
1/16

A Resource Allocation Controller for Cloud-based
Adaptive Video Streaming

Luca De Cicco, Saverio Mascolo, Dario Calamita

Politecnico di Bari, Dipartimento di Ingegneria Elettrica e dell’Informazione

MCN 2013 - Budapest, Hungary
13 June 2013

2/16

Motivation

Two ongoing trends (Cisco VNI)

Video is booming: video applications today account for more than
half of the global traffic

Mobile is growing: mobile data traffic will be half of global traffic in
2017

2010 2011 2012 2013 2014 2015
0

10

20

30

40

E
B

Video

P2P

Data

Web

Video conf

Introduction 3/16

The challenge

Main Goal

Design a cloud-based platform for massive distribution of adaptive videos

Issues

1 Bandwidth is unpredictable in best-effort Internet

2 Mobile devices have limited CPU and display resolution

3 User demand is highly time-varying

Design Goals

1 Issues 1 and 2 ⇒ Implement video adaptivity

2 Issue 3 ⇒Resource Allocation to dynamically turn on/off servers

Introduction 3/16

The challenge

Main Goal

Design a cloud-based platform for massive distribution of adaptive videos

Issues

1 Bandwidth is unpredictable in best-effort Internet

2 Mobile devices have limited CPU and display resolution

3 User demand is highly time-varying

Design Goals

1 Issues 1 and 2 ⇒ Implement video adaptivity

2 Issue 3 ⇒Resource Allocation to dynamically turn on/off servers

Introduction 3/16

The challenge

Main Goal

Design a cloud-based platform for massive distribution of adaptive videos

Issues

1 Bandwidth is unpredictable in best-effort Internet

2 Mobile devices have limited CPU and display resolution

3 User demand is highly time-varying

Design Goals

1 Issues 1 and 2 ⇒ Implement video adaptivity

2 Issue 3 ⇒Resource Allocation to dynamically turn on/off servers

The control plane 4/16

The proposed Control Plane

other
flows

i−th server j−th server

Clients

1

Client

Load
Balancer

Resource Alloc.

Controller

Cloud API

Central Unit

Mon. Mon.
3

2

SSACSSAC

SSAC SSAC

4 N(t)

B
(i)
A

l̃
(i)

n(i)

M(t)

l̃
(i)
1

B
(j)
A

l̃
(j)
1

Architecture

One Central Unit

M(t) servers

Controllers

Stream Switching Adaptation Controller (per-flow)

Load balancer (centralized)

Resource Allocation Controller (centralized)

The control plane 5/16

Stream Switching Adaptation Controller

Stream-switching approach

The video is available at different resolutions and bitrates, a controller
selects the video to be streamed

Quality Adaptation Controller (QAC) - ACM MMSYS 2011

Switching
Controller

Video

buffer

l(t)

sender

Levels

r(t), l(t)

HTTP
trafficbuffer

Player

q(t)

τf
Decoder

Server

Internet

selects
video level

Adaptation logic is executed at the server (in the Cloud)

The video flow behaves as any TCP greedy flow

Fairness is inherited by TCP congestion control

Resource Allocation Controller 6/16

Inelastic videos

Total Uplink Capacity

Interruptions
occur

Video bitrate

nCT/l

CT

l

Fact

If video is not adaptive, the delivery network must be always
overprovisioned to prevent playback interruptions

Resource Allocation Controller 7/16

Elastic videos

Total Uplink Capacity

Interruptions
occur

n

CT

CT/lM

l ∈ {l0, . . . , lM}

CT/l0

We can work at 100% uplink channel utilization

But: users will not receive the maximum video level anymore

Action: increase the number of servers to increase uplink capacity

Resource Allocation Controller 8/16

Why flows do not get the maximum video level?

Where’s the bottleneck?

1 At the Server. Can act on these flows by turning ON machines.

2 At the Client. Cannot act on these flows (threated as a disturbance)

The goal of the RAC is to steer to zero the number of uplink-limited
flows nUL(t)

We need to estimate nUL(t)

limited flows = # uplink-limited flows + # client limited flows

nL(t) = nUL(t) + nCL(t)

The CU measures nL(t) easily

A variable threshold mechanism estimates nCL(t) (details in the
paper)

Resource Allocation Controller 8/16

Why flows do not get the maximum video level?

Where’s the bottleneck?

