
TAPAS: a Tool for rApid Prototyping of
Adaptive Streaming algorithms

Luca De Cicco
Politecnico di Bari, Italy

luca.decicco@poliba.it

Vito Caldaralo
Quavlive srl, Italy

vito.caldaralo@quavlive.com
Vittorio Palmisano

Quavlive srl, Italy
vpalmisano@quavlive.com

Saverio Mascolo
Politecnico di Bari, Italy
mascolo@poliba.it

ABSTRACT
The central component of any adaptive video streaming sys-
tem is the stream-switching controller. This paper intro-
duces TAPAS, an open-source Tool for rApid Prototyping
of Adaptive Streaming control algorithms. TAPAS is a flex-
ible and extensible video streaming client written in python
that allows to easily design and carry out experimental per-
formance evaluations of adaptive streaming controllers with-
out needing to write the code to download video segments,
parse manifest files, and decode the video. TAPAS currently
supports DASH and HLS and has been designed to minimize
the CPU and memory footprint so that experiments involv-
ing a large number of concurrent video flows can be carried
out using a single client machine. An adaptive streaming
controller is implemented to illustrate the simplicity of the
tool along with a performance evaluation which validates
the tool.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: [Gen-
eral]

Keywords
Adaptive streaming, DASH, HLS, rapid prototyping

1. INTRODUCTION
Today video streaming applications generate more than

half of the global Internet traffic [3]. The choice of using the
progressive download streaming (PDS) approach made by
YouTube in 2005 has been the main driver of this growth.
With the PDS technique the video is encoded at a given
bitrate and it is sent to the user through a HTTP connection
using a TCP socket and played using a web browser.

An evolution of PDS is the adaptive streaming. With this
technique the video content bitrate and resolution can be dy-
namically varied to match the network available bandwidth

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VideoNext’14, December 02-05 2014 Sydney, Australia.
Copyright 2014 ACM 978-1-4503-3281-1/14/12 ...$15.00.
http://dx.doi.org/10.1145/2676652.2676654 .

and user screen resolution. The two leading standardiza-
tion efforts related to adaptive streaming are the HTTP
Live Streaming (HLS) proposed by Apple1 and the ISO
standard Dynamic Adaptive Streaming over HTTP (MPEG-
DASH) [10]. Both the standards require the video content
to be encoded at different bitrates and resolutions, the video
levels or representations. Then, each video level is logically
or physically divided into segments, or chunks, of fixed dura-
tions. A manifest file2 is stored at the server and is used to
associate to each (chunk,video level) pair its corresponding
URL. The client downloads and parses the manifest file and
constructs a data structure that is used to request consec-
utive video segments of possibly different representations.
A controller dynamically decides, for each video segment,
the video level to be streamed to achieve the best possible
quality given the available bandwidth with the constraint of
avoiding video interruptions. Both HLS and MPEG-DASH
require the controller to be implemented at the client and to
use HTTP requests to fetch the video segments from stan-
dard HTTP servers.

The controller is a key component of any video stream-
ing system having the overall goal of maximizing the user
QoE. Towards this end, a careful design phase is required
which typically follows an iterative and incremental devel-
opment method made of two phases which form a cycle: 1)
design and implementation of the controller; 2) experimen-
tal performance evaluation to check whether the specifics
are met. In order to carry out the experimental evaluation,
a testbed has to be set-up and a complete adaptive video
streaming player, incorporating the controller, has to be im-
plemented. Developing an adaptive video streaming player
is a time consuming process even for the experienced pro-
grammer and requires several modules to be designed and
implemented.

In this paper we propose TAPAS, a Tool for rApid Pro-
totyping Adaptive Streaming controllers, that allows to only
focus on controller design rather than having to spend time
on the complex task of implementing a complete adaptive
video player. After the design and experimentation phase is
completed, the controller can be implemented and integrated
in a production adaptive video streaming player. Our over-

1R. Pantos and W. May. HTTP Live Streaming. IETF
Draft, June 2012.
2In the case of HLS a set of extended M3U8 playlists is
used. In this paper we will use the terms manifest or playlist
interchangeably.

all goal is to make TAPAS a reference tool for the research
community in order to foster experiment reproducibility.

