
22 IEEE Communications Standards Magazine • June 20172471-2825/17/$25.00 © 2017 IEEE

Abstract
The WebRTC initiative has achieved impressive

results in terms of the gained industrial interest, the
penetration of the technology in end-user devices,
and the ever growing community of developers.
WebRTC is today supported by major mobile plat-
forms and Internet browsers, allowing potentially
billions of users to seamlessly establish real-time
communication sessions. Among all the functional-
ities that must be implemented by WebRTC devic-
es, congestion control is particularly important to
ensure that the network operates properly while
providing a satisfactory user experience. A work-
ing group that is focusing on this issue is the IETF
RTP Media Congestion Avoidance Techniques
(RMCAT), which aims at defining the requirements
and designing congestion control algorithms to
be used for the transport of real-time media flows
over RTP. This article overviews the status of the
standardization efforts that are taking place in the
RMCAT working group. We discuss the choices
involved in the design of media congestion control,
the proposed algorithms, and the issues that are
considered still open.

Introduction
Real-time applications, such as video conferenc-
ing, gaming, and instant messaging, are becom-
ing widely popular. Despite past standardization
efforts in the IETF, such as the Real-Time Pro-
tocol (RTP), the industry has been reluctant to
employ standard protocols and has resorted to
using proprietary protocols and algorithms in
their products with the drawback of having ser-
vices that cannot interoperate. The WebRTC
initiative started in 2011 to precisely address
the issue of standardizing protocols and APIs to
enable real-time services among Web browsers
[5]. The achieved results of this initiative in such
a short time frame are impressive: WebRTC is
already available in popular browsers such as
Google Chrome, Firefox, and Opera, and native-
ly in the Android and iOS mobile platforms.
Motivated by the huge penetration of this tech-
nology in end-user devices, popular applications
such as Whatsapp, Facebook Messenger, and
Google Duo are today adopting WebRTC to
implement real-time services. However, several
issues still need to be addressed by the WebRTC
community. Among them, a key problem is the
reduction of the Internet latency, which is det-
rimental to the Quality of Experience (QoE) of
real-time applications [2]. The way the Internet

latency impacts the QoE depends on wheth-
er WebRTC is used to transport media, data or
both. In this article we focus on WebRTC appli-
cations transporting media streams. These appli-
cations have challenging requirements since the
QoE is not only affected by the latency but also
by the audio/video quality, which depends on
the used bandwidth and the experienced packet
losses. To meet such requirements and avoid
network congestion, WebRTC media flows
must use a congestion control algorithm. The
IETF working group (WG) “RTP Media Conges-
tion Avoidance Techniques” (RMCAT) aims at
designing such an algorithm on top of RTP. This
article overviews the work that is taking place
in the RMCAT WG. We describe the general
architecture to implement congestion control in
WebRTC, the requirements and design choices,
and the used approaches to detect congestion.
Then, we summarize the main features of the
proposed algorithms and outline the remaining
open issues.

Architecture
In this section, we focus on the case of a
WebRTC application in which peers want to
establish a real-time session involving multiple
media streams over RTP. A broader discussion
on the architecture of general WebRTC appli-
cations can be found in [5]. Figure 1 shows
the generic architecture employed by WebRTC
media applications. The figure shows that the i-th
media stream is first compressed by an encoder
at a bitrate Ai and then fed to a packetizer that
generates an RTP packet stream. The suggest-
ed approach is to multiplex all the RTP packet
streams in a single RTP session sent over one
transport layer flow to reduce the number of
flows to be handled by NATs. Following this
approach, the Media Congestion Control algo-
rithm computes the total sending rate A for
the aggregated RTP session based on a set of
metrics measured at the receiver and sent back
through RTCP packets. A rate allocation module
allocates a fraction Ai of the total bitrate A to
each media stream. In particular, each media
stream is compressed at a target encoding rate
Ai such that the sum of all these rates equals the
computed sending rate A. The media streams are
then multiplexed over a single RTP session that
feeds a sending engine. This module is responsi-
ble for sending the RTP packets to the network
at a rate as close as possible to the rate com-
puted by the congestion control algorithm. It

Luca De Cicco, Gaetano Carlucci, and Saverio Mascolo

REAL-TIME COMMUNICATIONS IN THE WEB

The authors are with Politecnico di Bari.

