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Abstract—Modern production facilities (i.e., flexible manu-
facturing systems) exhibit a high degree of resource sharing, a
situation in which deadlocks (circular waits) can arise. Using
digraph theoretic concepts we derive necessary and sufficient
conditions for a deadlock occurrence and rigorously characterize
highly undesirable situations (second level deadlocks), which
inevitably evolve to circular waits in the next future. We as-
sume that the system dynamics is described by a discrete event
dynamical model, whose state provides the information on the
current interactions job-resources. This theoretic material allows
us to introduce some control laws (named restriction policies)
which use the state knowledge to avoid deadlocks by inhibiting
or by enabling some transitions. The restriction policies involve
small on-line computation costs, so they are suitable for real-
time implementation. For a meaningful class of systems one of
these policies is the least restrictive deadlock-free policy one can
find, namely it inhibits resource allocation only if leads directly
to a deadlock. Finally, the paper discusses the computational
complexity of all the proposed restriction policies and shows some
examples to compare their performances.

Index Terms—Deadlock avoidance, discrete event dynamical
systems, FMS control.

I. INTRODUCTION

T HE RECENT researches in automated production facil-
ities, including flexible manufacturing systems (FMS’s),

have led to significant improvements of productivity in manu-
facturing industries. The structure of the traditional manufac-
turing systems, designed to satisfy a demand for high volume
and low variety products, can no longer cope with the rapid
technological change and with the new market trend toward an
ever increasing demand for variety. On the contrary FMS’s,
by integrating computer systems, hardware and information
flows, provide manufacturers with flexibility and efficiency. A
FMS consists of a set of workstations, each one capable of
processing parts of different kind simultaneously. Parts (jobs,
pieces) enter the system and follow different routes through
the workstations, receiving service according to prescribed
sequences of operations. The flexibility of FMS’s relies on
a programmable transportation system connecting the work-
stations and on a sophisticated computer control supervising
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process activities, transportation operations, information flow,
etc.

Automated production systems (and FMS’s in particular)
exhibit a high degree of resource sharing. Since the parts
advancing through the system compete for a finite number
of resources, a deadlock (or “deadly embrace”) may occur.
Deadlock is a highly unfavorable situation in which the parts
in a set request access to resources held by other parts in the
same set. A deadlock implicating a set of parts can propagate to
other parts, eventually crippling the whole system that remains
blocked indefinitely. Only aborting one or more parts involved
in the deadlock and granting the released resources to other
implicated parts can resolve this situation.

Even if deadlock occurs in many different contexts, the
problem has attracted considerable attention in computer sci-
ence, since deadlocks lead to critical situations in multitasking
environments. Some of these approaches use graph models
to represent interactions between jobs and resources. Among
the relevant works and tutorial papers we quote [2], [7], [9],
[11], [14], and [15]. In particular, Coffmanet al. [2] give four
conditions for a deadlock to occur (mutual exclusion, wait-for
condition, no-preemption and circular wait).

Deadlock prevention and deadlock avoidance approaches
do not allow the system to enter a deadly embrace state. In
deadlock prevention, state transitions follow prescribed rules
ensuring that at least one of the four necessary conditions fails
to hold. On the other hand, deadlock avoidance approaches ex-
amine the current system state to elude a deadlock occurrence
in the next future. In the context of automated manufacturing,
the interest for these problems is relatively recent. However
the strategies for deadlock prevention and deadlock avoidance
in manufacturing systems differ from those in computers in
the fact that the system configuration and the way the system
operates play a fundamental role. Moreover in the FMS’s the
first three conditions given by Coffmanet al. [2] are always
present. Indeed pieces use resources (buffer spaces, machines,
carts, etc.) in exclusive mode, jobs hold onto resources while
waiting for the next resource of their operation sequence
and resources cannot be forcibly removed from the pieces
utilizing them until the operation completion. Hence deadlock
is excluded only if the fourth condition fails to hold.

The simplest way of preventing deadlock in automated
manufacturing system is to outlaw concurrency right at design
stage, by defining a layout that does not allow circular waits
among jobs concurring for resources. In other words, the sys-
tem layout must allow all the parts to flow in the same direction
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or, in any case, jobs in process must be restricted to types
following a unidirectional route. On the other hand, batching
the jobs to be produced according to their flow direction and
processing one batch at a time are obvious planning strategies
for deadlock prevention. However, these approaches unnec-
essarily restrict the producible part-mix, reduce the machine
utilization and undermine the flexibility of the production
system, by removing the possibility of exploiting alternative
routing strategies. In conclusion, the higher the requested
flexibility the greater is the necessity of defining deadlock-
free scheduling policies. The work of Viswanadhamet al
[18], of Banaszak and Krogh [1], Wysket al. [16] and, more
recently, of Hsieh and Chang [8], and Ezpeletaet al. [3] are
remarkable contributions in this direction. In particular, using
Petri net (PN) model Viswanadhamet al. [17], [18] propose
some techniques for deadlock prevention and avoidance in
FMS’s. The authors define a deadlock prevention policy using
an exhaustive path analysis of the reachability graph of the
PN. However, this approach is feasible for reasonably small
systems only. The authors also introduce a deadlock avoidance
policy to allocate resources in real-time and use a PN model to
look ahead into the future system evolution on a finite horizon.
However, this avoidance technique does not prevent the system
from deadlock, but it makes infrequent this event. Therefore,
if a deadlock arises, suitable recovery strategies are necessary.

Banaszak and Krogh [1] propose a PN named production
Petri net (PPN) to model concurrent job flow and dynamic
resource allocation in a FMS. They also introduce a deadlock
avoidance technique based on the notion of restriction policy
for allocating resources. This approach inhibits some transi-
tions of the PPN according to a feedback law, which takes
into account the current marking. The main quality of the
method is its low complexity that makes it a good candidate
for real-time control applications. However, it may impose
unnecessary constraints on resource allocation, resulting in
reduced performance measures.

To overcome the drawbacks of the approaches proposed by
Banaszak and Krogh [1] and by Viswanadhamet al. [18],
Hsieh and Chang [8] combine the ideas of these methods
and formulate a deadlock avoidance controller (DAC) based
on a PN model, named controlled Petri net. They consider a
class of FMS’s where a manufacturing operation may require
multiple resources. DAC allows transitions involving resources
allocation only if they enjoy a sufficient condition to avoid
deadlock (Sufficient Validity Test). However, the advantages of
this method are paid by an increased complexity in comparison
with the approach proposed by Banaszak and Krogh. Namely,
executing the Sufficient Validity Test may require a true
simulation of the job flow in the system, at each transition.

Recently, Ezpeletaet al. [3] formulate a policy that prevents
deadlock by keeping live the PN modeling the production
system. The authors use an interesting approach to derive the
control policy, based on the properties of structural elements
of the PN, named siphons.

On the basis of a graph-theoretic approach, Wysket al.
[16] derive a model for deadlock detection and avoidance
in manufacturing systems. They present an algorithm for
deadlock detection, to be used in conjunction with deadlock

resolution approaches. Using the same model, Kumaranet al.
[10] propose an approach to deadlock avoidance. The method
is a complete look ahead procedure, performed before the
movement of any part between machines and before the arrival
of a new part into the system.

