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Abstract
The WebRTC initiative has achieved impressive 

results in terms of the gained industrial interest, the 
penetration of the technology in end-user devices, 
and the ever growing community of developers. 
WebRTC is today supported by major mobile plat-
forms and Internet browsers, allowing potentially 
billions of users to seamlessly establish real-time 
communication sessions. Among all the functional-
ities that must be implemented by WebRTC devic-
es, congestion control is particularly important to 
ensure that the network operates properly while 
providing a satisfactory user experience. A work-
ing group that is focusing on this issue is the IETF 
RTP Media Congestion Avoidance Techniques 
(RMCAT), which aims at defining the requirements 
and designing congestion control algorithms to 
be used for the transport of real-time media flows 
over RTP. This article overviews the status of the 
standardization efforts that are taking place in the 
RMCAT working group. We discuss the choices 
involved in the design of media congestion control, 
the proposed algorithms, and the issues that are 
considered still open.

Introduction
Real-time applications, such as video conferenc-
ing, gaming, and instant messaging, are becom-
ing widely popular. Despite past standardization 
efforts in the IETF, such as the Real-Time Pro-
tocol (RTP), the industry has been reluctant to 
employ standard protocols and has resorted to 
using proprietary protocols and algorithms in 
their products with the drawback of having ser-
vices that cannot interoperate. The WebRTC 
initiative started in 2011 to precisely address 
the issue of standardizing protocols and APIs to 
enable real-time services among Web browsers 
[5]. The achieved results of this initiative in such 
a short time frame are impressive: WebRTC is 
already available in popular browsers such as 
Google Chrome, Firefox, and Opera, and native-
ly in the Android and iOS mobile platforms. 
Motivated by the huge penetration of this tech-
nology in end-user devices, popular applications 
such as Whatsapp, Facebook Messenger, and 
Google Duo are today adopting WebRTC to 
implement real-time services. However, several 
issues still need to be addressed by the WebRTC 
community. Among them, a key problem is the 
reduction of the Internet latency, which is det-
rimental to the Quality of Experience (QoE) of 
real-time applications [2]. The way the Internet 

latency impacts the QoE depends on wheth-
er WebRTC is used to transport media, data or 
both. In this article we focus on WebRTC appli-
cations transporting media streams. These appli-
cations have challenging requirements since the 
QoE is not only affected by the latency but also 
by the audio/video quality, which depends on 
the used bandwidth and the experienced packet 
losses. To meet such requirements and avoid 
network congestion, WebRTC media flows 
must use a congestion control algorithm. The 
IETF working group (WG) “RTP Media Conges-
tion Avoidance Techniques” (RMCAT) aims at 
designing such an algorithm on top of RTP. This 
article overviews the work that is taking place 
in the RMCAT WG. We describe the general 
architecture to implement congestion control in 
WebRTC, the requirements and design choices, 
and the used approaches to detect congestion. 
Then, we summarize the main features of the 
proposed algorithms and outline the remaining 
open issues. 

Architecture
In this section, we focus on the case of a 
WebRTC application in which peers want to 
establish a real-time session involving multiple 
media streams over RTP. A broader discussion 
on the architecture of general WebRTC appli-
cations can be found in [5]. Figure 1 shows 
the generic architecture employed by WebRTC 
media applications. The figure shows that the i-th 
media stream is first compressed by an encoder 
at a bitrate Ai and then fed to a packetizer that 
generates an RTP packet stream. The suggest-
ed approach is to multiplex all the RTP packet 
streams in a single RTP session sent over one 
transport layer flow to reduce the number of 
flows to be handled by NATs. Following this 
approach, the Media Congestion Control algo-
rithm computes the total sending rate A for 
the aggregated RTP session based on a set of 
metrics measured at the receiver and sent back 
through RTCP packets. A rate allocation module 
allocates a fraction Ai of the total bitrate A to 
each media stream. In particular, each media 
stream is compressed at a target encoding rate 
Ai such that the sum of all these rates equals the 
computed sending rate A. The media streams are 
then multiplexed over a single RTP session that 
feeds a sending engine. This module is responsi-
ble for sending the RTP packets to the network 
at a rate as close as possible to the rate com-
puted by the congestion control algorithm. It 
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is worth noting that the placement of the con-
gestion control algorithm is not specified and 
could be sender-side, receiver-side, or distributed 
both at sender and receiver. As an example, Fig. 
1 shows the case where the congestion con-
trol algorithm is placed only at the sender. The 
receiver is required to implement a module that 
measures metrics to be fed back to the conges-
tion control algorithm through RTCP packets. 
The section “Open Issues” will discuss the impli-
cations that such an architectural choice has on 
system scalability and deployability. 