Congestion Control for WebRTC:
Standardization Status and Open Issues

Digital Object Identifier:
10.1109/MCOMSTD.2017.1700014

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:17:19 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2017 23

is worth noting that the placement of the con-
gestion control algorithm is not specified and
could be sender-side, receiver-side, or distributed
both at sender and receiver. As an example, Fig.
1 shows the case where the congestion con-
trol algorithm is placed only at the sender. The
receiver is required to implement a module that
measures metrics to be fed back to the conges-
tion control algorithm through RTCP packets.
The section “Open Issues” will discuss the impli-
cations that such an architectural choice has on
system scalability and deployability.

Requirements and
Design Choices

The requirements for WebRTC media flows are
described in [7] and summarized in Table 1. In
a nutshell, based on such requirements, the goal
of the congestion control algorithm is to produce
a sending rate as close as possible to the avail-
able end-to-end bandwidth while maintaining the
queue occupancy as low as possible. Additional-
ly, media flows generated by WebRTC applica-
tions should fairly share network bandwidth with
other concurrent flows. The RMCAT WG con-
siders these QoS-related requirements since this
approach has the merit of focusing the discus-
sion on metrics that are not sensitive to applica-
tion-specific aspects, such as the employed video
encoder. The design of an algorithm meeting
these requirements is faced with several choices
with respect to
1. The transport protocol
2. Congestion detection
3. The actuation mechanism to be employed
Since WebRTC mandates the use of the RTP,
several lower-layer transport protocols could be
used. However, the transport protocols that are
widely supported by NAT traversal protocols
(e.g. STUN and TURN) and equipment are TCP
and UDP. Between these two protocols, the pre-
ferred choice is UDP since real-time flows can-
not tolerate inflated latencies due to TCP packet
retransmissions. Notice that in the case where
UDP cannot be used due to network policy
restrictions, the transport layer choice has to fall
back to TCP. In this case, end-points have to use
the TCP congestion control algorithms provided
by the running operating system which might
not satisfy real-time requirements. Hence, this
article focuses on congestion control algorithms
designed at the application layer and transported
over RTP/UDP.

Congestion detection can be either implicit,
when based on end-to-end measurements per-
formed at the end-points, or explicit, when con-
gestion is measured directly in network elements
by monitoring the router buffers lengths.

The approaches to detect congestion through
end-to-end measurements can be divided into
two main categories:
1. Loss-based algorithms, detecting congestion

based on packet loss events
2. Delay-based algorithms, detecting conges-

tion based on latency measurements.
Delay-based algorithms are preferred to loss-based
algorithms due to two reasons: first, delay-based
schemes can detect congestion before packets
are lost due to buffer overflows; second, loss-

based algorithms cannot control queuing delays
since they continuously probe for the network
available bandwidth by filling and draining Inter-
net buffers, generating significant delay variations.
Notice that explicitly controlling queuing delays
is necessary, since excessively large buffers may
lead to latencies of the order of seconds [2]. An
important issue to be taken into account is to pre-
vent delay-based flows from being starved when
competing with loss-based flows in the best-ef-
fort Internet [7]. Congestion control algorithms
may complement end-to-end measurements with
explicit congestion signals sent from network
elements to end-points through, for instance, the
use of the explicit congestion notification (ECN)
mechanism.

Concerning the actuation mechanism, the
congestion control algorithm can either com-
pute a congestion window (window-based
approach) or explicitly compute a sending rate
(rate-based approach). The use of rate-based
mechanisms makes it possible to directly use
the rate computed by the congestion control
algorithm to drive the media encoders, whereas
in the case of window-based algorithms, a prop-
er conversion from a window to a rate should
be performed.