In this paper we define deadlock avoidance policies, suitable
for real-time implementation. Such policies are simple and
require no look ahead or a look ahead of just one step. For
tracking the job flow through the system, we refer to a discrete
event dynamical system (DEDS) model [4], [5], [19] even if
we do not treat it in detail. We only need to assume that,
at any instant, the system state describes the jobs in process,
the resources that parts currently hold and will acquire before
the processing completion and, finally, the sequence of all the
resources necessary to process each job. As time moves on,
the state changes at any event occurrence. As events relevant
for the deadlock analysis, we consider those corresponding to
new jobs entering the system and to jobs progressing from
one resource to another one or leaving the system. On this
basis we define feedback and on-line control rules, which
use the knowledge of the current system’s state to inhibit
(or enable) the occurrence of the above mentioned events. In
particular, such rules (restriction policies) allow us to define
classes of deadlock-free scheduling policies involving on-line
algorithms with low computational complexity. In dealing
with this problem we refer to the digraph theory to introduce
two digraphs, the former describing the whole sequence of
resources that each job needs to orderly acquire and the latter
representing the current system’s state and future resource
requirements. In particular, the Working Procedure Digraph
defines once for all the potential interactions among the whole
production mix and the sequences of resources required by
each part in the mix. On the other hand, for any system’s state
the Transition Digraph describes the current interactions by
indicating both the resources currently held by jobs in process
and the resources requested by the same parts in the next
future. Using such digraphs allows us to derive necessary
and sufficient conditions for deadlock occurrence and for
the identification of critical situations (named Second Level
Deadlocks or SLD, for brevity), which are not circular waits,
even if they necessarily evolve to deadlocks in the next future.
Such conditions provide the theoretic framework allowing the
formulation of restriction policies for deadlock avoidance.

The paper is organized as follows. Section II introduces
basic notations and preliminary ideas by defining the Working
Procedure Digraph and the Transition Digraph. Section III
gives necessary and sufficient conditions for deadlock occur-
rence, by relating deadlocks to the presence of cycles in the
Transition Digraph. Section IV discusses the problem of SLD
by developing theoretic principles to identify and characterize
such situations. Moreover it enlightens the mechanism of inter-
action among cycles of the Working Procedure Digraph, which
provides the key for understanding the complex phenomenon
of a SLD occurrence. Section V introduces the deadlock-free
scheduling policies and Section VI discusses their complexity
concerning both off-line and on-line computations. Section VII
provides some examples and Section VIII gives the conclu-
sions.
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Fig 1. DigraphsDwww1; Dwww2 and DW for Example 1.

II. BASIC DEFINITIONS AND NOTATIONS

Let us consider a production system, consisting of R
resources to which the jobs access, as they
flow through the system. For our purposes, we use the term
“resources” only to refer to the direct means of production,
i.e., to the facilities (machines, buffers, carts of transportation
systems) which provide service for parts. Each part enters
the system and advances through it, holding one resource
at a time in exclusive mode. In other words, different jobs
can not hold the same resource simultaneously. Flowing
through the system, each part follows a specific working
procedure, i.e., a strict order of succession in using the
resources necessary to provide the scheduled services. So, if
indicates the set of jobs we have to produce, each part
follows a particular working procedure chosen in the set

of the admissible operation sequences. At the handling
and processing completion, the part leaves the system. By
convention, however, we consider it as a job acceding to a
fictitious resource Consequently, the set of all the available
resources is R}. For example,

means that the job requests the resources
and in strict ordering; then it holds again and,

finally, it leaves the system.
At this point, to describe all the admissible working proce-

dures, it is convenient to introduce a digraph representation of

the specific order in which resources appear in all the operation
sequences. We assume that the reader is familiar with the basic
elements of digraph theory. So let be the
digraph associated with where and represent
the node set and the edge set, respectively. Each vertex in
corresponds to a resource so that we use the same symbols
for vertices and resources, i.e., An edge is an
ordered pair of nodes in such that
directed from to belongs to iff (if and
only if) immediately follows in With these notions
as background, we define the Working Procedure Digraph as

with

(1)

Example 1: Fig. 1 associates the digraphs
and with

and with , respectively. Each edge
of is marked by the working procedures involving it.

Remark 1: In opposition to the digraph introduced by Wysk
et al. [16], is drawn once for all and does not change as
the jobs advance through the system. Morever does not
admit parallel edges.

Clearly the digraph depicts a static situation and is not
able to describe the progress of the jobs in process. Namely,
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parts flowing through the system obey a dynamic mechanism
in which they continuously acquire and release resources.
Hence a dynamic and detailed model is necessary for tracking
a job’s complete experience as it enters the system and makes
transition from a resource to the next one and for determining
the time occurrence of each transition. Recently, DEDS models
have been used to describe concurrency and contention for
resources by multiple jobs in the system. Such models need an
explicit definition of scheduling policies, ruling the sequencing
(determining the sequence of part loading into the system), the
dispatch timing (fixing the instants at which the pieces have
to enter the system), the job routing (choosing the path each
part has to follow, to be processed), the service priority setting
(defining priorities for jobs concurring on the same resource).
Here we do not treat DEDS models in detail but we refer to
[4], [5], and [19]. Indeed, we only assume that a DEDS model

describes the production system and we denote by
the -state at time where is the complete state set. In
particular, at each time must describe

a) the set of the jobs in process, the resources currently
held by each job the working procedure asso-
ciated with such a job and, finally, the residual working
procedure, i.e., the sequence of resources necessary for
each to complete the processing.

In the sequel, we use the symbol to indicate
that the job is processed according to Analogously,

designates the residual working procedure correspond-
ing to and and stand for the first (holding the
job) and the second resource of respectively. Note that
if contains two resources at least. Namely, by
assumption, a job leaving the system accedes to the fictitious
resource but, once it acquires it is removed from the
set Obviously, since WP, RW, HR, and SR are defined
on they depend on the current state, even if we drop the
argument for simplicity.

As the time moves on, a state change takes place at any
event occurrence. According to the above characterization of

we assume that

b) an event of the DEDS model occurs whenever a job
acquires and/or releases a resource.

Of course a DEDS model may also consider more event
types than assumption b) does. However point b) indicates the
only events relevant to our discussion. Finally, we assume that

1) the occurrences of system events are strictly ordered in
time.

The information given by the state and the state transition
mechanism allows us to approach the concurrent flow of
multiple jobs in the system, which all compete for a finite set
of resources. In considering this problem, a digraph representa-
tion is useful to describe the dynamic interaction job-resources.
Thus we define a subgraph of named Transition Digraph

as follows: edge iff a job
holds in the state and requires as next resource:

i.e., and Hence, describes
all the next transitions of jobs in Remarkable properties of
this digraph are the following. First, in a generic stateany
vertex 1, 2, R has outdegree [6] either equal

to zero or equal to one: in the first case the resourceis idle
(in other words, no job holds ), whereas in the second one

is busy (i.e., a job holds ). In particular, the vertex
has zero outdegree in any statesince the fictitious resource
is ever at disposal. The indegree of a vertex 1, 2,

, R) is a nonnegative integer giving the number of jobs
currently requiring as next resource. Isolated vertices, if
any, correspond toidle resources that are not requested next.

Not always a transition represented by an edge
(for brevity: transition can be immediately executed.

Namely, for the transition to occur, must beidle in
the state In this case, we call a feasibletransition for
the state Vice versa, if is busy, we say that is a
blockedtransition for In other words, any edge of
represents either afeasibletransition, if it is incident to anidle
vertex, or ablockedtransition, if it ends in abusynode. In the
sequel we denote as the set of thefeasibletransitions
in . Moreover, dealing withbusy/idle resources or
with feasible/blockedtransitions, we implicitly refer to the
Transistion Digraph unless we specify the contrary.

