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ABSTRACT
Services delivering videos to massive audiences are required to

provide the users with a satisfactory Quality of Experience (QoE) to

keep high engagement and avoid service abandonment. Adaptive

BitRate algorithms (ABR) running in video players are designed to

dynamically change the video bitrate to provide the best possible

QoE given the user device features and the end-to-end network

available bandwidth. Well-designed ABR algorithms strive to im-

prove the individual QoE obtained by each user resulting, in the

optimal case, in the maximization of the sum of QoE individually

perceived by users. However, when resources are scarce, maximiz-

ing the sum of the QoE might result in favoring some clients at the

expense of others which instead obtain poor QoEs with the possible

consequence of service abandonment. Thus, we argue that video

service providers should directly address fairness issues when de-

signing their delivery networks so to gracefully degrade the QoE for

all users when resources are scarce. This paper addresses this open

issue and shows that the Multi-Commodity Flow Problem (MCFP)

optimization framework is a proper methodology to achieve a QoE-

fair distribution of the resources. The proposed solution is based on

the bandwidth reservation approach that slices network resources

and assigns similar video requests to the same network slice ac-

cording to a proposed similarity metric dependent on video quality.

Obtained results show that the proposed approach is able to achieve

its goal and provide a fair level of QoE to heterogeneous clients.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Comput-
ing methodologies → Control methods.
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1 INTRODUCTION AND BACKGROUND
The fraction of Internet traffic due to video content is steadily

increasing and today accounts for more than half of the global

traffic [6]. This phenomenon is mainly driven by a shift in the way

users consume multimedia contents preferring Internet based video

services (Netflix, Amazon Prime Video, Hulu, etc.) to classical TV

broadcast channels. The architectural design choice that has made

possible such a transition is the use of the standard HTTP protocol

to deliver videos from servers to any video player supporting HTTP.

Horizontal scalability is guaranteed by using Content Delivery

Networks (CDNs) replicating video contents through surrogate

servers which finally deliver the content to the user.

Video services are required to design their delivery systems to

provide the users with the best possible Quality of Experience (QoE)

in order to keep high engagement and avoid service abandonment.

This problem is today addressed using a decoupled approach: the

delivery network is properly designed and sized to guarantee that

Quality of Service (QoS) related parameters such as end-to-end

network bandwidth, packet losses, and network latency meet spe-

cific minimum requirements; video players run Adaptive BitRate

algorithms (ABR) designed to dynamically select the video bitrate

(and video resolution) from a discrete set L to provide the best

possible QoE given the user device features and the end-to-end

network bandwidth measured by the client and provided by the

delivery network.

As a matter of fact, ABR algorithms are typically designed to

improve the individual QoE obtained by each user resulting, in the

optimal case, to a situation in which the sum of QoE individually

perceived by users is maximized. However, when delivery network

resources are scarce due to high load, maximizing the sum of the

QoE might result in favoring some clients at the expense of others

which instead obtain poor QoEs with the possible consequence of

service abandonment. This is due to the fact that HTTP-based de-

livery networks operate a QoS-fair network bandwidth distribution

among the flows, i.e. all users sharing a bottleneck are assigned with

the same network bandwidth share. However, users with high reso-

lution devices (f.i., Smart TVs) have larger requirements in terms of

video bitrate compared to devices with small screens (smartphones)

that typically require a lower video bitrate to obtain a satisfactory

visual quality.

To make an example, consider Figure 1 that shows the measured

visual quality as a function of the encoding video bitrate obtained by

clients with different screen resolutions. Let us suppose that three

concurrent users request the same video using clients with different

screen resolutions (namely 720p, 1080p, and 2160p) and that the

video flows share the same bottleneck link having a bandwidth

equal to 6Mbps. In such a case, the fair network bandwidth share

obtained by each video flow is equal to 2Mbps. As a result,the visual

quality obtained by the 720p, 1080p, and 2160p clients would be
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Figure 1: Visual quality function of the video bitrate and the
client screen resolution

respectively equal to 0.9, 0.85, 0.7.We can conclude that small screen

devices will enjoy a better visual quality with respect to large screen

devices when provided with the same network bandwidth share.

In other words, current video delivery networks cannot provide a

fair level of QoE to users.

