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Abstract
In recent years synchronization of chaotic

dynamics has received ever increasing attention.
Herein, Cellular Neural Networks (CNNs) are
considered as a tool for generating hyperchaotic
behaviors. By exploiting a system theory approach, a
technique for synchronizing a large class of CNNs  is
developed. In particular, a necessary and sufficient
condition for hyperchaos synchronization is given,
which is based on the controllability property of
linear systems. Finally, in order to show the
effectiveness of the proposed technique, the
synchronization of a CNN constituted by Chua’s
circuits is illustrated.

Keywords: Cellular Neural Networks, Neural Circuits,
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1. Introduction

Synchronization of chaotic systems has been the
subject of many papers over the last few years [ l]-[5].
However, most of the developed methods concern the
synchronization of low-dimensional systems, that is,
chaotic systems with only one positive Lyapunov
exponent. Since these systems are characterized by
dynamics of limited complexity, the attention has been
recently focused on higher dimensional chaotic
systems. In fact, dynamic systems with several positive
Lyapunov exponents exhibit more complex dynamics,
which can be exploited for secure communications [6]-
[ 91, pattern formation [lo] and active wave propagation
[111
Regarding high-dimensional systems and their
synchronization, the state of the art does not give a
practical answer to the following important questions:

1) How can one obtain a high-dimensional system,
which exhibits hyperchaotic attractors, starting from
low-dimensional systems as building blocks?
2) Given high-dimensional systems, can
synchronization be achieved in a systematic way?
The aim of this paper is to make a contribution in these
directions. In our opinion, this high-dimensional
challenge could be within reach by imposing some
regularity and symmetry on the state space, which is
the case in Cellular Neural Networks (CNNs).  It is well
known that CNNs are dynamic arrays of simple circuit
units that can be easily implemented using VLSI
technique [ 121. By considering simple chaotic units as
neural cells, the interconnections of a sufficiently large
number of neurons can exhibit extremely complex
behaviors, such as high-dimensional chaotic attractors
[ill
Following these considerations, the idea underlying this
paper is to consider CNNs as a tool for generating
hyperchaotic behaviors. By exploiting a system theory
approach, a technique for synchronizing a large class of
high-dimensional system is developed. The proposed
method is rigorous and systematic, that is,
synchronization can be achieved if some structural
properties related to the synchronization error system
hold.
The paper is organized as follows. In section 2 the
CNN architecture is briefly illustrated, whereas in
section 3 basic notions concerning chaos
synchronization are reported. In section 4 it is shown
how two hyperchaotic CNNs can generate a linear and
time-invariant synchronization error system. Then, by
checking the controllability property of linear systems,
a necessary and sufficient condition is given in order to
synchronize the CNN dynamics. Finally, in section 5
the proposed method is applied to synchronize a
hyperchaotic CNN constituted by Chua’s circuits.
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2. Hyperchaotic CNNs

A CNN is a dynamic array of simple circuits
particularly suitable for VLSI implementation 1121.  The
interconnections of a sticiently large number of
simple units can exhibit extremely complex behaviors,
such as Turing patterns, spiral and scroll waves or
high-dimensional chaotic attractors [ 111. Since the
attention is focused on hyperchaotic dynamics, the
following definitions and assumptions are reported.

Definition I: An N-cell CNN is defined mathematically
by four specifications [ 111:

1) CNN cell dynamics;
2) CNN synaptic law;
3) Initial conditions;
4) Boundary conditions.

The basic CNN cell is shown in Fig 1. It contains, in
addition to the dynamical circuit core characterized by
its state vector Xi, an input Ui , a dc bias zj , an output

fCxi) and a synaptic input current
describes the interactions among cells.

2.1 CNN cell dynamics

I-1 T which

Assumption 1: Herein, the i-th cell is a dynamic circuit
described by a set of M differential equations:

I;i = CX, +d f(Xi)+z for i =l,...,N (1)

where Xi E !P is the state vector, z E !RM is the dc

bias, C E !RMxM is a constant matrix, d E 9P is a
constant vector and f (xi ) is the scalar output, with
f :5P%%.