Example 2: Considering the working procedures of Exam-
ple 1, let be in the state with:

The solid lines in
Fig. 2(a) form the Transistion Digraph The blank
circles depict the idle vertices and while edges pointing
to represent feasible transitions. For convenience, Fig. 2(a)
also depicts the second transitions (dashed lines) if they follow
feasibletransitions in the residual working procedures.

Before concluding this section, we show how to use the
digraph to provide a versatile representation of the
transition mechanism. Supposebe in the state at time
and consider a working procedure At such an instant
for a job to enter and to receive service according
to the first resource in must be necessarilyidle. On
the occurrence of this event, makes transition from to
a new state Let indicate the
Transition Digraph If and are, respectively,
the first and the second resource in then
yields the edge set Clearly is idle in
but busy in

Analogously, let a job hold at a given instant
and request access to i.e., and
Moreover let be idle at time i.e.,
The transition occurring when leaves to hold
updates the state fromto In particular, if

denotes the Transition Digraph associated
with the edge set results from the following
operation executed on

1) removing the edge from );
2) adding the edge to provided that

contains three resources at least and is the third
resource in

In conclusion, is idle and is busy (if R)
in Of course all the remaining nodes keep
unchanged thebusy/idlecondition they had in
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(a)

(b)

Fig. 2. (a) Transistion Digraph for Example 2. (b) Transistion Digraph
DTr(qqq; e51).

With reference to Example 2, Fig. 2(b) shows the Transition
Digraph resulting from of Fig. 2(a).

III. N ECESSARY ANDSUFFICIENT CONDITIONS FORDEADLOCK

We begin this section by introducing a formal definition of
deadlock state for

Definition 1: Let If there exist two nonempty
subsets and such that:

HR (2)

SR (3)

then is a deadlock state for
By the above definition, each job in remains indefinitely

blocked because it is waiting for abusy resource held by
another job in

Example 3: Let the system of Example 1 be in statewith:

, ).
Putting and we get

Hence,
by Definition 1, is a deadlock state.

The next result confirms that the deadlock is related to
the presence of cycles [6] in It is quite intuitive
and reminds us of an analogous result due to Wysket al.
[16]. However, using makes unnecessary the circuit
validation requested by Wysket al.

Theorem 1: Necessary and sufficient condition forto be
a deadlock state for is that there is at least one cycle in

Proof: Sufficiency.
Let be a cycle of Clearly each vertex of

represents abusy resource. Then, if is the set of such
resources and is the set of jobs holding them, we get

Moreover, we infer because
edges outgoing from vertices in are incident to vertices
in the same set. By Definition 1, this proves the sufficiency
of the Theorem.

Necessity.
Suppose there exist two nonempty subsets and

satisfying (2) and (3). We are therefore led to
conclude that each edge of starting from a vertex in

is directed to a vertex still belonging to In other
words, no vertex from is reachable from any vertex
in Furthermore, by (2) all the resources in arebusy,
so that the corresponding nodes have outdegree equal to one
in Hence any vertex in is the first node of a walk
[6] consisting of an infinite sequence of edges, that join nodes
from Since the cardinality of is finite, this walk must
contain a cycle.

According to the above theorem, if is a cycle of
we say that is in deadlock condition in and that

shows a deadlock. The above consideration allows us
to restate Theorem 1 as follows. Let contain cycles
and let be one of them,
where and With this notation, is in
deadlock condition in iff:

(4)

Now, we give two definitions that allow us to deduce
additional elements of evidence from Theorem 1.

Definition 2: Let be a cycle of We defineCycle
Capacityof the integer
where Card stands for “cardinality of .”

Definition 3: Let be a cycle of The Overlap Degree
of in state is the integer

Because of Theorem 1 and Definition 3 we can immediately
state the following corollary.

Corollary 1: Necessary and sufficient condition for the
cycle of to be in deadlock condition in is
that

Now, let

(5)

where the minimum refers to all the cycles of and where
we put if is acyclic. The following corollary
directly follows from Theorem 1 and Corollary 1.
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Corollary 2: Necessary condition for to be a deadlock
state is that contains at least one cycle and thatsatisfies
the following relation

(6)

IV. SECOND LEVEL DEADLOCK

Deadlocks are highly undesirable. However, it is also pos-
sible that some critical situations occur that are not deadlocks,
even if they necessarily evolve to circular waits in the imme-
diate future. In this section we develop theoretic principles to
identify and characterize such circumstances, which are called
SLD. Subsequently, the conditions for a SLD occurrence allow
us to introduce deadlock-free control rules. To begin with, we
give the following definition.

Definition 4: Let be not a deadlock state for We say
that is a SLD state for if there exist two nonempty subsets

and with satisfying
the following properties:

D4a) ;
D4b) all the resources belonging to areidle;
D4c) for each job such that

the transition releasing to hold
leads to a deadlock involving jobs of only,

i.e.,

For simplicity, in the sequel we denote by the set of
feasibletransitions in defined by D4c), i.e.,

,
Definition 4 identifies a critical situation in which each

job of either is blocked, because it requests access to a
resource held by another part in or leads to a deadlock on
acquiring the next resource in its Residual Working Procedure.
The following example clarifies the idea of SLD.

Example 4: Consider a system with R ,
,

, , Fig. 3 shows More-
over, let the current statebe characterized by:
1, 2,

,

In view of
Definition 4, is a SLD state with
1, 2, where

and is idle. Fig. 4 shows digraph the
idle resources and are indicated by blank circles. The
nonblocked jobs in are , and so that the first
transitions in their residual working procedures form the set

If executes transition then it
establishes (dashed line in Fig. 4) as its next transition
and this edge deadlocks the cycle

involving jobs in the set
Analogously, if makes transition then becomes
its next transition and deadlocks the job set in
the cycle Finally, if
executes it establishes as its next transition. Hence

Fig. 3. Working Procedure Digraph for Example 4..

cycle shows a
deadlock involving the job set

Next we introduce an original result, which establishes
a necessary and sufficient condition for an actual SLD. It
is based on both the Working Procedure Digraph and the
Transition Digraph and it is consistent with other partial results
obtained in a rather intuitive form [10], [16].

Theorem 2: Let be not a deadlock state for Necessary
and sufficient condition for to be a SLD state is that there
exists an ordered cycle set in
such that, putting

(7a)

(7b)

the following conditions hold true:

Th2a) there exists only oneidle resource in say
and it is such that for any

with Moreover, for each
there is only onefeasibletransition in

say
Th2b) enjoys the following cyclic relation: is

in deadlock condition in for
and is in deadlock condition in

The Proof is given in the Appendix

The cyclic relation established by Theorem 2 exhibits for-
mally the condition of “interaction among circuits” underlying
a SLD. This condition is clearly depicted by the following
example.

Example 5: Consider the system of Example 4 and the
corresponding SLD state depicted by Fig. 4. The cycle set

of (see Fig. 3 and Example 4) satisfies Th2a).
Namely, is the only idle resource. In
addition, and are the only
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Fig. 4. Transition Digraph for Example 5.

feasible transitions belonging to and respectively. In
deadlocks in deadlocks

It is also worthwhile to note that does not belong to
Namely the intersection violates Th2a).
Moreover is deadlocked by which belongs neither to

nor to
At this point we use to determine all the potential cyclic

relations among its circuits. To this aim, each cycle of is
collapsed into a vertex of a new digraph, called SLD, defined
as follows.