This paper particularly addresses this issue and advocates that

video service providers should design their delivery networks to

provide the best trade-off between the average obtained QoE and

the QoE fairness. To reach this goal, it is necessary to implement

a strategy such that video flows sharing the same bottleneck are

assigned with a differentiated network bandwidth guaranteeing

the same video quality when network resources are scarce.

If, on one hand, the problem of designing QoE-aware ABR al-

gorithms has been explored extensively in the literature [1, 7, 9,

11, 20, 28], QoE-fair delivery of videos has been addressed only

recently in a few papers [2, 8, 10, 14, 17, 18], all advocating the

need of a Video Control Plane (VCP) to allow cooperation between

clients and the delivery network. In [14] authors address for the

first time the problem of delivering a fair level of QoE to users. A

unique shared bottleneck managed by a Software Defined Network-

ing (SDN) switch is sliced programmatically. Each video session is

assigned to one network slice whose size is obtained by solving a

max-min fairness problem [3]. Recently, the MPEG-DASH commu-

nity has proposed the Server And Network Assisted DASH (SAND

DASH), which introduces the DASH Assisting Network Elements

(DANEs) providing primitives to drive DASH video clients and sug-

gest them the suitable video bitrate to select [17, 18, 24]. In [10]

authors design and systematically analyze the performance of an

SDN-based VCP managing a single bottleneck. The paper shows

both the impact on performance due to different ABR algorithms at

the clients and the use of two different allocation strategies: 1) the

network slicing (or bandwidth reservation) strategy which assigns

video flows to network slices whose size is determined by solving an

optimization problem; 2) the bitrate guidance case which employs

DANEs to guide video clients in the choice of the video level. The

paper has shown that the bandwidth reservation strategy provides

better results in terms of achievable video fairness.

This paper addresses the problem of designing a QoE-fair opti-

mal resource allocation strategy on a generic distribution network

using traffic engineering techniques based on network slicing. This

work makes the key contributions described in the following. First,

we consider the case of a generic distribution network instead of fo-

cusing only on the single bottleneck case as studied in [10, 14]. This

is particularly important from the point of view of video platforms

owning the distribution network (f.i., Google YouTube, Comcast). In

fact, the possibility of programming each network element allows

those platforms to reach near 100% resource utilization without de-

grading performances as shown in the seminal paper by Google [16].

Secondly, we show that theMulti-Commodity Flow Problem (MCFP)

optimization framework [25] is a proper methodology to enforce a

QoE-fair distribution of network resources. In particular, we first

show how to cast our QoE-fair resource allocation problem to an

MCFP (Section 3) and then we propose a traffic clustering approach

to sensibly reduce the number of network slices and make the re-

sulting problem tractable for video distribution platforms serving

a massive audience (Section 4). Such clustering approach assigns

video sessions based on a proposed similarity metric which is de-

pendent on video quality. Finally, we conduct a simulation study to

assess the sensitivity of the performances of the proposed resource

allocation strategy with respect to the total load on the delivery

network and the number of clusters (Section 5).

2 BACKGROUND ON MCFP
In this section we briefly describe themulti-commodity flow problem
(MCFP) optimization framework using the terminology adopted

in [25]. In such a framework, the term commodity refers to the

tuple composed of a source node, a destination node, and a volume,

i.e. the required resources to satisfy the commodity. In our case, a

commodity identifies a video session where the source node is the

video server, the destination node is the client, whereas the volume

represents the video bitrate required to obtain the maximum video

quality.

In general, the objective of MCFP is to assign network resources

such that commodities are satisfied simultaneously in an optimal

way through the maximization of a properly defined utility function

under a set of constraints.

In the following we describe the MCFP using the link-path for-
mulation [25]. The delivery network is modeled as a capacitated

graph G = (N , E ), where N = {n1,n2, . . . ,nN } is the node set
and E = {e1, e2, . . . , eE } is the edge set. Each edge e ∈ E , or link, is

defined as a node pair and is assigned with a bandwidth capacity

ce . The set of demands is denoted with D = {1, 2, . . . ,D}, where
each demand d ∈ D is a source-destination node pair character-

ized by a traffic volume Hd . The traffic volume is defined as the

required bandwidth for that demand. Moreover, each demand d is

provided with a set of admissible paths Pd composed of selected

paths from source to destination node belonging to graph G. The
demand volume Hd is realized using paths from Pd by means of

path flows xdp (p ∈ Pd ) which are the variables to be optimized

by the MCFP. Finally, δedp denotes the link-path indicator, which

is set to 1 if path p for demand d uses link e , 0 otherwise. Notice

that in the link-path formulation, all the admissible paths Pd are

pre-computed by finding the shortest paths from demand source to

demand destination according to a defined cost.