1 At the Server. Can act on these flows by turning ON machines.

2 At the Client. Cannot act on these flows (threated as a disturbance)

The goal of the RAC is to steer to zero the number of uplink-limited
flows nUL(t)

We need to estimate nUL(t)

limited flows = # uplink-limited flows + # client limited flows

nL(t) = nUL(t) + nCL(t)

The CU measures nL(t) easily

A variable threshold mechanism estimates nCL(t) (details in the
paper)

Resource Allocation Controller 9/16

The Resource Allocation Controller

Switch-on Controller: steers n̂UL(t) to zero (control-loop set point)

Switch-off Controller: turns off servers when the goal of the
switch-on controller is reached

CU

Switch−on controller Switch−off controller

Switch−on
delay

G 0
c (z)1

C

(1− z−r)Ĝ (z)

z−r0 n̂ULN M1
1−z−1

BA1
B

Non

Noff

Switch-on controller

PD controller: G 0
c (z) = Kp +Kd(1− z−1)

The Smith predictor compensates the
effect of the switch-on delay

The model used in the SP is an integrator
(tf from N to M)

Switch-off controller

It turns off (if Non = 0)
a number of machines
equal to BA/B

Simulator 10/16

Simulations

Simulator

based on CDNSim

implements the control modules and a module monitoring CPU costs

Metrics

Fraction of flows obtaining the maximum level: α(t) = 1− nL(t)/n(t)

Total Servers costs Cc(t)

Considered controllers

The proposed PD controller with Kp = −0.7, Kd = −0.3

The proposed controller without the Smith predictor

Feed forward controller: N(tk) = n(tk)/C −M(tk) (difference
between the number of servers that should be ON to provide
maximum quality and the number of active server)

Simulator 11/16

Scenarios

Scenarios

Client downlink is not the bottleneck ⇒nCL(t) = 0

16% of users have a downlink channel not allowing maximum video
level (nCL(t) 6= 0):

Request arrival (Poisson with variable intensity r(t))

0 200 400 600 800 1000 1200
0
5

10
15
20
25
30
35
40

Time (s)

R
e

q
u

e
s
ts

/s

Results 12/16

Results: client limited flows (n̂CL = 0)

0 200 400 600 800 1000 1200
0

50

100

150

Time (sec)

M
(t

)

r=20 r=30 r=5 r=30 r=0

SC FF RAC no SP RAC Number of active servers over
time is smooth with RAC

Other controllers exhibit
overshoots when r increases

Machines are turned on, but the
effect on nUL is measured only
after the switch-on delay

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time (sec)

α
(t

)

FF

RAC no SP

RAC

Undershoots

Overshoots waste resources,
undershoots hurt QoE (less
videos receiving max video level)

RAC is worse than FF in terms
of α only during transients when
r increases

Results 13/16

Results: client limited flows (n̂CL 6= 0)

16% of flows with 1Mbps connection ⇒ expected maximum α = 0.84

0 200 400 600 800 1000
0

20

40

60

80

100

Time (sec)

M
(t

)

r=20 r=30 r=5 r=30 r=0

SC FF RAC no SP RAC Large overprovisioning in the
case of feed forward controller

RAC w/o SP performs better
but shows overshoots when
requests rate increases

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time (sec)

α
(t

)

FF

RAC no SP

RAC

αRAC = 0.73

αFF = 0.78

RAC outperforms other
controllers in terms of costs
(saves 10%) and pays a slight
performance degradation (4%)

Results 14/16

Cost savings (nCL 6= 0)

0 250 500 750 1000
0

10

20

30

40

50

Time (sec)

C
o
s
ts

 s
a
v
in

g
s
 %

FF

RAC no SP

Results 15/16

Let’s see RAC in motion

Heat map

Warmer color at
(x,y) ⇒many flows
are receiving level x
by server y

Ideal: dark blue (0)
everywhere except
for a bright evenly
colored bar at level
9

Levels pdf

Fraction of flows obtaining level x

Ideal: zero for x < 9, one for x = 9

Conclusions 16/16

Conclusions

We have proposed a Resource Allocation Controller for cloud-based
adaptive video streaming

Feedback control theory is employed to compute the number of
servers to turn on/off

The RAC strives to minimize delivery network costs while delivering
the maximum video quality

The RAC controller saves up to 30% CPU costs while paying a small
performance quality degradation during transients

Future work: make the system distributed

Thanks!

Questions
? ? ?

? ?
?

?
?

?

BACKUP SLIDES

Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL

Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL

Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL

Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL

Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL

Conclusions 16/16

The Threshold L(t)

Definition

Every flow getting an average video level less than L(t) is considered as
client limited

Fair Level

lf (t) = min(B/n(t), lM)

Fair level all n(t) flows should get in the case nCL(t) = 0.

The threshold L(t)

L(lf (t), α(t)) = lf (t) + α(t) · (lM − lf (t))

where α is the number of flows getting the maximum level.
Bandwidth limited clients leave bandwidth to other clients with the effect
of increasing their average levels

	Introduction
	The control plane
	Resource Allocation Controller
	Simulator
	Results
	Conclusions