Definition 5: Let be the complete set of
all the cycles of The Second Level Digraph

associates a vertex with each cycle of
so that Moreover, the edge

belongs to iff:

D5a) and have only one vertex in common (say
and;

D5b) there exists a working procedure containing
vertices and in strict order of succession,
with and

Now we introduce the following definition.
Definition 6: Let be a cycle of (second

level cycle) and let with
for be the set of cycles in

corresponding to the vertices in The Capacity,
of the second level cycle equals the number of resources
associated with the cycles in :

(8)

Moreover we indicate as the Overlap Degree of
in the state where

(9)

(a)

(b)

Fig. 5. (a) Transition Digraph for Example 6. (b) Second Level Digraph for
Example 6.

By comparing the properties of the set stated by Theorem
2 and the definition of Second Level Digraph we conclude
that all the potential situations of SLD are related to second
level cycles. However, not all the second level cycles indicate
potential SLD. The next example clarifies this point.

Example 6: Let a system consist of R resources
with where

and
Fig. 5(a) exhibits the corresponding which

contains five cycles

Fig. 5(b) shows that the Second Level Digraph has
only one cycle: However

does not correspond to a potential SLD. This is because
the first level cycles leading to (i.e., , and do not
share a unique vertex as Th2a) requests.

The only second level cycles representing potential condi-
tions of SLD belong to a subset defined as follows:

of Card

and Card

for any with (10)

An element from corresponds to a set of cycles of
that are disjoint but for a vertex shared by all of them.
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Fig. 6. Second Level Digraph for Example 7.

Obviously, in Example 6 is empty so that no SLD can
occur. On the contrary, is not empty in the following
example.

Example 7: Fig. 6 shows the Second Level Digraph
for the system of Examples 4 and 5, whose Working Procedure
Digraph contains three cycles (see Fig. 3):

and We note a
second level cycle where
and Since is in

Remark 2: We have shown that, if is a SLD state, there
exists an ordered cycle set in satisfying Th2a) and
Th2b). Furthermore, Definition 5 shows that corresponds
to a second level cycle (say from Moreover, for each

it holds: (see Lemma 1 in
Appendix). Thus the topological properties of set and (8)
and (9) lead to:

The following corollary is a consequence of Remark 2.
Corollary 3: Let be a SLD state. The Second Level

Digraph has a cycle whose overlap degree
in the state is

V. DEADLOCK AVOIDANCE TECHNIQUES

Efficient use of resources in flexible production systems
requires a real-time control strategy optimizing throughput,
resource utilization, etc. In this section, our concern is avoiding
deadlock rather than developing a complete strategy for re-
source management. In other words, our aim is to propose real-
time control rules that avoid deadlock by allocating resources
at each event occurrence, on the basis of information on the
current system state.

As stated earlier in Section II, resource acquiring/releasing
events are relevant for the underlying DEDS model. In partic-
ular, the DEDS model must consider two event types:

1) a new job enters the system (1-type event);
2) a job progresses from a resource to another one, or it

leaves the system (2-type event).

We identify 1-type event by a pair where is
the job entering and is the working procedure that
the job has to follow. Furthermore, we specify 2-type event by
a feasibletransition where is the current state
of An event isinhibited if we keep it from occurring. For
example, event is inhibited when we prevent the job

from entering to execute the working procedure
Similarly, is inhibited when we do not allow the

transition Vice versa we defineenabledthe not inhibited
events.

At ths point we define the Control Rules by introducing the
sets and as follows:

the first resource of is

in

Then the Control Rule for 1-type events is a function

(11)

where means that, for in
the state every 1-type event associated withis inhibited
(enabled). Similarly, a Control Rule for 2-type events is a
function

(12)

where indicates that, for in
the state 2-type event associated with thefeasibletransition

is inhibited (enabled).
We name restriction policy a pair Clearly, a re-

striction policy can select enabled events to avoid deadlock.
However, since it keeps events from occurring, a restriction
policy itself can eventually lead to a situation similar to a
deadlock, which is known as restricted deadlock (RD) in [1].
A trivial example is the following: assume that the Control
Rule be for every Clearly, no
enabled transition exists and jobs in process remain indefinitely
blocked, since no resource can be released. The next definition
formulates this concept in details.

Definition 7: Let be not a deadlock state for and
let be a restriction policy. We say thatis a RD state
for under if:

D7a) there exist two nonempty sets and
such that and all the
resources in are idle;

D7b) for each with
inhibits thefeasibletransition from to
Moreover, such transition remains inhibited if no job
in releases the resource that it currently holds.

The conditions of the above definition lead to “indefinite
blocking.” Namely, each job keeps on holding
indefinitely, because it requires a transition which is blocked
or inhibited. Such a transition can not become feasible and
enabled unless a job in releases its currently held resource.
So a typical circular wait occurs.

Remark 3: By Definition 7, only the Control Rule may
lead to a RD. Restricted deadlock, indeed, is independent of

Of course, if for every (i.e.,
does not inhibit any transition), there exists no RD state

for
Obviously, deadlock avoidance must prevent both dead-

lock and RD from occurring. This motivates the following
definition.
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Definition 8: Let and be a restriction
policy. Moreover, assume that, for every any state

reachable from under is not a deadlock or
a RD state. In this case, we say thatstarting at under
the restriction policy is deadlock-free.

Now we are ready to introduce the first two restriction
policies that falsify necessary conditions for a deadlock oc-
currence. The first one is quite simple and puts a bound on
the jobs in process.

Restriction Policy 1 (RP1):Let We put

if Card

otherwise

for any

The following Proposition proves that RP1 avoids deadlock.
Proposition 1: Let be the state subset

System starting at is
deadlock-free under the Restriction Policy 1.

Proof: By the definitions of and of the Control Rule
it holds in any reachable state Therefore,

according to Corollary 2, can not reach a deadlock state.
Finally, by Remark 3, can not be a RD state for under the
RP1.

At this point, we need some notations to easily introduce
the second restriction policy. So if we define the
following cycle set:

of the set is not empty (13)

In other words, contains cycles having at least one edge
in common with Furthermore, for any of and

we introduce the following job set:

the set is not empty

with (14)

Thus, contains all the jobs in process under working
procedures involving edges of Given these notations we
define the second restriction policy.

Restriction Policy 2 (RP2):Let We put

if, for any it holds:

Card

otherwise

for any

The next result shows how we can apply the above re-
striction policy to prevent the occurrence of events leading to
deadlock.

Proposition 2: Let be the state subset

Card for each of

System starting at is deadlock-free under the Re-
striction Policy 2.

Proof: Comparing Definition 3 and (14) leads to
Thus, owing to the condition on

and to the application of RP2, we have
for any cycle of and for any state reachable from

Hence by Corollary 1, can not reach a deadlock state.
In addition, by Remark 3, can not be a RD state for under
the RP2.

Next we consider a restriction policy that controls both 1-
type and 2-type events to avoid deadlocks. To put the least
restrictive constraints on the resource assignment, this control
rule avoids only transitions immediately leading to a deadlock,
by using a one-step look ahead procedure.

Restriction Policy 3 (RP3):

if does not contain any cycle

otherwise

if does not contain any cycle

otherwise.