In this paper nodes represent network switches, whereas edges

identify links connecting a couple of switches
1
. Each link is divided

in bandwidth slices of an appropriate size, whose number depends

on the demands in the network. Bandwidth slices size are computed

1
In the following, we will refer to nodes and SDN switches interchangeably as well as

edges with links.
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by solving a multi-path weighted α-fairness optimization problem

which employs the following utility function [21]:

U (X ) =
∑

d
wd

X 1−α
d

1 − α
(1)

where X = [X1,X2, . . . ,XD ]
T
is the vector of the total bandwidths

(or total flow) Xd =
∑
p xdp allocated to each demand d andwd is

a weight associated to the demand d . It has been shown that the

maximization of (1) provides a balance between link utilization

(which is related to the solution efficiency) and fairness by varying

the scalar parameter α in the interval [0,+∞] [21]. In particular, if

α = 0 the link utilization is maximized disregarding the fairness

among flows, whereas if α → +∞, the flow assignment becomes

max-min fair, i.e., the assignment allocates resources such that the

flow obtaining the minimum rate is maximized. The setting α = 1

results in the Proportional Fairness (PF) optimization problem [22],

which provides a good balance between fairness and link utilization.

For this reason, in this paper we explore the proportional fair case

(α = 1) and leave to future studies a performance comparison for

different values of α . In the PF case it is straightforward to show

that (1) tends toU (X ) =
∑
dwd logXd . We are now ready to present

the optimization problem that we aim to solve in this paper.

Problem 1. MCFP multi-path weighted proportional fair opti-
mization problem:

Maximize

∑
d
wd logXd (2)

s.t.
∑
p

xdp = Xd (3)∑
d

∑
p

δedpxdp ≤ ce , ∀e ∈ E (4)

Xd ≤ Hd (5)

The constraints (4) are imposed to respect the capacity of the

link ce , i.e. the sum of all the path flows xdp insisting on the link e
should not exceed the capacity of that link. Constraint (5) ensures

that the total bandwidth Xd allocated for demand d is bounded by

the demand traffic estimation given by Hd .

3 THE PROPOSED VIDEO CONTROL PLANE
In this section, we describe the proposed Video Control Plane (VCP)

to provide concurrent users consuming videos through heteroge-

neous devices with a fair level of QoE. To the purpose, we design

the VCP to partition the delivery network links into a number of

slices whose bandwidth values are determined by solving the MCFP

(Problem 1 in Section 2) so that QoE is equalized among users.

In the following, we provide all the necessary information to

specialize a generic MCFP to our particular case. Concerning the

objective function we show how to properly compute the demand

weightswd such that maximizing (2) corresponds to guaranteeing

QoE-fair, rather than a throughput-fair, allocation of resources. To

the purpose, we propose a procedure to compute demand weights

based on the estimation of a mapping between the bitrate and the

obtainable visual quality (Section 3.2).
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Figure 2: Video level set representation in a ladder graph

3.1 Definitions
Video level set, reference level, video request. According to

the DASH standard, each video v ∈ V = {v1, . . . ,vV } in the video
catalog is encoded into different representations or levels l ∈ Lv
characterized by the couple l = (b, r )where b ∈ Bv is the encoding

bitrate and r ∈ Rv is the video resolution. Notice that different

videos can have a significantly different set of encoding bitrate

depending on the video content.

A video request t is identified by the couple (v, c), where v ∈ V
and c is the user class belonging to the set C = {c1, c2, . . . , cC }. In
this paper, users are classified based on their screen resolution, since

this parameter has a key impact on obtainable QoE as discussed

in the introduction (see Figure 1). Thus, in the following the terms

“user class” and “user screen resolution” are used interchangeably.

Notice that, with this notation, a video request t denotes which
video v a user having a client resolution c is willing to consume.