Requirements and 
Design Choices

The requirements for WebRTC media flows are 
described in [7] and summarized in Table 1. In 
a nutshell, based on such requirements, the goal 
of the congestion control algorithm is to produce 
a sending rate as close as possible to the avail-
able end-to-end bandwidth while maintaining the 
queue occupancy as low as possible. Additional-
ly, media flows generated by WebRTC applica-
tions should fairly share network bandwidth with 
other concurrent flows. The RMCAT WG con-
siders these QoS-related requirements since this 
approach has the merit of focusing the discus-
sion on metrics that are not sensitive to applica-
tion-specific aspects, such as the employed video 
encoder. The design of an algorithm meeting 
these requirements is faced with several choices 
with respect to
1. The transport protocol
2. Congestion detection
3. The actuation mechanism to be employed
Since WebRTC mandates the use of the RTP, 
several lower-layer transport protocols could be 
used. However, the transport protocols that are 
widely supported by NAT traversal protocols 
(e.g. STUN and TURN) and equipment are TCP 
and UDP. Between these two protocols, the pre-
ferred choice is UDP since real-time flows can-
not tolerate inflated latencies due to TCP packet 
retransmissions. Notice that in the case where 
UDP cannot be used due to network policy 
restrictions, the transport layer choice has to fall 
back to TCP. In this case, end-points have to use 
the TCP congestion control algorithms provided 
by the running operating system which might 
not satisfy real-time requirements. Hence, this 
article focuses on congestion control algorithms 
designed at the application layer and transported 
over RTP/UDP. 

Congestion detection can be either implicit, 
when based on end-to-end measurements per-
formed at the end-points, or explicit, when con-
gestion is measured directly in network elements 
by monitoring the router buffers lengths.

The approaches to detect congestion through 
end-to-end measurements can be divided into 
two main categories:
1. Loss-based algorithms, detecting congestion 

based on packet loss events
2. Delay-based algorithms, detecting conges-

tion based on latency measurements. 
Delay-based algorithms are preferred to loss-based 
algorithms due to two reasons: first, delay-based 
schemes can detect congestion before packets 
are lost due to buffer overflows; second, loss-

based algorithms cannot control queuing delays 
since they continuously probe for the network 
available bandwidth by filling and draining Inter-
net buffers, generating significant delay variations. 
Notice that explicitly controlling queuing delays 
is necessary, since excessively large buffers may 
lead to latencies of the order of seconds [2]. An 
important issue to be taken into account is to pre-
vent delay-based flows from being starved when 
competing with loss-based flows in the best-ef-
fort Internet [7]. Congestion control algorithms 
may complement end-to-end measurements with 
explicit congestion signals sent from network 
elements to end-points through, for instance, the 
use of the explicit congestion notification (ECN) 
mechanism.

Concerning the actuation mechanism, the 
congestion control algorithm can either com-
pute a congestion window (window-based 
approach) or explicitly compute a sending rate 
(rate-based approach). The use of rate-based 
mechanisms makes it possible to directly use 
the rate computed by the congestion control 
algorithm to drive the media encoders, whereas 
in the case of window-based algorithms, a prop-
er conversion from a window to a rate should 
be performed.

