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Motivation

Two ongoing trends (Cisco VNI)

Video is booming: video applications today account for more than
half of the global traffic

Mobile is growing: mobile data traffic will be half of global traffic in
2017
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The challenge

Main Goal

Design a cloud-based platform for massive distribution of adaptive videos

Issues

1 Bandwidth is unpredictable in best-effort Internet

2 Mobile devices have limited CPU and display resolution

3 User demand is highly time-varying

Design Goals

1 Issues 1 and 2 ⇒ Implement video adaptivity

2 Issue 3 ⇒Resource Allocation to dynamically turn on/off servers
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The proposed Control Plane
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Stream Switching Adaptation Controller

Stream-switching approach

The video is available at different resolutions and bitrates, a controller
selects the video to be streamed

Quality Adaptation Controller (QAC) - ACM MMSYS 2011
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Adaptation logic is executed at the server (in the Cloud)

The video flow behaves as any TCP greedy flow

Fairness is inherited by TCP congestion control
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Inelastic videos

Total Uplink Capacity

Interruptions 
occur

Video bitrate

nCT/l

CT

l

Fact

If video is not adaptive, the delivery network must be always
overprovisioned to prevent playback interruptions
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Elastic videos

Total Uplink Capacity

Interruptions
occur

n

CT

CT/lM

l ∈ {l0, . . . , lM}

CT/l0

We can work at 100% uplink channel utilization

But: users will not receive the maximum video level anymore

Action: increase the number of servers to increase uplink capacity



Resource Allocation Controller 8/16

Why flows do not get the maximum video level?

Where’s the bottleneck?

1 At the Server. Can act on these flows by turning ON machines.

2 At the Client. Cannot act on these flows (threated as a disturbance)

The goal of the RAC is to steer to zero the number of uplink-limited
flows nUL(t)

We need to estimate nUL(t)

# limited flows = # uplink-limited flows + # client limited flows

nL(t) = nUL(t) + nCL(t)

The CU measures nL(t) easily

A variable threshold mechanism estimates nCL(t) (details in the
paper)
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The Resource Allocation Controller

Switch-on Controller: steers n̂UL(t) to zero (control-loop set point)

Switch-off Controller: turns off servers when the goal of the
switch-on controller is reached

CU
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Switch-on controller

PD controller: G 0
c (z) = Kp +Kd(1− z−1)

The Smith predictor compensates the
effect of the switch-on delay

The model used in the SP is an integrator
(tf from N to M)

Switch-off controller

It turns off (if Non = 0)
a number of machines
equal to BA/B
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Simulations

Simulator

based on CDNSim

implements the control modules and a module monitoring CPU costs

Metrics

Fraction of flows obtaining the maximum level: α(t) = 1− nL(t)/n(t)

Total Servers costs Cc(t)

Considered controllers

The proposed PD controller with Kp = −0.7, Kd = −0.3

The proposed controller without the Smith predictor

Feed forward controller: N(tk) = n(tk)/C −M(tk) (difference
between the number of servers that should be ON to provide
maximum quality and the number of active server)
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Scenarios

Scenarios

Client downlink is not the bottleneck ⇒nCL(t) = 0

16% of users have a downlink channel not allowing maximum video
level (nCL(t) 6= 0):

Request arrival (Poisson with variable intensity r(t))
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Results: client limited flows (n̂CL = 0)
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Other controllers exhibit
overshoots when r increases

Machines are turned on, but the
effect on nUL is measured only
after the switch-on delay
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Results: client limited flows (n̂CL 6= 0)

16% of flows with 1Mbps connection ⇒ expected maximum α = 0.84
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Cost savings (nCL 6= 0)
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Let’s see RAC in motion

Heat map

Warmer color at
(x,y) ⇒many flows
are receiving level x
by server y

Ideal: dark blue (0)
everywhere except
for a bright evenly
colored bar at level
9

Levels pdf

Fraction of flows obtaining level x

Ideal: zero for x < 9, one for x = 9
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Conclusions

We have proposed a Resource Allocation Controller for cloud-based
adaptive video streaming

Feedback control theory is employed to compute the number of
servers to turn on/off

The RAC strives to minimize delivery network costs while delivering
the maximum video quality

The RAC controller saves up to 30% CPU costs while paying a small
performance quality degradation during transients

Future work: make the system distributed
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Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL



Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL



Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL



Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL



Conclusions 15/16

Estimating nUL(t)

Estimating the number of
uplink-limited flows

L to estimate nL(t)
(limited flows)

L(t) to estimate n̂CL(t)

n̂UL(t) = nL(t)−n̂CL(t)

Ideally

nUL(t) = 0 with the
minimum number of
servers

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

l0 l1 l2 l3 l4 l5

L

number of

C
u
m

u
la

ti
v
e
 F

lo
w

s

concurrent flows

lM

nL

Estimate of

Client limited flowsL(t)

n̂CL

Uplink limited flows

Ideal situation

nL = n̂CL



Conclusions 16/16

The Threshold L(t)

Definition

Every flow getting an average video level less than L(t) is considered as
client limited

Fair Level

lf (t) = min(B/n(t), lM)

Fair level all n(t) flows should get in the case nCL(t) = 0.

The threshold L(t)

L(lf (t), α(t)) = lf (t) + α(t) · (lM − lf (t))

where α is the number of flows getting the maximum level.
Bandwidth limited clients leave bandwidth to other clients with the effect
of increasing their average levels
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