For each video request t = (v, c)we define the set Lt containing

all the levels of Lv such that their resolution is less than c , i.e.
Lt = {l ∈ Lv : r ≤ c}. It is worth to stress that for a video

request t the ABR algorithm will choose video levels belonging

to Lt since we are making the realistic assumption that a client

having a resolution c does not request video levels with a resolution
higher than c .

Next, we define the reference level lt = (bt , c) ∈ Lt as the rep-

resentation with resolution c having the maximum bitrate bt . To
make a concrete example, consider a 4K video being encoded into

6 video levels as shown in Figure 2 where each marker represents

a video level l = (b, r ) ∈ Lv . Let us consider a video request

t = (v, 720p). In such a case, it turns out that Lt = {l1, l2, l3} and

that the reference level lt is equal to l3 = (2Mbps, 720p).

Video session. A video session is defined as the tuple (src, dst, t)
where: 1) src ∈ N is the switch the server delivering the requested

video is connected to; 2) dst ∈ N is the switch the client is con-

nected to; 3) t = (v, c) is the video request.
Demand and demand volume. The demand d is the aggregate

of the nd video sessions characterized by the same tuple (src, dst, t).
Consequently, the demand volume Hd is equal to:

Hd = ndbt (6)

where bt is the bitrate of the reference level lt defined above. In

other words, Hd is the minimum amount of network bandwidth

required to ensure that all video sessions belonging to the demand

d are served with a bandwidth share equal to the reference level lt .
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Algorithm 1 Visual quality measurement for a video v ∈ V

1: for each client class c ∈ C do
2: t ← (v, c)
3: Select reference level

¯lt from Lt
4: for each l ∈ Lv do
5: if l ∈ Lt then
6:

˜l ← Upscale l to c resolution

7: Qt (l) ← FRVQ(˜l, ¯lt )
8: else
9: Qt (l) ← 1

10: end if
11: end for
12: end for

We expect that, if the constraint (5) is strictly verified (Xd = Hd ),

all the video flows of this demand will obtain the maximum visual

quality.

Link-path indicator δedp . As defined in Section 2, δedp is a binary

variable that is equal to 1 if the path p used to realize the demand d
uses link e . In practice, δedp is set based on the admissible path set

Pd which, in turn, depends on the delivery network topology G.

3.2 Measuring the visual quality
Since the proposed VCP aims at allocating network resources to

obtain a fair level of QoE among users, we need to define a mapping

between the network bandwidth allocated to a video session and

the achieved QoE [4, 5, 13, 26]. Such a mapping will be employed

to define proper demand weightswd such that the bandwidth allo-

cation resulting by solving Problem 1 is aware of the visual quality

obtainable by users. Notice that the procedure described in the fol-

lowing should be performed off-line each time a video is added to

the catalog. At the end of this procedure, we will obtain a number of

mappings equal to the number of defined user classes for each video.

The resulting mappings will be associated to the corresponding

video as a metadata.

Algorithm 1 describes the procedure employed to assess the

visual quality for a video v ∈ V . In a nutshell, given a video v ∈ V
the goal is to compute, for each l ∈ Lv and user class c ∈ C , the

mapping Qt : Lv 7→ [0, 1] expressing a relationship between the

video level and the obtainable visual quality when playing the video

on a device with a resolution c .2

The output of this procedure for a specific video is shown in

Figure 1 in the case of a client class set C = {720p, 1080p, 2160p}

with a level set composed of 7 elements. In particular, fixed the video

v and the client class c (Line 2) we compute Qt (l) for each l ∈ Lv
as follows (Lines 4–11). First, we select the reference video level

¯lt
from the set Lt as described in Section 3.1. Then, for each video

level l ∈ Lv the video quality is computed using a full-reference

video quality assessment tool such as, f.i., the Structural SIMilarity

(SSIM) [27], the Peak Signal to Noise Ratio (PSNR), or the Video

Multi-method Assessment Fusion (VMAF) [19]. We assume that

thesemetrics are normalized in the range [0, 1]. These tools estimate

the visual quality by comparing each frame of a degraded video

with the reference frames of the non-degraded video. This operation

2
Recall that t = (v , c) denotes the video request.
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Figure 3: Computation of weights

is performed in Lines 6–7. The video level l is first up-scaled to the

reference video level lt obtaining the degraded video ˜l (Line 6), and
then a full reference video quality assessment tool estimates the

video quality by comparing the degraded video
˜l with the reference

video lt (Line 7). Notice that this estimation process captures exactly

what happens during video playback. In fact, the video player has

to upscale the decoded video to the device screen resolution if the

client screen resolution is higher than the video resolution served by

the content provider, leading to a degradation in terms of perceived

video quality and user QoE. Conversely, when the user is served

with a video resolution equal to his device resolution, no upscaling

is needed and the user perceives the best visual quality experience.