Although RP3 prevents deadlock from occurring, it might
not avoid RD as the following example clearly shows.

Example 8: Consider the system and the state of
Example 4. By Definition 9, it follows that is a RD state
for under RP3. Indeed putting

we get

where is idle. Moreover, the function of RP3 inhibits the
feasibletransitions and Such transitions remain
inhibited if no job in releases the resource it currently
holds.

The above considerations call for a characterization of RD.
The next proposition shows that if systemis under RP3,
RD and SLD coincide.

Proposition 3: Let us define according to Restriction
Policy 3. For any necessary and sufficient condition for

to be a RD state for under is that is a
SLD state.

Proof: Necessity.
Let be a RD state for under By Definition 7,

there exist two subsets and satisfying D7a).
Moreover, for each with RP3
gives where and
Hence, due to the definition of leads to a deadlock.
Transition remains inhibited if no job in releases the
resource that it currently holds. Thus, if we ideally remove
all the jobs in from the system, remains
still inhibited. This leads us to recognize that the deadlock
condition of is characterized by a job subset

When compared with Definition 4 in which and
the above considerations prove the necessity.

Sufficiency
Bearing in mind Definition 4, the proof follows on using

the same arguments developed for proving necessity.
Note that if is empty, by Corollary 3 no SLD can arise

and, in this case, RP3 is deadlock-free. Moreover it is the least
restrictive policy one can find because it inhibits only events
leading immediately to a deadlock. In all the remaining cases
we must modify to falsify one or more of the necessary
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conditions for a SLD occurrence. To this point, putting

(15)

(with if is empty) we define a further restriction
policy.

Restriction Policy 4 (RP4):

if does not contain any cycle

and Card

otherwise

if does not contain any cycle

otherwise.

The next result shows that no deadlock may occur under
RP4.

Proposition 4: Let be the state subset:

and is not a

deadlock state

Then the system starting from is deadlock-free under
the Restriction Policy 4.

Proof: Let be any state reachable from
under RP4. Such a Policy prevents from being a

deadlock state. In addition, the definition of the Control Rule
leads to Since

the necessary condition of Corollary 3 is violated and, by
Proposition 3, is not a RD state for under RP4. This
completes the proof.

To introduce the next restriction policy, it is necessary to
define two more sets. So let be a second level
cycle and let be the set of cycles in

associated with vertices from For any we
define the following set:

is not empty (16)

In other terms, collects all the second level cycles from
corresponding to sets of first level cycles, where each set

has at least one edge in common with Moreover, for any
second level cycle and any state we introduce the
following subset of :

the set

is not empty, with (17)

Set collects all the jobs of following working
procedures, that involve some edge of the first level cycle
associated with At this point we can derive the fifth
restriction policy.

Restriction Policy 5 (RP5):

if does not contain any cycle

and it holds Card

for every

otherwise

if does not contain any

cycle

otherwise.

Given the above definition, we prove the next result.
Proposition 5: Let be the state subset

Card for every

and is not a deadlock state.

System starting from is deadlock-free under Restric-
tion Policy 5.

Proof: The condition on the initial state and the RP5
guarantee that eachreachable from is not a deadlock state.
Moreover, since it holds

for any cycle Therefore, by Corollary
3, a SLD can not occur and, by Proposition 3, neithercan
be a RD state for under RP5. Hence the Proposition.

Note that, if is empty RP3, RP4, and RP5
coincide.

Before concluding this section, we remark that RP1 and
RP2 need no look ahead. Moreover RP3, RP4, and RP5 use a
simple look ahead of one step only.

VI. COMPUTATIONAL COMPLEXITY

The computational complexity deeply affects the chances
that a deadlock avoidance policy shall succeed. In particular,
control laws with low computational effort are necessary in
real-time applications. To discuss the computational complex-
ity of the just introduced restriction policies, we distinguish
between on-line and off-line costs. The first ones concern
the real-time algorithms. The second ones characterize the
algorithms which are employed once, before the proper real-
time control.

For what concerns RP1, the only off-line computation
involves the minimum capacity This parameter can be
easily computed by searching the (nontrivial) shortest path
starting from each vertex in and ending in the same
vertex. An algorithm of such a kind requires
operations [13]. On the other hand, the on-line burden lies
only in memorizing and in updating the number of jobs in
progress

To apply RP2, it is necessary to determine off-line the cycles
from with their capacities and to build up a relation
between working procedures and cycles, for identifying the
sets [see (13)]. Since the relationship between edges of

and working procedures is an input datum, determining
cycles from becomes the main problem. To this aim, the
technical literature provides algorithms for generating cycles
in time, where represents
the number of cycles from [13]. Of course, the complexity
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of these algorithms becomes prohibitive, if is very high
(e.g., if is complete). However, in many real systems, the
adjacency matrix of is fairly sparse so that determining
all the cycles in such a digraph is not too time-consuming.
The on-line computational costs required by RP2 consists
only in updating the number of jobs in process corresponding
to each working procedure. Namely, the relation between
working procedures and cycles determined off-line allows us
to calculate for any cycle from

RP3 demands no off-line computations. Moreover, it needs
a little on-line computational effort for transforming
into (or (see Section II) and for
checking if such a new digraph contains a cycle. A depth-first
search algorithm [13] can easily perform this check, starting
with the edge just added to for obtaining
or Namely, the complexity of the depth-first
search algorithm is because the outdegree of
the vertices of equals zero or one.

To implement RP4 it is necessary to generate off-line
the cycles from and the digraph Moreover, the
cycles from with their capacities, the subset and the
minimum capacity must be specified. Building can
be performed in operations, where indicates the
sum of the lengths of all the working procedures (i.e., the
sum of resources appearing in all the working procedures,
counting repetitions). Moreover, generating the cycles of
and characterizing need
and operations, respectively, where indicates the
number of second level cycles. Finally, applying RP4 requires
the same on-line computations as RP3 and, in addition, the
on-line updating of

RP4 and RP5 are based on the same off-line computation
steps. Moreover, to use RP5 it is necessary to determine the
relationship between working procedures and second level
cycles, for characterizing the sets (see (16)). Such a
relationship and the number of jobs in process for each
working procedure allow us to update the cardinality of each
set on-line, as a job enters or leaves the system.
RP5 also demands the on-line modification of the Transition
Digraph and the detection of its possible cycles.

To sum up, the off-line computational cost is small, in the
case of RP1 and RP3, while it depends on the number of
cycles from and in the case of RP2, RP4, and RP5.
When the number of cycles is not too high (as it is the case
in many real applications), simple algorithms are known for
performing the off-line computations. Since the five policies
have small on-line computational costs, they are all suitable
for real-time applications.

Finally, a remark about RP3 is appropriate. Namely, this
policy uses a one-step look ahead procedure, it is simple and
requires low computational cost but, as we have already noted,
it needs that is empty. In such a case, RP3 is the least
restrictive policy one can implement: namely, it inhibits only
the events immediately leading to a deadlock. Finally, it is also
interesting that is empty in many cases. F.e. this happens
in FMS’s consisting only in some workstations equipped with
input (or output) buffers. In fact, the vertex corresponding to
any work station is always preceded (or followed) by the node

corresponding to the buffer in the Working Procedure Digraph.
For this reason, cycles from sharing only one vertex are
not allowed.