Figure 1. WebRTC media application architecture.

Media
congestion

control

Encoder

Feedback
(RTCP packets)

RTP
session

Sender

Sending bitrate A

Media
source

Packetizer

Rate
allocator

Sending
engine

Metrics
measurement

Receiver

Network

NA2A1A

Table 1. WEBRTC media flow requirements.

Requirement

Latency Possibly lower than 100ms

Packet losses
Should be minimized, FEC mechanism
may be employed

Throughput Should be as high as possible

Burstiness
A smooth sending-rate should be
produced

Fairness
Should fairly share the bandwidth with
real-time and data flows

Starvation
Media flows should not be starved when
competing with TCP flows

Network support
No special network support should be
required to operate

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:17:19 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 201724

Congestion Detection
Approaches

This section describes commonly used approach-
es to detect congestion based on end-to-end
delay measurements performed at the clients.
These approaches aim at estimating the queu-
ing delay, which is a metric directly correlated to
network congestion. In a nutshell, an increasing
queuing delay indicates that the bottleneck buffer
is being inflated since the filling rate exceeds the
link capacity. Intuitively, the congestion control
should react to an increase of the estimated queu-
ing delay with a reduction of the sending rate to
allow the queue to be drained. These techniques
are also used by congestion control algorithms
proposed in the RMCAT WG. In the following,
we group such approaches based on the mea-
sured metric to detect congestion.

Round-Trip Time
Historically, the first metric used by delay-based
algorithms (e.g. TCP Vegas and TCP Fast) has
been the end-to-end round-trip time (RTT). Once
the RTT measurement is done at the sender, the
queuing delay is estimated by subtracting the mini-
mum RTT measured since the beginning of the ses-
sion. Despite its straightforward implementation,
this approach has the drawback of measuring the
sum of the queuing delay in the forward and back-
ward paths. Thus, the presence of congestion on the
backward path may trigger a congestion event even
in the absence of congestion on the forward path.
Consequently, poor channel utilization might be
achieved. It is worth mentioning that the problem of
reverse traffic is crucial in the context of video con-
ferencing since video flows are sent in both direc-
tions.

One-Way Delay
The instantaneous one-way delay can be mea-
sured as the difference between the time instant
Ti at which the i-th packet has been sent and
the time instant Ti at which the same packet is
received (Fig. 2). Thus, the time Ti needs to be
stamped in the RTP packet. There are different

ways to store this information into the RTP packet
that will be discussed later. Then, the one-way
queuing delay is estimated by subtracting to the
measured one-way delay its minimum value mea-
sured during the session. This approach has the
advantage of making the queuing delay estima-
tion independent from the backward path state
conditions. However, it has been shown that this
technique might be affected by the so-called “late-
comer effect:” when two flows share the same
bottleneck, the flow that arrives later typically
starves the first one. This is due to the fact that
the last flow arriving at the bottleneck measures
a minimum one-way delay that also accounts for
the queuing delay of the existing flow. At the
same time, the first flow measures an increasing
one-way delay due to the presence of the arriving
flow. At this point, the first flow yields bandwidth
resources to the second flow, which eventually
starves the first flow.

One-Way Delay Variation
Given two consecutive RTP packets sent from the
sender to the receiver, a one-way delay (OWDV)
sample is measured as the difference between
two consecutive one-way delay samples, i.e.,
Ti – Ti – (ti–1 – Ti–1) (Fig. 2). Even in this case, the
sending time has to be stored in the RTP pack-
et. Clock synchronization is not required in this
case since the offset between sender and receiver
clocks is canceled out by the difference between
the two samples. The way the OWDV is used to
detect congestion differs from the approaches
described above since it estimates the queuing
delay variation. Basically, a positive measured
OWDV indicates that the queuing delay is increas-
ing; conversely, a negative OWDV means that the
queuing delay is decreasing. A measured OWDV
equal to zero indicates that the bottleneck queu-
ing delay is constant. This can happen in three
different conditions:
1. When the queue is empty due to channel

underutilization, i.e., when the application
sending rate is below the link capacity.