The tool has been designed to allow a large number of
concurrent video streaming sessions to be launched on the
same machine. To make this possible, TAPAS allows to dis-
able decoding of the video so that both CPU load and RAM
usage can be contained. Another important feature is that,
being TAPAS written in Python, the design of a new con-
troller requires only to extend a base controller class without
having to compile the code. TAPAS has been tested to be
compliant with the video samples provided in the DASH
dataset [7] and the YouTube DASH dataset [1].

The DASH Industry Forum3 (DASH-IF) initiative collects
several reference web players supporting DASH for both
HTML5 and Flash. Even though these players are com-
plete, they all have to be run in web browsers, making ex-
perimentation of the control algorithm difficult. In particu-
lar, experimenting with web based video players limits the
number of concurrent videos that can be run from the same
machine due to memory and CPU requirements. Moreover,
instrumentation of the experiment and results logging may
be a complex task. The most closely related work to ours
is [9] where authors present a plugin written in C++ to en-
able DASH on the popular VLC4 media player. The plugin
is written to allow the implementation of controllers by ex-
tending a base class. However, since the video stream has to
be decoded, the tool proposed in [9] cannot be used to run
experiments in which a large number of video streaming in
parallel is involved due to excessively high CPU and RAM
requirements.

2. ARCHITECTURE
The stream-switching controller is the key component of

any adaptive video streaming system; for each video segment
si it chooses the video level lj in the discrete set of available
video levels L with the overall goal of maximizing the user
QoE in terms of: 1) video playout continuity : interruptions
due to buffer underruns should be avoided and video level
switching frequency should be minimized; 2) video quality :
the video level should be maximized; 3) latency : the start-
up delay, i.e. the time elapsed to start the video stream
playback, should be minimized.

After the control algorithm has been designed, a careful
experimental evaluation phase is required to verify that the
design requirements are met. To the purpose, a full adaptive
video streaming player has to be implemented comprising at
least the following modules: 1) a parser module that parses
the manifest file; 2) a downloader that fetches the video
segments from the HTTP server and feeds them to the player
playout buffer; 3) a media engine that plays the video stored
in the playout buffer; the media engine drains the playout
buffer and feeds the video segments to a decoder; 4) the
controller that chooses the video level and communicates to
the downloader module the video segment to download.

TAPAS5 is an open source tool written in python6 lan-
guage conceived to simplify both the design and experi-
mentation of adaptive streaming algorithms. TAPAS em-
ploys the GStreamer7 multimedia framework for decoding

3http://dashif.org
4http://www.videolan.org/vlc/
5http://c3lab.poliba.it/index.php/Tapas
6http://www.python.org
7http://gstreamer.freedesktop.org/

Server
HTTP

TAPAS

Display
Client

Log

NetShaper

RTT, rate, queue

HTTP request

Figure 1: A typical controlled testbed

Algorithm 1 Tapas player

1 c = Controller(ctrl_options)
2 p = Parser(url_playlist)
3 m = MediaEngine(media_options)
4 player = TapasPlayer(controller=c, parser=p
5 media=m, other_options)
6 player.play()

and playing the received video. In particular, it provides
a full adaptive video streaming player that is able to play
video streams using both DASH and HLS standards. The
unique feature of TAPAS is its flexibility: new control logics
and manifest parsers can be implemented by inheriting base
classes as it will be shown in the following. In this manner,
the researcher can focus only on the design of the controller
by leveraging all the other implemented components.

Figure 1 shows a typical controlled testbed that can be
used to carry out an experimental evaluation of a stream-
switching control algorithm. The testbed can be imple-
mented using only two hosts: the first machine runs TAPAS
that requests the video chunks to a standard HTTP server
placed on the second host. On the second host a bandwidth
shaper similar to dummynet can be employed to emulate a
WAN scenario in which the end-to-end bandwidth, the base
RTT of the link, and the bottleneck queue can be freely ad-
justed. It is important to notice that TAPAS can be used in
any other scenario provided that the videos are made avail-
able through a HTTP server. We have tested TAPAS to be
compliant with many webTVs employing HLS or DASH.
TapasPlayer is implemented by aggregation of three inter-

acting components: 1) the Controller that selects the video
level of the next segment to be downloaded; 2) the Parser,
that parses the video manifest file; 3) the MediaEngine that
stores the downloaded video in the playout buffer and plays
the video. Each of these three components can be extended
individually by inheriting the corresponding base class (see
Section 3 for further details). Moreover, it is worth to men-
tion that TapasPlayer includes an extensible module that
periodically logs in a file the variables of interest.