VII. EXAMPLES

Now we present three examples to show the characteristics
of restriction policies introduced in the previous section. In the
first two examples RP3 is deadlock-free. Hence it is the less
restrictive policy one can use. On the contrary, RP3 can not
be applied to the third example becauseis not empty. So,
assuming throughput as performance index, we use simulation
to compare Restriction Policies 1, 2, 4, 5, and the control law
introduced by Banaszak and Krogh (RPBK) [1].

Before introducing the examples, we briefly discuss some
modeling issues that are relevant in the context of our interest.
The approach proposed in this paper considers only systems
with single resources. The Example C in the following shows
a case study of this kind.

A problem that arises is related to the representation of
a set of multiple items composing the same resource type
(multiple resource). This issue is of undoubted interest because
the automated manufacturing systems may have many multi-
ple resources (i.e., buffer with multiple spaces, multiserver
machines, etc.). At a first glance, a straightforward solution to
the problem consists in replacing a multiple resource with as
many independent resources as the corresponding component
items. However, the drawback of this modeling method lies
in a considerable rise in the number of working procedures
representing the paths of jobs in the system. Indeed, since a job
requiring a multiple resource can occupy any one of the single
independent items corresponding to this resource, the route of
each job type formally generates a set of working procedures.
This makes the method unsuitable from a practical point of
view.

In some cases, however, we can easily model multiple
resources by means of a fairly limited extension of our
formalism. To this aim, let us observe that the different items
of a multiple resource are indistinguishable from the functional
point of view; that the jobs leave a multiple resource one at a
time; and finally, that a multiple resource is deadlocked only if
all its component items arebusy.The previous considerations
allow us to model a multiple resource as a sequence of unit
resources or, equivalently, by only one vertex in and
in Such a single vertex must be consideredbusy
only if the multiple resource is completely full and must be
regarded asidle in all the remaining cases. This statement
is completely consistent with the model developed in this
paper, provided that the destination of the first job leaving
the resource is known. The problem is easily solved in the
following situations.

1) The order in which jobs leave the multiple resource
is fixed. In this case the next transition of the first
job releasing the resource identifies the edge in
uniquely. e.g., this happens for jobs in a buffer subject
to a First In First Out discipline.

2) All the jobs hosted by the multiple resource require the
same next resource in the Residual Working Procedure.
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Fig. 7. Flexible Manufacturing System with three work cells (Example A).

Clearly, the edge representing the corresponding tran-
sition is uniquely determined. e.g., this condition holds
true when an input buffer serves only one machine (or
a set of identical machines represented by a vertex).

Obviously, in determining the capacity of first and sec-
ond level cycles from a vertex representing a multiple
resource must be taken into account as many times as the
number of items of the resource. Examples A and B in the
following show two systems in which each multiple resource
is represented by only one vertex.

If conditions 1) and 2) do not hold, then the results of
this paper can not be used in their present form, to deal with
multiple-resource systems. In this case it is necessary to extend
such results, using a more general model.

Example A: Recently, Hsieh and Chang [8] have discussed
the following example, formerly considered by Banaszak and
Krogh [1]. A flexible manufacturing system contains three
work cells and (see Fig. 7), where each
work cell consists of a machine an
input buffer and an output buffer The capacity of both

and is of five spaces. This system produces jobs of a
single type, following the route

We note that each input buffer can be described by a single
vertex of because, according to the previous note (see 2)),
each input buffer is followed by only one resource (i.e., by the
corresponding machine). Buffers and can be modeled
in the same way because they are always followed byFor
what concerns this buffer is followed either by or by
the fictitious resource, whch takes into account jobs at the end
of the working procedure. Since on the processing completion
a job immediately leaves the system, also the buffercan
be modeled by only one vertex. Clearly, there are two edges
outgoing from this vertex. The former reachesand the latter
ends in the fictitious resource Fig. 8 shows the working
procedure digraph, also indicating the resource capacity of
the multiple resources. In such a digraph there is one cycle

involving and whose capacity is
the total amount of the capacities of and

Clearly in this case the second level digraph is acyclic
so that is empty and RP3 is deadlock-free. As we have
already pointed out, RP3 is the least restrictive policy one can
define, because it limits the freedom in resource allocation as
little as necessary to avoid deadlock. Namely, other policies
put unnecessary constraints on the resource allocation. e.g.,

Fig. 8. Working Procedure Digraph for Example A.

Fig. 9. Flexible Manufacturing System with three work cells (Example B).

in the policy proposed by Hsieh and Chang [8], the actions
inhibiting or enabling transitions (i.e., the validity of a “control
action”) depend on the Sufficient Validity Test Algorithm. This
algorithm requires that a sufficient but not necessary condition
for deadlock avoidance be satisfied. More precisely, as the
authors remark, “a control action may pass the Sufficient
Validity Test Algorithm using one specific priority rule while
fails the test using another one.” Moreover for what concerns
the algorithm introduced by Banaszak and Krogh, this policy
puts nonnecessary constraints in using resources. In fact, as
shown by Hsieh and Chang, such a policy can inhibit some
transitions even if they do not lead to deadlock.

Example B: The system shown in Fig. 9 is made up of
three work cells and A two-space input
buffer two identical machines and and a
single-space output buffer constitute the work cell
Analogously, the work cell has an input buffer with two
spaces, two identical machines and and a single-
space output buffer Finally, work cell includes a
two-space input-buffer a machine and a two-space
output buffer The system produces two job-types
and following the routes:

Route or

or

Route or

or

Machines and are identical and can be consid-
ered as a single resource having multiplicity equal to two.
Since they are always followed by buffer machines
and correspond to a single vertex (say in and

Using the same arguments, we represent and
with a unique vertex (say Of course, since the

buffers and are, respectively, followed by
and each of them corresponds to a unique vertex. Finally
the buffer is a multiple resource, with capacity equal to
two, containing jobs addressed to and jobs which have
completed their processing. As in the previous example, we
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Fig. 10. A robotized cell (Example C).

can consider as a vertex with two edges outgoing from
it. The former reaches the resourceand the latter ends in
the fictitious resource. Note that each machine is preceded by
a unique resource (its input buffer) and is also followed by
a unique resource (its output buffer). For this reason, without
drawing we can conclude that the Working Procedure
Digraph contains no set of cycles sharing only one resource.
So, as in the previous example, the set is empty and we
can apply RP3, with the minimum constraints in the freedom
to allocate resources.

Example C: Consider a system with six machines
( , and ) and two robots and
which transfer jobs from a machine to another one (see
Fig. 10). Hence we have R where is the fictitious
resource. There are three jobs to produce, following the
working procedures and respectively. Each
1-type job is automatically loaded on machine where the
first operation takes place. Then the robot transfers the
job to the machine Afterwards the robot transports
the job to machine From here the piece directly goes on
to machine and successively it is unloaded by robot
into an output buffer (of infinite capacity). Analogously each
2-type job is directly loaded on machines transferred to
machine by robot and unloaded into the output buffer
by robot Finally, each 3-type job is loaded on machine

and, from here directly transferred to machine Later
robot carries the job to machine and robot unloads it
into the output buffer. Therefore the working procedures are

and
The corresponding Working Procedure Digraph has been

used in Example 4 and is shown by Fig. 3. It has three
cycles

and
The Second Level Digraph contains a

unique cycle where and
as Fig. 6 and Example 7 clearly indicate.