2. If the queue is full due to persistent conges-
tion, i.e., when the filling rate exceeds the
link capacity.

3. When the rate exactly matches the link
capacity.

In the third case, the queue stays constant to a
value between zero and its maximum size. This is
an undesirable situation known as standing queue,
which steadily delays the incoming traffic. Thus,
to guarantee a small queue occupancy while fully
utilizing the available bandwidth, the algorithm
has to continuously probe for the available band-
width by increasing its sending rate until a posi-
tive queuing delay variation is detected. At this
point, the sending rate should be quickly reduced.
To summarize, some queuing delay needs to be
induced to run a congestion control algorithm
based on delay variations.

Proposed Algorithms
This Section describes the design choices, fea-
tures, standardization and implementation status,
and main results of the three congestion control
algorithms proposed within the RMCAT WG:
1. Google Congestion Control (GCC) by Goo-

gle

The use of rate-based
mechanisms makes it
possible to directly use the
rate computed by the con-
gestion control algorithm
to drive the media encod-
ers, whereas in the case of
window-based algorithms,
a proper conversion from
a window to a rate should
be performed.

Figure 2. Two consecutive RTP packets are sent at
time Ti–1 and Ti and received at time ti–1 and ti.

i−1T

iT

Sender

Time Time

t

t i−1

i

Receiver

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:17:19 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2017 25

2. Network Assisted Dynamic Adaptation
(NADA) by Cisco

3. Self-Clocked Rate Adaptation for Multimedia
(SCReAM) by Ericsson

Algorithms’ Designs At A Glance
GCC [3]. The congestion control algorithm

throttles the sending rate based on the estimat-
ed congestion state. To estimate the state, GCC
employs a finite state machine that is driven by a
signal obtained by comparing the measured one-
way delay variation with a dynamic threshold. In
a nutshell, when the bottleneck is estimated as
“underused” the sending rate is increased; when
it is estimated as “overused” the sending rate is
reduced. The use of a dynamic threshold to esti-
mate the congestion state has revealed to be a
key design requirement to face with starvation
issues when GCC flows share the bottleneck with
TCP flows.

NADA [12] computes the sending rate based
on both explicit congestion signals provided by
network elements (the explicit packet ECN marking
ratio) and implicit congestion signals, i.e., the mea-
sured one-way queuing delay and loss ratio. The
resulting aggregated congestion signal is obtained
by summing, through appropriate weights, all the
contributes defined above. When no assistance is
provided by the network, NADA basically operates
as a delay-based algorithm taking the estimated
one-way delay as the congestion signal. To avoid
starvation when competing with loss-based flows,
the estimated delay is first passed to a non-linear
function which artificially decreases the estimated
delay when it exceeds a threshold.

SCReAM [4] estimates the one-way queuing
delay as the difference between the measured
one-way delay and the minimum observed one-
way delay, which is defined as the base delay. The
algorithm employs a congestion window (cwnd)
to limit the number of inflight bytes. The cwnd
can increase only if the value of the estimated
one-way queuing delay is below a given threshold
(typically 50–100 ms), otherwise it decreases the
cwnd proportionally to the difference between
the threshold and the one-way queuing delay.
SCReAM dynamically adjusts the target for the
queuing delay to cope with starvation issues
when competing with loss-based flows. Finally, a
module, the Media Rate Control, is used to com-
pute the sending rate based on the congestion
window.

Algorithms’ Features
Table 2 summarizes the main features of the
proposed algorithms comprising the metrics
employed to infer congestion, the employed
architecture, and the implementation status.