Algorithm 1 shows how an adaptive video player can be
implemented with TAPAS. The first step (lines 1-3) is to cre-
ate the three aforementioned components. Then the compo-
nents are passed to the TapasPlayer constructor (line 4) and
the player is created. The playback of the video is started
by issuing the play() method of TapasPlayer (line 6).

Figure 2 shows the workflow of TapasPlayer. When the
play() method is issued the Parser downloads the mani-
fest and populates two lists of dictionaries, i.e. playlists

and levels: the first one maintains information about seg-
ments (or chunks), the second one holds video levels (or
representations) information. The two lists of dictionaries

http://dashif.org
http://www.videolan.org/vlc/
http://c3lab.poliba.it/index.php/Tapas
http://www.python.org
http://gstreamer.freedesktop.org/

Downloader

TapasPlayer

server
HTTP Display

Client

MediaEngine

Decoder

q(t)

set level feedback

fetchNext

Playout buffer

Controller
TAPAS

segments

Parser

GET segment

levels
(rate, resolution)

5

4 3 2 1

2.a

2.b

2.c
2.b

3

1

1

Figure 2: TAPAS workflow

are then passed to the player. At this point two concurrent
threads are started: 1) a thread that fills the playout buffer
by fetching the video segments from the HTTP server and
2) a thread that drains the playout buffer to play the video
stream.

Let us now focus on the thread filling the buffer. The
following operations are executed in a loop until the last
video segment has been played:

1. The Downloader fetches from the HTTP server the cur-
rent segment at the selected video level.

2. When the download is completed the following opera-
tions are performed:

(a) The segment is enqueued in the playout buffer
handled by the MediaEngine component.

(b) The player gets from the MediaEngine the queue
length and other feedbacks and builds the player
feedback dictionary with this information. Then
player feedback is passed to the Controller.

(c) The Controller computes two values: 1) the con-
trol action, i.e. the video level rate of the next
segment to be downloaded; 2) the idle duration,
possibly equal to zero, that is the time interval
that has to elapse before the next video segment
can be fetched.

3. a timer of duration idle duration is started. When the
timer expires the loop repeats from step 1.

Finally, the thread draining the playout buffer is handled by
the MediaEngine that decodes the compressed video frames,
and plays the raw video.

3. COMPONENTS
In the following we describe the essential features of the

three components of TAPAS.

3.1 Parser
In this section we describe the main fields (Section 3.1.1)

and methods (Section 3.1.2) that a parser has to implement
by inheriting the base class BaseParser. The main task
of a parser is to populate and update two data structures,
playlists and levels, which are used by TapasPlayer. In
particular, in the case of live streaming the TapasPlayer

calls the parser to continuously update the two data struc-
tures, whereas in the case of video on demand (VoD) the
two data structures are populated only once.

VoD Live Containers
Supported

dataset

DASH Yes No MP4
ITEC [7],

YouTube [1]

HLS Yes Yes MPEG-TS
Any m3u8

playlist

Table 1: Implemented parsers

Field Description

url the video level base URL

is_live true if the video is a live stream

segments

a list of dictionaries. Each dictionary
contains the segment URL
(segment_url), its duration
(segment_duration) and the byte range8

start_index
index of the first chunk to be downloaded
by the Downloader

end_index
index of the last chunk of the current
playlist

duration the duration (in seconds) of the playlist

Table 2: playlists fields

Table 1 reports the parsers implemented in TAPAS at the
time of writing along with their main features.

3.1.1 Fields
In the following we give the essential details about the

data structures of playlists and levels.
The playlists data structure is a list of dictionaries, one

for each available video level li ∈ L . Table 2 reports the
main fields of such dictionaries along with their description.
In particular, the field end_index has different meanings de-
pending on the type of video stream: 1) in the case of live
streaming (is_live is true) it is the index of the last chunk
of the current playlist; in this case end_index increases when
a new chunk is made available by the the HTTP server; 2) in
the case of video on demand (is_live is false) it represents
the index of the last chunk of the video. Moreover, the field
duration represents the duration of the video stream in the
case of VoD, whereas in the case of live video it represents
the duration of the available video segments.