This situation is taken into account by Line 9. In this case the video

level l does not belong to Lt , i.e. if the resolution of l is larger than

that of the reference level lt , the video quality is set to 1.

3.3 Demand Weights computation
In order to guarantee that the solution of Problem 1 corresponds

to achieving the optimum QoE-fair (rather than a throughput-fair)

allocation of resources, we need to properly compute the demand

weights wd used in (2). Recall that, as already mentioned in Sec-

tion 2, it turns out that the higher the weight wd the higher the

assigned bandwidth Xd to the video flows belonging to demand

d . Thus, weights should be computed in such a way that demands

corresponding to users with large screens obtain higher bandwidth

shares compared to users with small screens.

First, given a demand d = (src, dst, t), notice that the weights
wd do not depend on source and destination nodes, but only on

the video request t , i.e. on the particular video and user class. Thus,

two demands d1 and d2 characterized by the same video request

t will have the same weights wd1
= wd2

= wt . Therefore, in the

following we focus on the procedure to computewt .

Consider the mapping Qt computed as described in Algorithm 1

and the couples (xi ,yi ) for i = 1, . . . , L where xi = bi ∈ Bv and

yi = Qt (li ). We propose to compute the weight wt as the output

of a least square problem fitting the data (xi ,yi ) with the function

y = (logx)/wt havingwt as the unique fitting parameter. Figure 3

shows an example of how weights of a video v are computed for

the two video requests t1 = (v, 1080p) and t2 = (v, 2160p). The

markers in Figure 3 represent the Qt1
and Qt2

mappings, whereas

the logarithmic fittings related to these two mappings are shown

using continuous lines. The figure also shows that the computed

weights using the proposed procedure are respectivelywt1
= 7.84

and wt2
= 9.64. Thus, the value of weights obtained using this
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methodology increases with the device resolution of the video re-

quest, which is exactly what we need to make sure that the optimal

solution assigns clients with higher resolutionswith higher network

bandwidth shares.

4 CLUSTERING VIDEO REQUESTS
Motivating video requests clustering. In the previous section

we have defined how to compute all the inputs to the optimization

Problem 1. Recall that the goal of the optimization problem is to

find the path flows xdp such that the QoE-aware objective func-

tion (2) is maximized. To simplify the following analysis consider

the case of single-path, i.e., every demand is realized using a single

pre-computed path of the delivery network. In such a case, it is

immediate to observe that we only have one path flow xdp (Pd is

a singleton) for each demand and thus Xd = xdp . It follows that,
in the single-path case, the number of variables involved in the

solution of the optimization problem is equal to the number of all

the possible demands D, i.e. the cardinality of the demand set D .

Since a demand is defined as the triple (src, dst, t) ∈ N ×N ×T ,

it follows D = N · (N − 1) ·T . Now, recalling that a video request
t ∈ T is defined as the couple (v, c) ∈ V ×C , it turns out that the

cardinality of T is equal to V ·C , i.e. the product of the video cata-

log size and the number of user classes. Thus, considering a video

provider serving a catalog of 10
9
videos it is easy to understand that

the number of the video requests would make the cardinality of D
too high and would result in an intractable optimization problem.

From video requests to traffic classes. To address this issue,
we propose to employ the following procedure. For each user class

c ∈ C , we partition the video catalog V in a number K of clusters

{V c
1
, . . . ,V c

K } according to a clustering algorithm. We denote with

K = {1, . . . ,K} the set of the video cluster indexes. Notice that K
is a design parameter that can be chosen freely such that K ≪ V .
Next, we associate to a video request t = (v, c) a traffic class t̃ as
the couple (k, c) where k ∈ K is the cluster the video v belongs

to (i.e., v ∈ V c
k ). Notice that with this procedure all the video

requests t = (v, c) having v mapped to the same video cluster V c
k

are associated to the same traffic class t̃ = (k, c). If we now redefine

the demand as the aggregate of video sessions having the same

triple (src, dst,t̃) we end up with a demand set whose cardinality is

now equal to N · (N − 1) · K ·C that can be made manageable by

properly setting K ≪ V .

