari. His research and teaching interests are in
the areas of production automation, systems and
control theory, modeling and control of discrete
event systems.