The levels data structure is a list of dictionaries, one
for each available video level. The dictionary has to include
the following keys: 1) rate: is the encoding rate of the video

video

raw

5 4 3 2 1

queue decoder
audio

video

demuxer

Playout buffer

GStreamer pipeline

(a) FullMediaEngine

audio

video

5 4 3 2 1

queue

demuxer fakesink

Playout buffer

GStreamer pipeline

(b) NodecMediaEngine

Draining

Thread
5

Segment
properties

size [B]

Playout Buffer
Update

duration [s]

Playout buffer

(c) FakeMediaEngine

Figure 3: Implemented media engines

level measured in bytes/s; 2) resolution: is the video level
resolution.

3.1.2 Methods
A parser must implement two methods: 1) the start

method, which fetches and parses the manifest to popu-
late the playlists and levels data structures, and the up-

dateLevelSegmentsList method, which updates the playlists
structure.

The TapasPlayer calls the parser start method when its
play method is issued. For each available video level li ∈ L ,
this method has to use updateLevelSegmentsList(li) to
populate the segments list of the playlists data struc-
ture. The updateLevelSegmentsList method is also used
by TapasPlayer to fetch and update the segments list at
run time in the case of a live video streaming session.

Finally, it is important to notice that the implementation
of the logic to fetch and parse the playlist is specific to the
parser and thus is not implemented in BaseParser.

3.2 Media Engine
The MediaEngine provides methods to fill/drain its play-

out buffer and to decode and play the video stream. A
MediaEngine must extend the base class BaseMediaEngine

and implement at least the following methods: start, stop,
pushData, and getQueuedTime.

The start and stop methods are used to respectively ini-
tialize the MediaEngine and stop the video playback. The
MediaEngine starts the playback of the video when the play-
out buffer length reaches a minimum threshold min_queue_time

specified in the MediaEngine constructor.
The pushData method is called by TapasPlayer to fill the

playout buffer on the completion of a video segment down-
load.

The getQueuedTime method must return the playout buffer
length measured in seconds. This method can be used by
the Controller to compute a control action based on the
playout buffer length.

The logic for draining the buffer, decode and play the
video stream depends on the particular media engine. TAPAS

already includes three media engines that allow to give dif-
ferent levels of detail to the experimental evaluation: the
FullMediaEngine is a complete player that decodes and ren-
ders the raw video to the screen; the NodecMediaEngine is
a player that only demuxes the video stream without de-
coding and rendering the video; the FakeMediaEngine only
keeps track of the playout buffer length, but does not demux,
decode, and render the video. In particular the NodecMedi-

aEngine and FakeMediaEngine do not decode the video to
keep the CPU and memory utilization low while ensuring
that the playout buffer dynamics is identical to that of Full-
MediaEngine. This is a fundamental feature since the main
dynamics of an adaptive video streaming system is that of
the playout buffer: firstly, several controllers calculate the
control action based on the playout buffer queue length [4,
11], secondly, the playout buffer dynamics also determines
the re-buffering events which are known to be a key factor
impairing the QoE [5]. Section 5 provides an experimental
validation that proves this important feature.

In the following we give more details about the three me-
dia engines.

3.2.1 FullMediaEngine
Figure 3 (a) shows the block diagram of the FullMedi-

aEngine which leverages a GStreamer pipeline made of three
elements: the queue, the demuxer, and the decoder. In
particular, the TapasPlayer enqueues the downloaded video
segments in a GStreamer queue element by calling the media
engine pushData method. The demuxer is a GStreamer ele-
ment that demuxes the segment in video and audio buffers.
The video buffers are fed to the decoder that decodes the
compressed video and renders the raw video to the screen.
This media engine implements the getQueuedTime and the
getQueuedBytes methods by using the GSstreamer queue

element properties. Finally, the implementation of the start
and stop methods respectively start and stop the GStreamer
pipeline. At the time of writing, FullMediaEngine supports
the H.264 codec and the MP4 and MPEG-TS containers.