Moreover, since belongs to RP3 can not be applied to
this case. Hence we report the results of a simulation study
comparing RP1, RP2, RP4, RP5 and the control law proposed
by Banaszak and Krogh.

TABLE I
MEAN AND STANDARD DEVIATION OF SERVICE TIMES FOR CASE 1 (EXAMPLE C)

To apply RP1, we observe that the minumum capacity of
cycles from is Hence such a policy does not
allow more than two jobs in the system.

For what concerns RP2, we build up the relationship be-
tween working procedures and cycles, which identifies the
following sets: and

According to this policy, a new 1-type job can enter
the system only if it holds

and Analogously a new 2-type job can
be loaded into the system only if the relation
is verified. Finally, a new 3-type job can be supplied to
the system only if the constraints and

are satisfied. Note that
because both sets identify 1-type and 3-type in-process jobs.
On the other hand, the set collects 1-type and 2-type
in-process jobs.

To implement RP4 we have to determine the capacity of the
second level cycle. Since
such a policy allows four jobs in the system simultaneously.

To apply RP5 we determine the following sets:
while is empty. Hence a 1-type (or a 3-

type) job can enter the system iff On the
contrary, a 2-type job can always be loaded into the system.
Note that collects all the first-type and the third-type
jobs in-process.

The quality of the policies described above is shown by im-
plementing a SIMAN simulation model [12] and by assuming
the system throughput as performance index. The following
conditions rule the simulation. First, the job types enter the
system following the periodic order: types 1, 2, 3, 1, 2, 3,
etc. Second, a job is loaded into the system as soon as the first
resource of its working procedure isidle. Finally, the law “First
In First Out” rules the service priority setting. We simulate the
system in four different working conditions denoted by Cases
1, 2, 3, and 4. Service times for each resource are generated
randomly by a gamma distribution with meanand standard
deviation In particular, in Case 1 the service times balance
the workloads of the eight resources (machines and robots).
Table I reports and for each resource. On the other hand,
Cases 2, 3, and 4 are unbalanced and all the resources, but one,
have the same service times as Case 1. In particular, Case 2
assumes robot as bottleneck, with service time distribution
characterized by 4.5 and 0.9. Moreover, resources

(with 3 and 0.6) and (with 10 and 2)
are, respectively, bottlenecks in Case 3 and Case 4.

In each simulation we use the method of batch means to
compute the 95% confidence intervals for throughputs. To this
aim, after a transient period corresponding to the completion
of 500 jobs, we simulate 60 000 completed parts, divided into
40 batches of the same size. Fig. 11 shows the throughputs for
each working condition. The width of the confidence interval
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Fig. 11. Example C: throughput values (jobs per time unit).

is less than 0.6% in any simulation, and confirms the good
precision of the throughput estimations. Fig. 11 also shows
that throughput becomes higher and higher using restriction
policies in the following order: RP1, RP2, RP4, and RP5.
Moreover RPBK is better than RP1, but it gives poor results
especially if compared with RP4 and RP5.

VIII. C ONCLUSIONS

In this paper we focus on the circular wait problem in
automated production systems, by using a digraph theoretic
approach to develop necessary and sufficient conditions for
the occurrence of deadlocks and Second Level Deadlocks. In
particular, the definition of the Transition Digraph allows us
to enlighten the mechanism of interaction among jobs and
resources that leads to such critical situations. We assume that
the dynamics of the production system is described by a DEDS
model whose state provides the information necessary to build
the Transition Digraph. Only events that involve resource
releasing or resource acquiring modify such a digraph. In this
context, the control activity consists in inhibiting or in enabling
the above events in dependence of the current system’s state.
In other words, the control laws appear as restriction policies
preventing event occurrences that lead to deadlocks. The basic
idea is that such policies must falsify one of the necessary
conditions for the deadlock, derived in the paper. At the same
time, however, one must avoid that a condition of indefinite
blocking occurs as consequence of the restriction policies
themselves.

Any scheduling policy not involving events inhibited by
deadlock-free restriction policies is deadlock-free. Thus each
restriction policy implicitly identifies a class of scheduling
strategies. In Section IV we propose five restriction policies,
involving different computational complexities and perfor-
mances. RP1 and RP3 have small off-line costs. On the other
hand, the off-line computations pertaining to RP2, RP4 and
RP5 have exponential worst-case complexity, because the
number of cycles in a digraph can be exponential in the
number of vertices. However, in many practical cases such
computations can be executed in a reasonably short time.
Moreover, they are carried out only once, before the proper
on-line control.

All the five restriction policies require small on-line com-
putational costs, so that they are suitable for real-time imple-
mentation. An interesting result concerns RP3. This policy is

deadlock-free only for particular, but not infrequent, systems.
On the other hand, in these cases it is the least restrictive policy
one can find. Moreover, it is very simple because it only uses
a look ahead of one step.

The approach proposed in this paper considers only single
resources. However, the examples developed in Section V
show that in some cases it is easy to extend our formalism
to take into account multiple items of the same resource type.
Starting from the results of this work, a more general approach
considering multiple resources in a graph-theoretic framework
will be developed in a next paper nowadays in progress.

Before concluding, a final consideration is in order. All the
avoidance approaches proposed in the literature offer both
advantages and drawbacks. Future researches should deter-
mine classes of system configurations for which a particular
avoidance method is more convenient than the remaining ones.

APPENDIX

Proving Theorem 2 requires some preparation that leads to
three lemmas. The details of the mechanism leading to the
deadlock of a cycle are the main concern of Lemma 1. In
particular, the distribution ofbusy and idle resources inside
the cycle is discussed and thefeasibletransition leading to the
deadlock is characterized. Lemma 2 establishes that the cycle
deadlocked by a given transition is unique. Finally, Lemma
3 uses the previous results to derive some important facts
concerning the configuration of thebusy/idle resources that
is a necessary characteristic of a SLD.

Lemma 1: Let the cycle of be not in deadlock
condition in Suppose there exists afeasibletransition

in the state such that is in deadlock condition in
Then, with reference to state satisfies the

following properties:

L1a) nodes from represent busyresources
and oneidle resource;

L1b) is the idle resource of (with and
;

L1c) edges from form an open path linking all
the vertices of and ending in with a feasible
transition. Thus such a path contains
edges (i.e., which represent

blocked transitions followed by one
feasible transition.

Proof: L1a) is true.
By contradiction, assume L1a) false and consider two cases.

1) All the resources from arebusyin the state so that
the outdegree of each vertex of in is equal
to one. Now, if Corollary 1 implies
that is in deadlock condition in which is a
contradiction. So consider Since
is idle and all the nodes of are busy, it follows:

Thus the digraph transformation of
leading to does not cancel or add any edge
to Consequently, executing keeps the
Overlap Degree of unchanged, so that is not in
deadlock condition in in contradiction with
the assumption.
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2) At least two resources from are idle in the state
Since twoidle resources can not becomebusyas result
of a single transition, there exists nofeasibletransition,
leading in deadlock condition in a
contradiction.

L1b) is true.
By L1a), the feasibletransition increases the number

of busy resources of from to Such
an increment occurs only if corresponds to a job leaving

to occupy theidle resource Finally, since
the outdegree of is zero, there is no cycle in containing
the fictitious resource. Hence we get:

L1c) is true.
By assumption, makes to be in deadlock condition

in Hence we get

(18)

where and
According to the transformation mechanism

leading from to the set
differs from in the fact that it contains one more
edge which starts from (say It turns out that
edges in form an open path joining all the vertices
from containing edges and ending in
Obviously, the last edge of such a path is afeasibletransition.
Hence the proof.