Figure 1. WebRTC media application architecture.
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Table 1. WEBRTC media flow requirements.

Requirement

Latency Possibly lower than 100ms

Packet losses
Should be minimized, FEC mechanism 
may be employed

Throughput Should be as high as possible 

Burstiness
A smooth sending-rate should be 
produced

Fairness
Should fairly share the bandwidth with 
real-time and data flows

Starvation
Media flows should not be starved when 
competing with TCP flows

Network support
No special network support should be 
required to operate
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Congestion Detection 
Approaches

This section describes commonly used approach-
es to detect congestion based on end-to-end 
delay measurements performed at the clients. 
These approaches aim at estimating the queu-
ing delay, which is a metric directly correlated to 
network congestion. In a nutshell, an increasing 
queuing delay indicates that the bottleneck buffer 
is being inflated since the filling rate exceeds the 
link capacity. Intuitively, the congestion control 
should react to an increase of the estimated queu-
ing delay with a reduction of the sending rate to 
allow the queue to be drained. These techniques 
are also used by congestion control algorithms 
proposed in the RMCAT WG. In the following, 
we group such approaches based on the mea-
sured metric to detect congestion.

Round-Trip Time
Historically, the first metric used by delay-based 
algorithms (e.g. TCP Vegas and TCP Fast) has 
been the end-to-end round-trip time (RTT). Once 
the RTT measurement is done at the sender, the 
queuing delay is estimated by subtracting the mini-
mum RTT measured since the beginning of the ses-
sion. Despite its straightforward implementation, 
this approach has the drawback of measuring the 
sum of the queuing delay in the forward and back-
ward paths. Thus, the presence of congestion on the 
backward path may trigger a congestion event even 
in the absence of congestion on the forward path. 
Consequently, poor channel utilization might be 
achieved. It is worth mentioning that the problem of 
reverse traffic is crucial in the context of video con-
ferencing since video flows are sent in both direc-
tions.

One-Way Delay
The instantaneous one-way delay can be mea-
sured as the difference between the time instant 
Ti at which the i-th packet has been sent and 
the time instant Ti at which the same packet is 
received (Fig. 2). Thus, the time Ti needs to be 
stamped in the RTP packet. There are different 

ways to store this information into the RTP packet 
that will be discussed later. Then, the one-way 
queuing delay is estimated by subtracting to the 
measured one-way delay its minimum value mea-
sured during the session. This approach has the 
advantage of making the queuing delay estima-
tion independent from the backward path state 
conditions. However, it has been shown that this 
technique might be affected by the so-called “late-
comer effect:” when two flows share the same 
bottleneck, the flow that arrives later typically 
starves the first one. This is due to the fact that 
the last flow arriving at the bottleneck measures 
a minimum one-way delay that also accounts for 
the queuing delay of the existing flow. At the 
same time, the first flow measures an increasing 
one-way delay due to the presence of the arriving 
flow. At this point, the first flow yields bandwidth 
resources to the second flow, which eventually 
starves the first flow.

One-Way Delay Variation
Given two consecutive RTP packets sent from the 
sender to the receiver, a one-way delay (OWDV) 
sample is measured as the difference between 
two consecutive one-way delay samples, i.e., 
Ti – Ti – (ti–1 – Ti–1) (Fig. 2). Even in this case, the 
sending time has to be stored in the RTP pack-
et. Clock synchronization is not required in this 
case since the offset between sender and receiver 
clocks is canceled out by the difference between 
the two samples. The way the OWDV is used to 
detect congestion differs from the approaches 
described above since it estimates the queuing 
delay variation. Basically, a positive measured 
OWDV indicates that the queuing delay is increas-
ing; conversely, a negative OWDV means that the 
queuing delay is decreasing. A measured OWDV 
equal to zero indicates that the bottleneck queu-
ing delay is constant. This can happen in three 
different conditions:
1. When the queue is empty due to channel 

underutilization, i.e., when the application 
sending rate is below the link capacity.