Concerning the metrics employed to detect
congestion, NADA and SCReAM employ the one-
way delay, whereas GCC employs the one-way
delay variation. Besides the delay-based conges-
tion control mechanism, all the proposed algo-
rithms also comprise a mechanism reacting to
losses. To this purpose, the fraction of lost packets
is used (see RTP RFC for details). It is important to
stress that the loss-based component is employed
as a fall-back when the delay-based algorithm
cannot prevent losses due to buffer overflow (for
instance when the bottleneck buffer is small).

All the proposed algorithms follow an archi-
tectural design approach similar to the approach
shown in Fig. 1. Specifically, NADA and SCReAM
implement the control logic at the sender, where-
as the receiver only performs measurements that
are reported through RTCP feedbacks. GCC was
first conceived as a hybrid sender/receiver side
algorithm; recently it has been re-designed to
support a sender-side only architecture. Con-
cerning the actuation mechanism, SCReAM is
the only window-based algorithm proposed in
RMCAT. On the other hand, both GCC and
NADA explicitly compute a sending rate that is
then used to drive the encoders as described
earlier. Even though the proposed algorithms
do not require network cooperation in order to
operate, SCReAM supports ECN, wheres NADA
supports both ECN and the pre-congestion noti-
fication (PCN) as complementary congestion
signals. The support of explicit feedback from
network elements has also been considered by
GCC authors, but at the time of this writing it has
not yet been specified.

Standardization and
Implementation Status

Regarding the standardization status, SCReAM
has passed the final review of the working group
last call (WGLC), whereas NADA is about to enter
this phase shortly. As such, both SCReAM and
NADA are expected to be submitted to the Inter-
net Engineering Steering Group (IESG) for exper-
imental publication in the forthcoming months.
Concerning GCC, the draft has to address some
issues in the loss-based component of the algo-
rithm before entering the WGLC phase.

Regarding the algorithms’ implementation sta-
tus, the situation is quite heterogeneous. NADA
has been implemented in the Ns-21 and Ns-3 sim-
ulators, whereas SCReAM and GCC have real
implementations. SCReAM has been implement-
ed in OpenWebRTC,2 an open-source project
that can be used to build native WebRTC appli-
cations. However, the maintained version of the
algorithm is only available in the form of a sim-
ulator.3 GCC is included in the official release
of Google Chrome and it is also being used by
Google Hangouts and the Google Duo mobile
application. As a matter of fact, GCC is the only
proposed congestion control algorithm that has
been integrated into a widely-used browser. As
such, GCC can be easily tested in real network

1 This is the only implemen-
tation that the authors have
publicly released.
2 https://www.openwebrtc.
org/
3 https://github.com/Erics-
sonResearch/scream.

Table 2. RMCAT candidate algorithms features.

Feature GCC NADA SCReAM

Metrics
One-way delay variation,
loss ratio

One-way delay, loss
ratio

One-way delay, loss
ratio

Architecture Sender-side or hybrid Sender-side Sender-side

Actuation mechanism Rate-based Rate-based Window-based

Network support None ECN, PCN ECN

Implementation
status

Google Chrome
Ns-2 and Ns-3
simulators

OpenWebRTC and
simulator

Codec interaction VP8 and VP9 Simulated encoder OpenH264 and VP9

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:17:19 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 201726

environments by starting a video conferencing
session with the official Google Chrome browser
and using AppRTC,4 a popular WebRTC demo
application developed by Google.

Results
Due to the different implementation status,
it is difficult to provide a quantitative com-
parison between the performance of the pro-
posed algorithms. As such, in the following,
we qualitatively compare the results obtained
independently by authors in the common net-
work scenarios defined by the RMCAT WG
[9]. Concerning NADA and SCReAM, the fol-
lowing discussion is based on the simulative
results presented by the algorithms’ authors in
the RMCAT WG meetings.5,6 Regarding GCC
results, we refer to the experimental evalua-
tion reported in [3] that was carried out with
Google Chrome browsers establishing real
WebRTC video conferencing sessions in an
emulated WAN network.