Remark A1: From the proof of L1c) it follows that there
exists a job having and
respectively, as first, second, and third resource in

Remark A2: Assume that satisfies Lemma 1. Since the
outdegree of any vertex of is one at most, if
and from L1a) and L1c) it follows that
and In other words, each edge of outgoing
from a vertex of is in and, of course, ends in a node
still belonging to

Now, it is natural to ask whether there exist several cycles
deadlocked by the samefeasible transition. The next result
enlightens this point.

Lemma 2: Let be not a deadlock state and let be
a feasibletransition of If there exists a cycle of

in deadlock condition in then is the only
cycle of in such a condition.

Proof: By contradiction, assume that contains a
cycle that is in deadlock condition in
According to L1b), this means that Since the
output degree of each vertex of the Transition Digraph is less
or equal to one, can not contain distinct cycles
with nodes in common. It follows and, hence, a
contradiction.

Now let be a SLD state for and and be the
corresponding job and resource sets enjoying the properties
stated in Definition 4. We say that such sets areminimal, if
no proper subsets and exist enjoying the
conditions of Definition 4.

With this notion as background, we state the following
necessary conditions for the occurrence of a SLD.

Lemma 3: Let be a SLD state for and let and
be the corresponding minimal sets. Then there exists a set
of cycles of satisfying the following conditions:

L3a) for each there exists afeasible transition
such that is in deadlock condition in

L3b) for each transition there exists a
cycle which is in deadlock condition in

L3c) the set of all the vertices of the cycles from is
included in

L3d) the set of all thefeasible transitions of be-
longing to cycles from is equal to

L3e) in the state, there exists only oneidle resource in
(say Such resource is common to all the

cycles from

Proof: By Definition 4 and Theorem 1, for each
there exists a cycle of in deadlock condition in

So, denoting with the set of such cycles, we
can now prove the statements of the Lemma.

L3a) and L3b) are true.
This proof is a straightforward consequence of the construc-

tion of
L3c) is true.
Let be a vertex of By L3a), there exists

such that is in deadlock condition in Two
cases can occur. If then, by Lemma 1, is busy
and where indicates the job holding it. If

then where is the job holding
Obviously in both cases leads to a deadlock involving

Thus, and, by D4c), Moreover D4a)
yields and In any case the above
arguments imply and complete the proof.

L3d) is true.
First we show that eachfeasible transition of

belonging to cycles from is in Let and
Since both vertices and are in

L3c) gives Moreover, since is busyand is
idle, D4b) leads to: and
Hence we conclude that

Vice versa we show that eachfeasibletransition from
belongs to cycles from Assume the contrary, i.e., that there
exists afeasible transition which belongs to no
cycle from By Remark A2, this means that
Hence, by L3c), the sets and :

are proper subsets of and It is now easy
to realize that and satisfy the conditions of Definition
4. Therefore and are not minimal, in contradiction with
the assumption.

L3e) is true.
By L1a) there exists anidle vertex in (say To

prove the unicity of this vertex, we proceed by contradiction.
In particular, we show that if there exists anotheridle resource

with then and are not minimal, in
contradiction with the assumption.

Let be the subset of collecting all the cycles containing
the vertex Moreover let indicate the proper
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subset of all the vertices from belonging to cycles from
We get because by L1a), represents the

only idle resource from With this as background we
put and and
show that and satisfy the conditions established by
Definition 4. Obviously, L3c) leads to and, since

we clearly get
To begin with, we first observe that, by construction,

and satisfy both the property D4b) and the condition
Moreover, since by Remark A2 each edge

from outgoing from a vertex of still ends in
it holds Hence D4a) is also verified.

To complete our arguments we have to prove that and
satisfy D4c). We first observe that

by construction. Then let be such that
Putting let indicate the cycle from in

deadlock condition in As a result, L1b) yields
and hence Consequently, as the job

also all the jobs holding resources from are in Thus
the subset of jobs in deadlock condition in
satisfies the relation It follows that, for each

such that the transition
releasing to hold leads to a deadlock state for
which

The above arguments show that there exist the proper
subsets and satisfying conditions of
Definition 4. However this means that and are not
minimal, which is the contradiction we had to show.

Finally, to complete the proof, it is sufficient to note that by
L1a), each cycle from has oneidle vertex: so is common
to all the cycles from

Now we are ready to prove Theorem 2.
Proof of Theorem 2:Sufficiency.
Our claim is that if there exists an ordered cycle set

satisfying Th2a) and Th2b), then is a SLD state (see
Definition 4). The proof is by construction. To begin with,
let be the set of resources corresponding to the vertices
of the cycles in :

(19)

and let be the set of jobs holding resources in :

(20)

The definition (20) implies Furthermore,
by Remark A2, for any cycle each edge of
outgoing from a vertex in ends in a node still belonging to

This means that Moreover, (20) and Th2a)
leads to and
Thus, all the resources in are idle and we
conclude that D4a) and D4b) hold true.

Finally, consider any job with
(i.e. and put Since by

(19) and (20) is a vertex of a cycle from (say
Remark A2 yields Hence, by Th2b), there
exists a cycle from in deadlock condition in
Because of (19) and (20), the jobs involved in such a deadlock
form a subset as D4c) requires.

Necessity.

Let be the set satisfying Lemma 3. We now show that
suitably ordering elements from leads to a set satisfying
Th2a) and Th2b).

Let be any cycle from By L1c), possesses only one
edge representing afeasibletransition in (say
In addition, by L3d) it holds and, by L3b), there
exists a cycle in deadlock condition in
Hence is related to in the fact that “the onlyfeasible
transition of deadlocks ” To exhibit this relation between
cycles from it is convenient to build up a digraph
by associating a vertex to each cycle and an edge from vertex

to vertex iff the only feasible transition of deadlocks
This new digraph enjoys the following properties:

1) the outdegree of each vertex equals one. Namely, by
Lemmata 1 and 2, each cycle from has only one
feasibletransition in the state which deadlocks only
one cycle from

2) by L3a) and L3d) the indegree of each vertex is greater
than zero.

Clearly the above properties imply that the indegree of each
vertex is one and that is the union of disjoint cycles.
We now show that, since and are minimal, is
nothing but a unique cycle containing all the nodes associated
with the elements from the set

This proof is by contradiction. So suppose that is
the union of two or more disjoint cycles. Let be
the node set of one of such cycles and be the
corresponding set of nodes of belonging to cycles from

Putting and :
and using the same arguments that prove L3e), we can show
that and satisfy conditions of Definition 4. Hence
and are not minimal and the contradiction is established.
To sum up, is a unique cycle containing all the nodes
associated with elements from

Now, putting choose a node of say
The cycle of establishes an ordering of the cycle

set
At this point we show that satisfies Th2a) and Th2b).
Th2a) is true.
Statement L3e) establishes that contains only oneidle

resource (say which is shared by all the cycles from
Now, given any two distinct cycles and

we show that is the only resource shared by and
By contradiction, suppose there exists

with Clearly is busy. Therefore, by Remark
A2, Now let be the cycle in
deadlock condition in The digraph
contains two edges both ending in and outgoing from

and respectively. This is a contradiction because the
indegree of vertex must be one.

Th2b) is true.
The proof follows immediately from the definition of
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