2. If the queue is full due to persistent conges-
tion, i.e., when the filling rate exceeds the 
link capacity.

3. When the rate exactly matches the link 
capacity.

In the third case, the queue stays constant to a 
value between zero and its maximum size. This is 
an undesirable situation known as standing queue, 
which steadily delays the incoming traffic. Thus, 
to guarantee a small queue occupancy while fully 
utilizing the available bandwidth, the algorithm 
has to continuously probe for the available band-
width by increasing its sending rate until a posi-
tive queuing delay variation is detected. At this 
point, the sending rate should be quickly reduced. 
To summarize, some queuing delay needs to be 
induced to run a congestion control algorithm 
based on delay variations. 

Proposed Algorithms
This Section describes the design choices, fea-
tures, standardization and implementation status, 
and main results of the three congestion control 
algorithms proposed within the RMCAT WG:
1. Google Congestion Control (GCC) by Goo-

gle

The use of rate-based 
mechanisms makes it 
possible to directly use the 
rate computed by the con-
gestion control algorithm 
to drive the media encod-
ers, whereas in the case of 
window-based algorithms, 
a proper conversion from 
a window to a rate should 
be performed.

Figure 2. Two consecutive RTP packets are sent at 
time Ti–1 and Ti and received at time ti–1 and ti.
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2. Network Assisted Dynamic Adaptation 
(NADA) by Cisco

3. Self-Clocked Rate Adaptation for Multimedia 
(SCReAM) by Ericsson

Algorithms’ Designs At A Glance
GCC [3]. The congestion control algorithm 

throttles the sending rate based on the estimat-
ed congestion state. To estimate the state, GCC 
employs a finite state machine that is driven by a 
signal obtained by comparing the measured one-
way delay variation with a dynamic threshold. In 
a nutshell, when the bottleneck is estimated as 
“underused” the sending rate is increased; when 
it is estimated as “overused” the sending rate is 
reduced. The use of a dynamic threshold to esti-
mate the congestion state has revealed to be a 
key design requirement to face with starvation 
issues when GCC flows share the bottleneck with 
TCP flows.

NADA [12] computes the sending rate based 
on both explicit congestion signals provided by 
network elements (the explicit packet ECN marking 
ratio) and implicit congestion signals, i.e., the mea-
sured one-way queuing delay and loss ratio. The 
resulting aggregated congestion signal is obtained 
by summing, through appropriate weights, all the 
contributes defined above. When no assistance is 
provided by the network, NADA basically operates 
as a delay-based algorithm taking the estimated 
one-way delay as the congestion signal. To avoid 
starvation when competing with loss-based flows, 
the estimated delay is first passed to a non-linear 
function which artificially decreases the estimated 
delay when it exceeds a threshold.

SCReAM [4] estimates the one-way queuing 
delay as the difference between the measured 
one-way delay and the minimum observed one-
way delay, which is defined as the base delay. The 
algorithm employs a congestion window (cwnd) 
to limit the number of inflight bytes. The cwnd 
can increase only if the value of the estimated 
one-way queuing delay is below a given threshold 
(typically 50–100 ms), otherwise it decreases the 
cwnd proportionally to the difference between 
the threshold and the one-way queuing delay. 
SCReAM dynamically adjusts the target for the 
queuing delay to cope with starvation issues 
when competing with loss-based flows. Finally, a 
module, the Media Rate Control, is used to com-
pute the sending rate based on the congestion 
window.

Algorithms’ Features
Table 2 summarizes the main features of the 
proposed algorithms comprising the metrics 
employed to infer congestion, the employed 
architecture, and the implementation status.

Concerning the metrics employed to detect 
congestion, NADA and SCReAM employ the one-
way delay, whereas GCC employs the one-way 
delay variation. Besides the delay-based conges-
tion control mechanism, all the proposed algo-
rithms also comprise a mechanism reacting to 
losses. To this purpose, the fraction of lost packets 
is used (see RTP RFC for details). It is important to 
stress that the loss-based component is employed 
as a fall-back when the delay-based algorithm 
cannot prevent losses due to buffer overflow (for 
instance when the bottleneck buffer is small).