Clustering procedure. Let us fix a user class c ∈ C and con-

sider all the video requests t having a user class equal to c . For

each of these video requests, consider the couples (wt ,bt ) where

wt is the weight computed as discussed in Section 3.3 and bt is the
associated reference video level bitrate. Figure 4 shows an example

of how (wt ,bt ) couples are distributed for a specific user class c .
Notice that each point in the figure represents a single video. Next,

we employ the k-medoid clustering algorithm to form K clusters as

shown in Figure 4. As a result, each point in a cluster k represents

a video belonging to the cluster V c
k . Moreover, for each cluster

k ∈ K , the algorithm computes the medoid, which is represented

with a large dot in Figure 4. Thus, the medoid of cluster k obtained

for the user class c is representative of the traffic class t̃ = (k, c).
Therefore, it is natural to associate to each t̃ the weight wt̃ and

bandwidthb t̃ that are the coordinates of the medoid. As an example,

consider the cluster k = 2 in Figure 4. The traffic class t̃ = (2, c)

is associated with the weightwt̃ and bandwidth b t̃ which are the

coordinates of the medoid of cluster k = 2 (large green dot).

Notice that the chosen number of clusters K entails a trade-off

between the resulting number of variables involved in the optimiza-

tion problem and the obtainable QoE-fairness. In fact, the smaller

the number K , the smaller the number of variables to be handled

by the optimization problem. However, with a small K , the number

of video sessions belonging to the same cluster will be large and

the approximation of each of the associated points (wt ,bt ) to the

cluster medoid (wt̃ ,b t̃ ) may become poor.

5 RESULTS
In this section we carry out a performance evaluation of the pro-

posed QoE-fair optimal resource allocation. In particular, we set

the QoE-Proportional Fair (PF) optimization problem (Problem 1)

using the definition of demands given in Section 4 which is based

on a clusterization of video requests. The performance evaluation

carries out a sensitivity analysis of the performances considering

two key parameters: 1) the load on the delivery network, i.e., the

total traffic volume due to concurrent video sessions; 2) the number

of clusters K .
The performance gains obtainable using the proposed VCP are

compared to the baseline (BL) QoE-unaware case which considers

each video session to belong to the same traffic class. Notice that this

is the typical approach employed by current video delivery services

that do not take into account in network resource allocation the

heterogeneity of user devices and video contents.

The VCP simulator.We have built a simulator in Python lan-

guage implementing the VCP described in Sections 3 and 4. The

simulator is composed of the followingmodules: 1) the video session

generator, 2) the solver, 3) the QoE evaluator. In a nutshell, the video

session generator generates a number of video sessions (src, dst, t)
based on the delivery network graph G, the video catalog V , and

the user classes set C . The network nodes set N is partitioned in

two subsets Nsrc and N
dst

. The server sending the video to the

client is picked randomly in the set Nsrc (i.e., src ∈ Nsrc), whereas

the client is picked randomly from the set N
dst

(i.e., dst ∈ N
dst

).

The video request t = (v, c) is generated by randomly selecting

the video v ∈ V and the user class c ∈ C . The solver module

employs the CVXPY tool [12] to implement Problem 1. In partic-

ular, we use the Splitting Conic Solver (SCS)3 [23]. Based on the

generated video sessions and the delivery network topology, the

solver derives the demands d . The demands are generated by prop-

erly aggregating the video sessions according to the defined traffic

3
https://github.com/cvxgrp/scs

Full Paper  FAT/MM ’19, October 25, 2019, Nice, France

37

https://github.com/cvxgrp/scs


0.6 0.7 0.8 0.9 1.0
Fairness

0.5

0.6

0.7

0.8

0.9

A
ve
ra
ge

V
is
ua
l
Q
ua
lit
y

PF, K=3

PF, K=5

PF, K=10

BL

Figure 5: QoE-Fairness vs Average Visual Quality

classes t̃ depending on the clustering parameter K . Next, after solv-
ing the optimization problem, the QoE evaluator module computes

for each video session (src, dst, t) the obtained QoE based on the

network bandwidth share allocated by the solver and Qt mapping

the bandwidth share to the visual quality. Finally, the fairness F
among video sessions is computed by using the definition given

in [15], i.e. F = 1 − 2σ where σ is the standard deviation of the

QoEs obtained by concurrent video sessions.