Since this media engine requires demuxing an decoding
the video stream, its CPU and memory requirements are
similar to those of a media player such as VLC. For this
reason this media engine cannot be used to produce a large
number of concurrent flow using a single machine.

3.2.2 NodecMediaEngine
Figure 3 (b) shows the block diagram of the NodecMedi-

aEngine. This media engine is similar to FullMediaEngine

in that it uses a GStreamer pipeline to maintain the playout
buffer (queue element) and demux the segments (demuxer
element). This media engine is designed to drastically re-
duce the CPU and memory requirements, since it does not
decode the video stream. Towards this end, the demuxed
video is simply discarded by using a GStreamer element
called fakesink. It is important to notice that the playout
buffer is drained exactly as in the case of FullMediaEngine,
since the fakesink element exactly emulates the behaviour
of a video player. The methods of this media engine are ex-
actly the same of those implemented by FullMediaEngine.

3.2.3 FakeMediaEngine
Figure 3 (c) shows the block diagram of the FakeMedi-

aEngine. In this case the playout buffer does not store the
video segments and it is implemented as a simple data struc-

ture which holds two fields seconds and bytes, maintaining
respectively the playout buffer length measured in seconds
and in bytes. In order to obtain the dynamics of the play-
out buffer two dynamics have to be emulated: the filling and
the draining of the buffer. The buffer is filled when a new
segment has been downloaded, whereas it is continuously
drained when the video is playing [4].

Let us analyze how the buffer is filled. When a segment is
enqueued using the pushData method, the “Segment prop-
erties” function returns the segment size, measured in bytes,
and duration, measured in seconds. This information is
available by leveraging on the data structures provided by
the Parser component. Then, this information is passed to
an“update playout buffer”module that adds to seconds and
bytes respectively the segment size measured in seconds and
in bytes.

In order to emulate the buffer draining dynamics, we em-
ploy a thread that every T seconds decreases the playout
buffer length of T seconds9. A similar procedure is used to
decrease the bytes field.

This media engine has two advantages: 1) it can be used
regardless of the employed video container and codec pro-
vided that the Parser is able to parse the manifest file;
2) similarly to NodecMediaEngine it significantly decrease
the CPU and memory requirements.

3.3 Controller
The controller is the central component of the adaptive

video streaming system. Its goal is to decide the video level,
among those advertised in the manifest files, based on feed-
backs, such as the estimated bandwidth or the playout buffer
length, and the player state. Typically, an adaptive video
streaming controller can be in two different states: buffering
or steady state. When in buffering, the client requests a new
segment right after the previous has been downloaded in or-
der to quickly build up the player queue; on the other hand,
during the steady state an idle period has to elapse to re-
quest a new video segment after the last segment download
has been completed [2, 8, 6].

In order to implement a controller, the BaseController

class has to be inherited and two methods must be imple-
mented: 1) calcControlAction, computing the control ac-
tion, and 2) isBuffering, which decides – according to
the implemented logic – whether the state of the system is
buffering or steady state. The two methods are described in
the following.

The calcControlAction must implement the control logic
which returns a rate in bytes/s. Towards this end, the
controller employs the feedback field that is a dictionary
storing several feedback information such as the playout
buffer length and the estimated bandwidth. In particular,
when the download of a segment is completed, the Tapas-

Player updates this dictionary and calls calcControlAc-

tion to get the video level to be used for the next segment
download. Moreover, in calcControlAction the setIdle-

Duration method must be used to set the idle time between
the download of two consecutive segments. The output of
calcControlAction is passed to quantizeRate, an overload-
able method that selects the video level index according to
the computed control action. In its default implementation
the quantizer selects the highest video level below the rate
computed by calcControlAction.

9By default T = 0.1s.