All the proposed algorithms follow an archi-
tectural design approach similar to the approach 
shown in Fig. 1. Specifically, NADA and SCReAM 
implement the control logic at the sender, where-
as the receiver only performs measurements that 
are reported through RTCP feedbacks. GCC was 
first conceived as a hybrid sender/receiver side 
algorithm; recently it has been re-designed to 
support a sender-side only architecture. Con-
cerning the actuation mechanism, SCReAM is 
the only window-based algorithm proposed in 
RMCAT. On the other hand, both GCC and 
NADA explicitly compute a sending rate that is 
then used to drive the encoders as described 
earlier. Even though the proposed algorithms 
do not require network cooperation in order to 
operate, SCReAM supports ECN, wheres NADA 
supports both ECN and the pre-congestion noti-
fication (PCN) as complementary congestion 
signals. The support of explicit feedback from 
network elements has also been considered by 
GCC authors, but at the time of this writing it has 
not yet been specified. 

Standardization and 
Implementation Status

Regarding the standardization status, SCReAM 
has passed the final review of the working group 
last call (WGLC), whereas NADA is about to enter 
this phase shortly. As such, both SCReAM and 
NADA are expected to be submitted to the Inter-
net Engineering Steering Group (IESG) for exper-
imental publication in the forthcoming months. 
Concerning GCC, the draft has to address some 
issues in the loss-based component of the algo-
rithm before entering the WGLC phase.

Regarding the algorithms’ implementation sta-
tus, the situation is quite heterogeneous. NADA 
has been implemented in the Ns-21 and Ns-3 sim-
ulators, whereas SCReAM and GCC have real 
implementations. SCReAM has been implement-
ed in OpenWebRTC,2 an open-source project 
that can be used to build native WebRTC appli-
cations. However, the maintained version of the 
algorithm is only available in the form of a sim-
ulator.3 GCC is included in the official release 
of Google Chrome and it is also being used by 
Google Hangouts and the Google Duo mobile 
application. As a matter of fact, GCC is the only 
proposed congestion control algorithm that has 
been integrated into a widely-used browser. As 
such, GCC can be easily tested in real network 

1 This is the only implemen-
tation that the authors have 
publicly released.
2 https://www.openwebrtc.
org/
3 https://github.com/Erics-
sonResearch/scream.

Table 2. RMCAT candidate algorithms features.

Feature GCC NADA SCReAM

Metrics
One-way delay variation, 
loss ratio

One-way delay, loss 
ratio

One-way delay, loss 
ratio

Architecture Sender-side or hybrid Sender-side Sender-side

Actuation mechanism Rate-based Rate-based Window-based

Network support None ECN, PCN ECN

Implementation 
status

Google Chrome
Ns-2 and Ns-3 
simulators

OpenWebRTC and 
simulator

Codec interaction VP8 and VP9 Simulated encoder OpenH264 and VP9
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environments by starting a video conferencing 
session with the official Google Chrome browser 
and using AppRTC,4 a popular WebRTC demo 
application developed by Google.

Results
Due to the different implementation status, 
it is difficult to provide a quantitative com-
parison between the performance of the pro-
posed algorithms. As such, in the following, 
we qualitatively compare the results obtained 
independently by authors in the common net-
work scenarios defined by the RMCAT WG 
[9]. Concerning NADA and SCReAM, the fol-
lowing discussion is based on the simulative 
results presented by the algorithms’ authors in 
the RMCAT WG meetings.5,6 Regarding GCC 
results, we refer to the experimental evalua-
tion reported in [3] that was carried out with 
Google Chrome browsers establishing real 
WebRTC video conferencing sessions in an 
emulated WAN network.