Remark 1: Several chaotic circuits can be modeled by
(1). For instance, Chua’s circuit [ll], the higher
dimensional Chua’s circuits [ 131, and the hyperchaotic
circuits in [ 1410[  151 are examples of systems satisfying
Assumption 1. Hence, they can be used as building
blocks to obtain hyperchaotic CNNs.

nonlinear coupling,
are considered.

following linear interactions

Assumption 2: The synaptic law of the i-th CNN cell is:

for i = l,..., N (2)

where Ii E !RM is the synaptic current whereas
Hi E !RMXMN is a sparse matrix that takes into account
the local connection among cells.

By considering (1) and (2), the whole CNN becomes:

ii =CX~ +d f(Xi)+z+Zi for i =l,...,N (3)

In compact form, (3) can be written as

X=Ax+Bf(x)+c (4)

where x= x:,x: ,..., X;1 P E!R~ ,

A = (diag(C)  + H)E !RMNxm  ,

H=[HT,HT ,..., H$ e-tMNxMN,

f(x)=(f(X,),f(x2),*o*f(X~))T E@*

Remark 2: Following the conjecture in [ 161, it is
convenient to choose the elements of the matrix Hi
sufficiently small. In fact, given N chaotic subsystems,
if the coupling is not too strong, the whole array is
expected to be characterized by N positive Lyapunov
exponents.

2.3. Initial and boundary conditions

Given the cell dynamics (1) and the synaptic law (2), it
is not difficult to find a sets of initial and boundary
conditions able to generate hyperchaotic behavior. For
instance, in [16]  hyperchaos is obtained by considering
the initial conditions for which each cell is chaotic and
by taking ring boundary conditions.

3. Chaos synchronization
2.2. CNN synaptic law

DeJinition  2: Given two chaotic systems
It is worth noting that the CNN synaptic law depends
on the input and the state of all cells located within a
prescribed sphere of influence, or neighborhood size
[ 111. Although the contribution from the input and the
state of each neighbor cell may be any arbitrary

i = g(x) (5)
v = g(y) (6)
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they are said to be synchronized if

e(t) = (y(t) - x(t)) -+ 0 as t --+ 00 (7)

where  XE%~, y~%~, g:!Rn+%” and e is the
synchronization error [3].

In order to obtain synchronization, system (6) has to
receive a proper signal s(x) from system (5). In other
words, it is necessary to consider a coupling between
the chaotic systems (5) and (6). More precisely, the
following definition of master-slave synchronization is
given [4].

DeJinition  3: System (5) and the dynamic system

jt = g(y) + Mx),  Y) (8)

where 1 E %” is a suitable nonlinear coupling, are said
to be synchronized in master-slave configuration if
y + x as t + 00. This implies that the error system
between the master (5) and the slave (8)

2 = g(y) + WX)JY) - g(x)
= g(x + e) + &s(x),  x + e) - g(x) = h(e, t) (9)

has a (globally) asymptotically stable equilibrium point
for e=O. Note that synchronization is said to be gZoba2
if y -+ x for any initial condition y(O), x(O)  [5].

4. Synchronization of hyperchaotic CNNs

Now the attention is focused on the synchronization
of hyperchaotic dynamics generated by high-
dimensional systems. Taking into account the
considerations reported in section 3, it is clear that the
kev problem is the choice of a suitable coupling
Z(s),y)  able to synchronize (5) and (8).

Theorem I: Consider two hyperchaotic CNNs in a
master-slave configuration

X=Ax+Bf(x)+c (10)
j, = Ay + Bf (Y) + c + b(x),  Y) (11)

where the state variables have been numbered as
follows:

Let

KsW Y> = ~(s(x) - S(Y))

be the nonlinear coupling, where

s(x) = f(x) +fi

is the synchronizing

K =

signal., with

r k 171  ,k, 2 . . . k,,, 1
k 271  ,k,, . . . k,,,

E iRNxW .
. . . . . . . . . . . .

kW >k,, . . . k,,,

(12)

(13)

Then the error system (9) becomes linear and time-
invariant, and can be written as

i=Ae-BKe=Ae+Bu (14)

where u=-KedtN plays the role of a state

feedback.

Proof By substituting equations (lo)-( 13) in (9),  the

error system becomes

fi = J?(Y) + W~),Y)  -g(x)
= Ay + Bf (y) + c + B(s(x)  - s(y)) - (Ax + Bf (x) + c)

= Ae + B(f (Y) - f(x)) + B(f(x)  + fi - f(y) - KY)
= Ae-BKe= Ae+Bu

This completes the proof.