Algorithm 2 ConventionalController implementation

1 class ConventionalController(BaseController):
2 def calcControlAction(self):
3 T = self.feedback[’last_download_time ’]
4 cur = self.feedback[’cur_rate ’]
5 tau = self.feedback[’fragment_duration ’]
6 x = cur * tau / T
7 y = self.ewma_filter(x)
8 self.setIdleDuration(tau -T)
9 return y

10 def isBuffering(self):
11 return self.feedback[’queued_time ’] < self.Q
12 def quantizeRate(self ,rate):
13 ...
14 return level
15 def ewma_filter(self , rate):
16 ...
17 return filtered_rate

Finally, the isBuffering method must implement a logic
that returns True if the system is considered in buffering
state. Recall that in the buffering state the idle period is
equal to zero. A typical implementation of this method
returns True if the playout buffer length is below a given
threshold.

4. RAPID PROTOTYPING WITH TAPAS
This section provides an example showing how an adaptive

streaming controller can be implemented. To the purpose
we consider a simple controller, named conventional, that is
described in details in [8].

In a nutshell, the k-th controller output is equal to the a
filtered version yk of the bandwidth samples. The k-th band-
width sample xk is computed as xk = τrk−1/Tk−1 where
rk−1 is the video level rate of the last downloaded segment,
τ is the segment duration in seconds, and Tk−1 is the time
spent to download the last segment. The bandwidth samples
xk are then filtered with an exponential weighted moving
average (EWMA) giving the filtered bandwidth samples yk
computed as yk = yk−1 − Tk−1α(yk−1 − xk) where α > 0 is
the filter parameter. The video level index of the next video
segment to be downloaded is the output of a quantization
function Q(·) (see [8] for more details). Finally, when the
system is in steady state the controller sets the idle period
as max(τ − Tk−1, 0) (see Section 3.3).

Algorithm 2 shows the implementation of Conventional-
Controller which extends BaseController. Due to space
constraint we are not able to show the implementation of
all the methods, but we focus on calcControlAction and
isBuffering. Lines 3-5 get T , r and τ from the feedback

structure. Then, in line 6 the bandwidth estimate x is com-
puted and it is filtered in line 7 by the ewma_filter method.
Line 8 sets the idle period using the method setIdleDura-

tion. Finally, the isBuffering method is a boolean condi-
tion that is true if the playout buffer length is less than a
threshold Q.

5. EXPERIMENTAL EVALUATION
This section validates the three media engines described in

Section 3.2. In particular, we want to show that the dynam-
ics of the playout buffer queue and of the control action is
identical for the three considered media engines. The exper-
iments were carried out by using the testbed scenario shown
in Figure 1, where the client and the server are connected
using through a 100 Mbps ethernet connection. TAPAS runs

0 10 20 30 40 50 60
0

1

2

3

4
le

v
e

l
[M

b
p
s
]

0 10 20 30 40 50 60
0

4

8

12

16

b
u
ff
e
r

[s
]

0 10 20 30 40 50 60
0
3
6
9

12
15

c
p
u
 [
%

]

0 10 20 30 40 50 60
0

50
100
150
200

m
e
m

 [
M

B
]

time [s]

fake full nodec

Figure 4: Dynamics of a single video flow

2 3 4 5 6 7 8 910 12 15 20
0

20

40

60

80

100

c
p
u
 [
%

]

N clients
2 3 4 5 6 7 8 910 12 15 20

0

0.5

1

1.5

2

2.5

m
e
m

 [
G

B
]

N clients

fake

full

nodec

Figure 5: CPU and Memory load with an increasing
number of client

on a DELL precision T1650 workstation with 16GB of RAM
and an Intel Xeon E3-1270 3.50GHz processor.

Figure 4 compares the dynamics of the video level, the
playout buffer length, the CPU load and the memory occu-
pation, for each of the three considered media engines. The
figure clearly shows that the three media engines produce ex-
actly the same playout buffer length and video level dynam-
ics, validating the NodecMediaEngine and FakeMediaEngine

implementations. The figure also shows that the CPU load
and the memory occupation in the case of FullMediaEngine
is much higher wrt those provided by the other two me-
dia engines. In particular, the CPU and memory utiliza-
tions are comparable until around t = 17s where the player
starts to decode the video level 4 that is a 1080p video. For
t > 17s the CPU utilization in the case of FullMediaEngine
increases to 12% whereas in the case of the two other media
engines it always keeps less than 1%. Similarly, the mem-
ory occupation increases when the player starts to decode
the 1080p video segments. In fact, the video player has to
temporarily store in the RAM the decoded raw video before
being rendered by the CPU. It is worth to notice that the
CPU and memory utilization obtained using TAPAS with
FullMediaEngine are similar to those obtained when using
a VLC player.