The test case “Variable Available Capacity”
aims at assessing the responsiveness of the algo-
rithm to step-like increases and decreases of the
bottleneck link capacity in the single-flow case
and when multiple media flows share the bottle-
neck. In this scenario, NADA adapts the sending
rate to the link capacity variations responsively
when an ideal codec is used, whereas it exhibits
remarkable sending rate oscillations and inflated
latencies when a trace-based codec is used
in Ns-3 simulations. SCReAM nicely adapts the
sending rate in the single flow scenario when the
RTT of the path is small, but provokes a standing
queue when the RTT is larger. This issue is due
to the mechanism implemented by SCReAM to
cope with TCP long-lived flows. In this scenario,
GCC is able to adapt the sending rate and match
the channel capacity containing the queuing
delays.

The test case “Competing Media Flows” tests
inter-protocol fairness requirements by consid-
ering three concurrent media flows over a link
with constant capacity. NADA provides fast rate
convergence among concurrent flows when an
ideal codec is used, but it exhibits remarkable rate
oscillations when a trace-based codec is used.
SCReAM and GCC sending rates convergence
time is higher but they provide lower queuing
delays with respect to NADA. All the candidate
algorithms prevent packet losses during the exper-
iments in this test case.

Finally, the test case “Media Flow Competing
with a Long TCP Flow” assesses inter-protocol
fairness when one media flow shares a constant
capacity bottleneck link with one long-lived TCP
flow. GCC and NADA are able to avoid starva-
tion against the TCP flow since they make their
control action more aggressive in such situations.
NADA convergence is faster compared to GCC,
but NADA and TCP rates remarkably oscillate
when a trace-based codec is used. Concerning
SCReAM, results show that TCP starves the media
flow.

To summarize, the results obtained by NADA
show that the algorithm still needs to be tuned
to work with real codecs, whereas SCReAM fails
to avoid starvation when used concurrently with
TCP flows.

Open Issues
In this section, we briefly provide a discussion of
complementary issues related to the definition of a
congestion control algorithm for media transport.

Interactions with
Concurrent Data or Media Flows

A WebRTC application may open multiple media
flows generated by different media sources that
could share the same bottleneck (Fig. 1). In such
a situation, a mechanism to share states across the
congestion control algorithms transporting such
flows can be used to allow taking better decisions
in the allocation of bandwidth resources. The way
the congestion state should be shared among
media flows is specified in [11] which has passed
the WGLC and has been submitted to the IESG
for experimental publication.

Besides media transport, WebRTC also pro-
vides reliable transport of data through data chan-
nels [5]. Data channels allow prioritization among
data streams over the Stream Control Transmis-
sion Protocol (SCTP) which uses its own conges-
tion control. Typically, in order to minimize the
number of NAT bindings and consequently the
risk of NAT traversal failure, media and data traffic
are multiplexed over a single lower layer protocol.
At the time of this writing, the discussion of the
interaction between data and media congestion
control mechanisms is still at an early stage.

RTP/RTCP Extensions
The RTP/RTCP standard is considering new
extensions designed for enhancing media con-
gestion control functionalities, such as absolute
timestamps7 or relative transmission time offsets
in RTP header extensions [10]. These are two
techniques used to stamp the departure time of
an RTP packet in their header. This is important
information that is required to perform delay mea-
surements. Since the RTP standard does not define
a transmission timestamp, the “relative transmission
time offsets extension gives information on the rela-
tionship between the time spacing of the transmis-
sion time and the RTP timestamp used for media
synchronization. Recently, Google uncovered that
using relative send time offsets could be problem-
atic when packets are relayed through middlebox-
es. To prevent middlebox interference, Google has
proposed the absolute send time extension, which
consists of adding four bytes to RTP packets to add
the timestamp of the departure time from the sys-
tem that puts this packet on the wire.

Among other RTP/RTCP extensions that are
related to congestion control, we mention:
1. The circuit-breaker [6] algorithm, which is

used to stop a media session when conges-
tion control is not operating efficiently.