Simulation scenarios. In order to perform a realistic perfor-

mance evaluation, we have built a comprehensive video catalog

composed of ~200 videos downloaded from YouTube character-

ized by different duration, content type (sports, news, music, car-

toons), and video level sets. For each video, we computed the video-

level/video-quality mapping Qt as described in Section 3.2. To the

purpose, we have used the VMAF metric computed using the open-

source tools released by NetFlix
4
. We have considered users belong-

ing to the class set C = {720p, 1080p, 2160p} which are the typical

screen resolutions of most common devices. For each simulation,

the number of generated video sessions depends on the chosen load
which varies in the set {100, 200, 300, 400, 500}Gbps. The GARR

network
5
has been employed as the delivery network topology that

is composed of 61 switches and 73 links with an average capacity of

~4Gbps. The server nodes set Nsrc is formed by the top-10 nodes

having the highest total upstream capacity. For simplicity we as-

sume that servers store the complete video catalog. We have carried

out the performance evaluation by comparing the BL strategy with

the proposed PF resource allocation when K ∈ {3, 5, 10}.

The trade-off between average QoE and fairness. Figure 5
shows the trade-off between the average QoE obtained by video

sessions and the corresponding QoE-fairness when BL is employed

or in the case of the proposed PL resource allocation strategy. Each

line represents a particular scenario and each point of a line is

representative of a specific load. For the PF case, different markers

and color indicate a different number of clusters K . Notice that,

for each curve in the figure, the average visual quality decreases

together with the QoE fairness as the load on the delivery network

increases. The fact that the average QoE decreases as the load

increases is unavoidable, since the higher the load the lower the

average bandwidth share per video session. For instance, in the BL

case it results an average visual quality close to 0.9 for a load equal

to 100Gbps, decreasing to 0.8 in the case of a 200Gbps load and

so on in a decreasing fashion. In particular, the baseline strategy

4
https://github.com/Netflix/vmaf

5
http://www.topology-zoo.org/files/Garr201201.gml
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Figure 6: CDF of visual quality for different user classes

presents an average fairness varying in the range 0.62-0.78 and

obtaining an average visual quality in the range 0.6-0.88. On the

other hand, the figure clearly shows that the PF approach proposed

in this paper exhibits remarkably better results in terms of QoE

fairness for each of the considered number of clusters K while

retaining almost the same average visual quality obtained by BL.

Moreover, as expected, the larger the number of clusters K the

better the results in terms of QoE fairness. As K increases, lines

move to the right and the slope becomes steeper, indicating that the

QoE fairness gets insensitive to the network load. The best trade-off

is obtained for the case of K = 10 clusters: the measured average

visual quality is in the range 0.54-0.88, with a very high fairness

confined in the very tight range 0.94-0.98.

Video session QoE fairness. In order to showwhy PF achieves

a better fairness compared to BL, Figure 6 reports the CDF of the

visual quality obtained by all video sessions grouped by the user

class in the case of a 300Gbps load
6
. In the BL case (Figure 6a),

it is clear that clients with 720p resolution obtain a much higher

video quality compared to 2160p users. In particular, the median

value of the visual quality obtained by 720p, 1080p, 2160p clients is

respectively equal to 0.91, 0.82, 0.61. In contrast, the proposed PF

resource allocation strategy provides users with different screen

sizes with comparable visual quality as the three CDFs are much

closer to each other. In the case of PF the visual quality obtained by

720p, 1080p, 2160p clients is respectively equal to 0.80, 0.73, 0.67.

6 CONCLUSIONS
In this paper, we have proposed a Video Control Plane (VCP) to

enforce a QoE-fair network resource allocation. To achieve such a

goal, we have shown how to properly formulate aMulti-Commodity

Flow Problem. Next, we have proposed a clusterization of video ses-

sions such that the number of variables involved in the optimization

problem becomes manageable. The performances of the proposed

VCP have been compared to a QoE-unaware resource allocation

strategy which is representative of the currently deployed video

delivery networks. Simulation results show that the proposed VCP

is able to improve fairness among heterogeneous clients.
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