The test case “Variable Available Capacity” 
aims at assessing the responsiveness of the algo-
rithm to step-like increases and decreases of the 
bottleneck link capacity in the single-flow case 
and when multiple media flows share the bottle-
neck. In this scenario, NADA adapts the sending 
rate to the link capacity variations responsively 
when an ideal codec is used, whereas it exhibits 
remarkable sending rate oscillations and inflated 
latencies when a trace-based codec is used 
in Ns-3 simulations. SCReAM nicely adapts the 
sending rate in the single flow scenario when the 
RTT of the path is small, but provokes a standing 
queue when the RTT is larger. This issue is due 
to the mechanism implemented by SCReAM to 
cope with TCP long-lived flows. In this scenario, 
GCC is able to adapt the sending rate and match 
the channel capacity containing the queuing 
delays.

The test case “Competing Media Flows” tests 
inter-protocol fairness requirements by consid-
ering three concurrent media flows over a link 
with constant capacity. NADA provides fast rate 
convergence among concurrent flows when an 
ideal codec is used, but it exhibits remarkable rate 
oscillations when a trace-based codec is used. 
SCReAM and GCC sending rates convergence 
time is higher but they provide lower queuing 
delays with respect to NADA. All the candidate 
algorithms prevent packet losses during the exper-
iments in this test case.

Finally, the test case “Media Flow Competing 
with a Long TCP Flow” assesses inter-protocol 
fairness when one media flow shares a constant 
capacity bottleneck link with one long-lived TCP 
flow. GCC and NADA are able to avoid starva-
tion against the TCP flow since they make their 
control action more aggressive in such situations. 
NADA convergence is faster compared to GCC, 
but NADA and TCP rates remarkably oscillate 
when a trace-based codec is used. Concerning 
SCReAM, results show that TCP starves the media 
flow.

To summarize, the results obtained by NADA 
show that the algorithm still needs to be tuned 
to work with real codecs, whereas SCReAM fails 
to avoid starvation when used concurrently with 
TCP flows. 

Open Issues
In this section, we briefly provide a discussion of 
complementary issues related to the definition of a 
congestion control algorithm for media transport.

Interactions with 
Concurrent Data or Media Flows

A WebRTC application may open multiple media 
flows generated by different media sources that 
could share the same bottleneck (Fig. 1). In such 
a situation, a mechanism to share states across the 
congestion control algorithms transporting such 
flows can be used to allow taking better decisions 
in the allocation of bandwidth resources. The way 
the congestion state should be shared among 
media flows is specified in [11] which has passed 
the WGLC and has been submitted to the IESG 
for experimental publication.

Besides media transport, WebRTC also pro-
vides reliable transport of data through data chan-
nels [5]. Data channels allow prioritization among 
data streams over the Stream Control Transmis-
sion Protocol (SCTP) which uses its own conges-
tion control. Typically, in order to minimize the 
number of NAT bindings and consequently the 
risk of NAT traversal failure, media and data traffic 
are multiplexed over a single lower layer protocol. 
At the time of this writing, the discussion of the 
interaction between data and media congestion 
control mechanisms is still at an early stage. 

RTP/RTCP Extensions
The RTP/RTCP standard is considering new 
extensions designed for enhancing media con-
gestion control functionalities, such as absolute 
timestamps7 or relative transmission time offsets 
in RTP header extensions [10]. These are two 
techniques used to stamp the departure time of 
an RTP packet in their header. This is important 
information that is required to perform delay mea-
surements. Since the RTP standard does not define 
a transmission timestamp, the “relative transmission 
time offsets extension gives information on the rela-
tionship between the time spacing of the transmis-
sion time and the RTP timestamp used for media 
synchronization. Recently, Google uncovered that 
using relative send time offsets could be problem-
atic when packets are relayed through middlebox-
es. To prevent middlebox interference, Google has 
proposed the absolute send time extension, which 
consists of adding four bytes to RTP packets to add 
the timestamp of the departure time from the sys-
tem that puts this packet on the wire.