The NodecMediaEngine and FakeMediaEngine provide sim-
ilar CPU and memory utilizations, the latter requiring slightly
less RAM due to the fact that it does not store the com-
pressed video segments.

To conclude this section, we measure the CPU and mem-

ory requirements as a function of the number of concur-
rent video sessions running on the same machine. Figure 5
shows that in the case of FullMediaEngine the CPU gets
overloaded already at 12 concurrent videos. On the other
hand, the other two media engines are able to stream 20
concurrent video sessions with around a 20% CPU utiliza-
tion. Similarly, the RAM occupation are much higher in the
case of FullMediaEngine, that in the case of 12 concurrent
video flow already requires 2.5GB, whereas the other two
media engines require less than 650MB.

6. CONCLUSIONS
In this paper we have presented TAPAS, an open-source

extensible tool written in python for rapid prototyping of
adaptive streaming algorithms. We have described its archi-
tecture and the essential features of all its modules. TAPAS
has been designed to allow experimental evaluations also
involving a large number of video streaming sessions. A
simple controller has been implemented to show the sim-
plicity of designing an adaptive streaming control algorithm
with TAPAS. An experimental evaluation has shown that
TAPAS is able to significantly reduce CPU and memory re-
quirements wrt standard players, while producing the same
playout buffer and video level dynamics.

7. ACKNOWLEDGMENTS
This project has been made possible in part by the gift

CG #574954 from the Cisco University Research Program
Fund, a corporate advised fund of Silicon Valley Community
Foundation. This work has been also partially supported by
the Italian Ministry of Education, Universities and Research
(MIUR) through the MAIVISTO project (PAC02L1 00061).
Any opinions, findings, conclusions or recommendations ex-
pressed in this material are the authors’ and do not neces-
sarily reflect the views of the funding agencies.

8. REFERENCES
[1] Mpeg-dash media source demo.

http://dash-mse-test.appspot.com/media.html.

[2] S. Akhshabi et al. An experimental evaluation of
rate-adaptation algorithms in adaptive streaming over
HTTP. Proc. of ACM MMSys 2011, pages 157–168, 2011.

[3] Cisco. Cisco Visual Networking Index:Forecast and
Methodology 2013-2018. White Paper, June 2014.

[4] L. De Cicco et al. ELASTIC: a Client-side Controller for
Dynamic Adaptive Streaming over HTTP (DASH). In
Packet Video Workshop ’13, pages 1–8, 2013.

[5] F. Dobrian et al. Understanding the impact of video quality
on user engagement. In Proc. of ACM SIGCOMM 2011,
pages 362–373, 2011.

[6] J. Jiang et al. Improving fairness, efficiency, and stability in
http-based adaptive video streaming with festive. In Proc.
of CoNEXT ’12, pages 97–108, 2012.

[7] S. Lederer et al. Dynamic adaptive streaming over http
dataset. In Proc. of ACM MMSYS ’12, pages 89–94, 2012.

[8] Z. Li et al. Probe and Adapt: Rate Adaptation for HTTP
Video Streaming At Scale. IEEE J. on Selected Areas in
Communications, 32(4):719–733, April 2014.

[9] C. Müller and C. Timmerer. A VLC media player plugin
enabling dynamic adaptive streaming over HTTP. In Proc.
of ACM Multimedia, pages 723–726, 2011.

[10] I. Sodagar. The mpeg-dash standard for multimedia
streaming over the internet. IEEE MultiMedia, 18(4):62–67,
2011.

[11] G. Tian and Y. Liu. Towards agile and smooth video
adaptation in dynamic HTTP streaming. In Proc. of ACM
CoNeXT ’12, pages 109–120. ACM, 2012.

	Introduction
	Architecture
	Components
	Parser
	Fields
	Methods

	Media Engine
	FullMediaEngine
	NodecMediaEngine
	FakeMediaEngine

	Controller

	Rapid prototyping with TAPAS
	Experimental Evaluation
	Conclusions
	ACKNOWLEDGMENTS
	References