Now, a theorem for synchronizing high-dimensional
systems can be given. This result is based on a method
recently developed in [5].
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Theorem 2: A necessary and sufficient condition for the
existence of a feedback gain matrix K such that the
CNNs (10) arrd (11) are globally synchronized is that
all the uncontrollable eigenvalues of
(19, if any, have negative real parts.

the error system

ProoJ System (14) can be transformed to Kalman
controllable canonical form [17]  by means of a
coordinate transformation e = E = [I’.. TZ lZ , with the
property that T-’ = TT :

TITATl qTATt -
0 TzT AT, m

where the eigenvalues of A, are controllable (i.e., they
can be placed anywhere by state feedback u = -ge),
whereas the eigenvalues of A,,are uncontrollable (i.e.,
they are not affected by the introduction of any state
feedback). Therefore a necessary and sufficient
condition to globally asymptotically stabilize system
(15) is that the eigenvalues of & lie in the left half
plane. Since Z --+ 0 implies e -+ 0 , it follows that
y -+ x9 S(Y) + SW l(s(x),y)+O ast --+oo,
that is, global synchronization is achieved. This
completes the proof.

Remark 3: If system (14) is controllable, then all the
modes can be arbitrarily assigned. As a consequence,
synchronization can be achieved according to any
specified feature.

Remark 4: Differently from [ 11, the proposed method
does not require the computation of any Lyapunov
exponent in order to verify synchronization. Moreover,
since global synchronization is achieved, the suggested
technique does not require CNN initial conditions
belonging to the same basin of attraction.

5. Example

A 5-tell CNN consisting of identical Chua’s
circuits forming a ring is considered [ 161. The cell
dynamics (1) is a set of 3 differential equations with

By considering the synaptic law

where

-XI
X2

. . .
3

-HH 0 0 0
0 -kilti 0 0

H=O 0 -k & 0 9
0 0 0 -I? &
ri 0 0 0 -2A

Irii= !
0 0 0
0 0.01
0 0 0 I

$ OE!R3x3
0

a CNN in the form (10) is obtained, for which
experimental observation of hyperchaos has been
illustrated in [ 161.  Two projections of the hyperchaotic
attractors are reported in Figs. 2 and 3, respectively.
Moreover, by considering (lo)-(13)  the CNN master-
slave configuration is derived.
Since the controllability matrix

I! AB A2B . . . I4A Bl

of system (14) is full rank, the synchronization error
system is controllable [5], [ 171. Therefore, Theorem 2
assures the existence of a feedback matrix g E !R5”15
such that y + x as t + 00 for any initial state. For
instance, the set of the error system eigenvalues
becomes

(-1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -3, -3, -3, -3, -3)
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for

K=

'k, k, 0 0 0
0 k, k, 0 0
0 0 k, k, 0
0 0 0 k, k2

k 2 0 0 0 k,
PI

PI
k, =[0.6068 0.3695 1.55471,
k, =[0.0034 0.0135 0.00341,
0 E ex3 .

Figs. 4 and 5 show the synchronization between the
variables (~4~4) and (~1 2,y1 9, respectively.

6. Conclusion

In this paper CNNs constituted by chaotic cells have
been considered as a tool for generating hyperchaotic
behaviors. The proposed synchronization method
presents several interesting features. In particular: (1) it
enables synchronization to be achieved in a systematic
way; (2) it is jlexible,  because different complex
behavior can be obtained by changing the cell dynamics
or by adding new cells; (3) it does not require the
computation of any Lyapunov exponent in order to
verify synchronization; (4) it does not require CNN
initial conditions belonging to the same basin of
attraction. The proposed method has been applied to
synchronize an example of hyperchaotic CNN
constituted by Chua’s circuits. Simulation results have
confirmed the effectiveness of the suggested system
theory approach.
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Figure 1. The basic CNN cell.

0 2

Figure 2. Projection on (x1, x2, x4) of the
attractor generated by the CNN.

Figure 3. Projection on (x9, xIO, x12)  of the
attractor generated by the CNN.
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Figure 4. Synchronization between x4 and y4.
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Figure 5. Synchronization between xl2 and ~12.
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