2. REMB [1], which is an RTCP message for
signaling the receiver estimated maximum
bitrate that should be employed by a con-
gestion control algorithm.

Feedback Message Format
Recently, the RMCAT WG has been discuss-

ing the definition of a generic RTCP feedback
message format that should be used by candi-
date congestion control algorithms [8]. In such
a way, sender-side algorithms would only require

4 https://appr.tc
5 “SCReAM update and test
case results,” IETF-96 RMCAT
meeting, https://www.ietf.
org/proceedings/96/slides/
slides-96-rmcat-0.pdf
6 Update on NADA Perfor-
mance Evaluation, IETF-96
RMCAT meeting, https://
www.ietf.org/proceed-
ings/96/slides/slides-96-rm-
cat-3.pdf
7 https://webrtc.org/exper-
iments/rtp-hdrext/abs-send-
time/

A WebRTC application may
open multiple media flows
generated by different
media sources that could
share the same bottle-
neck. In such a situation, a
mechanism to share states
across the congestion
control algorithms trans-
porting such flows can be
used to allow taking better
decisions in the allocation
of bandwidth resources.

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:17:19 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2017 27

the receiver to measure a set of defined metrics
to be reported by a common feedback message.
This approach has interesting implementation
advantages. In fact, from the perspective of con-
gestion control, the required functionalities to
be implemented would be greatly simplified. In
particular, the receiver could be made agnostic
to the employed congestion control algorithm
at the sender, which is beneficial in the case of
multi-party scenarios where multiple receivers are
handled by a multi-point control unit (MCU).8

Common Experimental Testbed Platform
The definition of a common testbed for the eval-
uation of different congestion control algorithms
is at an early stage. Such a common testbed is
indeed the missing piece to fairly compare the
proposed algorithms in the common scenarios
defined in the RMCAT WG.

An interesting initiative in this direction is the
“Pantheon of Congestion Control” (PCC)9 which
has been proposed by Standford University in the
context of the IETF Internet Congestion Control
Research Group (ICCRG) WG. PCC has been pro-
posed to compare the performance of congestion
control algorithms in terms of self-inflicted queuing
delays and obtained throughput. Among the algo-
rithms proposed in RMCAT, at the moment PCC
only includes GCC and SCReAM. GCC is tested
by employing a real WebRTC session with a real
video using Google Chrome end-points, where-
as SCReAM is tested with an ideal encoder. We
believe that building on the ideas of PCC, the
RMCAT community could develop within a reason-
able amount of work a common platform to exper-
imentally evaluate all the proposed algorithms.

Summary
The IETF RTP Media Congestion Avoidance Tech-
niques (RMCAT) Working Group will specify one
or more congestion control algorithms for the
transport of real-time media over RTP. This feature
has to be implemented in end-points to guaran-
tee both the safe deployment of WebRTC-based
applications over the Internet and to provide
the highest possible media quality to the users.
Three algorithms have been proposed in the WG
and they have been implemented and tested in
different environments. This heterogeneity does
not allow a fair comparison among the solutions
and, for this reason, some proposals for the spec-
ification of a common experimental testbed plat-
form have been made. Moreover, the interaction
between the media and data channel congestion
control algorithms also needs to be specified to
allow for fair sharing of network resources and
flow prioritization.

References
[1] H. Alvestrand, “RTCP Message for Receiver Estimated Max-

imum Bitrate,” Internet-Draft draft-alvestrand-rmcat-remb-03
(work in progress), Oct. 2013.

[2] B. Briscoe et al., “Reducing Internet Latency: A Survey of
Techniques and Their Merits,” IEEE Commun. Surveys Tutori-
als, vol. 18, no. 3, 2016, pp. 2149–96.

[3] G. Carlucci et al., “Analysis and Design of the Google
Congestion Control for Web Real-time Communication
(WebRTC),” Proc. ACM Multimedia Systems Conf., Klagen-
furt, Austria, May 2016.