Among other RTP/RTCP extensions that are 
related to congestion control, we mention:
1. The circuit-breaker [6] algorithm, which is 

used to stop a media session when conges-
tion control is not operating efficiently.

2. REMB [1], which is an RTCP message for 
signaling the receiver estimated maximum 
bitrate that should be employed by a con-
gestion control algorithm.

Feedback Message Format
Recently, the RMCAT WG has been discuss-

ing the definition of a generic RTCP feedback 
message format that should be used by candi-
date congestion control algorithms [8]. In such 
a way, sender-side algorithms would only require 

4 https://appr.tc 
5 “SCReAM update and test 
case results,” IETF-96 RMCAT 
meeting, https://www.ietf.
org/proceedings/96/slides/
slides-96-rmcat-0.pdf
6 Update on NADA Perfor-
mance Evaluation, IETF-96 
RMCAT meeting, https://
www.ietf.org/proceed-
ings/96/slides/slides-96-rm-
cat-3.pdf 
7 https://webrtc.org/exper-
iments/rtp-hdrext/abs-send-
time/

A WebRTC application may 
open multiple media flows 
generated by different 
media sources that could 
share the same bottle-
neck. In such a situation, a 
mechanism to share states 
across the congestion 
control algorithms trans-
porting such flows can be 
used to allow taking better 
decisions in the allocation 
of bandwidth resources.
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the receiver to measure a set of defined metrics 
to be reported by a common feedback message. 
This approach has interesting implementation 
advantages. In fact, from the perspective of con-
gestion control, the required functionalities to 
be implemented would be greatly simplified. In 
particular, the receiver could be made agnostic 
to the employed congestion control algorithm 
at the sender, which is beneficial in the case of 
multi-party scenarios where multiple receivers are 
handled by a multi-point control unit (MCU).8

Common Experimental Testbed Platform
The definition of a common testbed for the eval-
uation of different congestion control algorithms 
is at an early stage. Such a common testbed is 
indeed the missing piece to fairly compare the 
proposed algorithms in the common scenarios 
defined in the RMCAT WG.

An interesting initiative in this direction is the 
“Pantheon of Congestion Control” (PCC)9 which 
has been proposed by Standford University in the 
context of the IETF Internet Congestion Control 
Research Group (ICCRG) WG. PCC has been pro-
posed to compare the performance of congestion 
control algorithms in terms of self-inflicted queuing 
delays and obtained throughput. Among the algo-
rithms proposed in RMCAT, at the moment PCC 
only includes GCC and SCReAM. GCC is tested 
by employing a real WebRTC session with a real 
video using Google Chrome end-points, where-
as SCReAM is tested with an ideal encoder. We 
believe that building on the ideas of PCC, the 
RMCAT community could develop within a reason-
able amount of work a common platform to exper-
imentally evaluate all the proposed algorithms. 

Summary
The IETF RTP Media Congestion Avoidance Tech-
niques (RMCAT) Working Group will specify one 
or more congestion control algorithms for the 
transport of real-time media over RTP. This feature 
has to be implemented in end-points to guaran-
tee both the safe deployment of WebRTC-based 
applications over the Internet and to provide 
the highest possible media quality to the users. 
Three algorithms have been proposed in the WG 
and they have been implemented and tested in 
different environments. This heterogeneity does 
not allow a fair comparison among the solutions 
and, for this reason, some proposals for the spec-
ification of a common experimental testbed plat-
form have been made. Moreover, the interaction 
between the media and data channel congestion 
control algorithms also needs to be specified to 
allow for fair sharing of network resources and 
flow prioritization.
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GCC is tested by employing 
a real WebRTC session 
with a real video using 

Google Chrome end-points, 
whereas SCReAM is tested 

with an ideal encoder. 
We believe that building 
on the ideas of PCC, the 

RMCAT community could 
develop with a reasonable 

amount of work a common 
platform to experimentally 

evaluate all the proposed 
algorithms.
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