[4] I. Johansson, “Self-clocked Rate Adaptation for Conversa-
tional Video in LTE,” Proc. 2014 ACM SIGCOMM Wksp.
Capacity Sharing Workshop, Chicago, USA, Aug. 2014, pp.
51–56.

[5] S. Loreto and S. P. Romano, “Real-Time Communications in
the Web: Issues, Achievements, and Ongoing Standardiza-
tion Efforts,” IEEE Internet Computing, vol. 16, no. 5, Sept.
2012, pp. 68–73.

[6] C. Perkins and V. Singh, “Multimedia Congestion Control:
Circuit Breakers for Unicast RTP Sessions,” RFC 8083, RFC
Editor, Mar. 2017.

[7] J Randell and Z. Sarker, “Congestion Control Requirements
for RMCAT,” Internet-Draft draft-ietf-rmcat-cc-require-
ments-09 (work in progress), Dec. 2014.

[8] Z. Sarkeret al., “RTP Control Protocol (RTCP) Feedback for
Congestion Control,” Internet-Draft draft-dt-rmcat-feedback-
message-01 (work in progress), Oct. 2016.

[9] Z. Sarker et al., “Test Cases for Evaluating RMCAT Propos-
als,” Internet-Draft draft-ietf-rmcat-eval-test-04 (work in prog-
ress), Oct. 2016.

[10] D. Singer and H. Desineni, “Transmission Time Offsets in
RTP Streams,” RFC 5450, RFC Editor, Mar. 2009.

[11] M. Welzl, S. Islam, and S. Gjessing, “Coupled Congestion
Control for RTP Media,” Internet-Draft draft-ietf-rmcat-cou-
pled-cc-06 (work in progress), Mar. 2017.

[12] X. Zhu et al., “NADA: A Unified Congestion Control
Scheme for Real-Time Media,” Internet-Draft draft-ietf-rmcat-
nada-04 (work in progress), Mar. 2017.

Biographies
Luca De Cicco (luca.decicco@poliba.it) received both the lau-
rea degree and the Ph.D. from Politecnico di Bari, Italy, where
he is currently an assistant professor. He has held visiting posi-
tions at the University of New Mexico (NM, USA), the Cen-
trale SUPELEC (Gif-sur-Yvette, France), and at the Laboratory of
Information, Networking and Communication Sciences-LINCS
(Paris). His main interests are the modeling and design of con-
gestion control algorithms for multimedia transport, adaptive
video streaming, SDN, and server overload control.

Gaetano Carlucci (gaetano.carlucci@poliba.it) received both
the M.Sc. degree and the Ph.D. degree from Politecnico di Bari,
Italy. He held a visiting position at the Video and Content Plat-
forms Research and Advanced Development Group at CISCO
in Boston, USA, in 2014. His main interests focus on the model-
ing and design of control algorithms and transport protocols for
low delay communication over the Internet.

Saverio Mascolo (saverio.mascolo@poliba.it) received both
the laurea degree and the Ph.D. from Politecnico di Bari,
Italy, where he is currently a full professor and Chair of the
Department of Electrical Engineering and Computer Science.
He has worked on nonlinear control, synchronization of cha-
otic systems, modelling and control of data networks, con-
gestion control, adaptive video streaming, content delivery
networks, software-defined networks, and server overload
control. Currently he is an associate editor of IEEE/ACM
Transactions on Networking and Elsevier Computer Networks
Journal.

8 https://janus.conf.
meetecho.com/
9 https://github.com/
StanfordLPNG/pantheon

GCC is tested by employing
a real WebRTC session
with a real video using

Google Chrome end-points,
whereas SCReAM is tested

with an ideal encoder.
We believe that building
on the ideas of PCC, the

RMCAT community could
develop with a reasonable

amount of work a common
platform to experimentally

evaluate all the proposed
algorithms.

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:17:19 UTC from IEEE Xplore. Restrictions apply.

