
TAPAS-360°: A Tool for the Design and Experimental Evaluation
of 360° Video Streaming Systems

https://github.com/c3lab/tapas360

Giuseppe Ribezzo, Luca De Cicco, Vittorio Palmisano, Saverio Mascolo
Politecnico di Bari

Bari, Italy
{name.surname}@poliba.it

ABSTRACT
Video streaming platforms are required to innovate their delivery
pipeline to allow new and more immersive video content to be
supported. In particular, Omnidirectional videos enable the user to
explore a 360° scene by moving their heads using Head Mounted
Display devices. Viewport adaptive streaming allows changing
dynamically the quality of the video falling in the user’s field of
view. In this paper, we present TAPAS-360°, an open-source tool that
enables designing and experimenting all the components required
to build omnidirectional video streaming systems. The tool can be
used by researchers focusing on the design of viewport-adaptive
algorithms and also to produce video streams to be employed for
subjective and objective Quality of Experience evaluations.

CCS CONCEPTS
• Networks → Network experimentation; • Computing
methodologies → Virtual reality.

KEYWORDS
360-degree video; Adaptive video streaming; DASH
ACM Reference Format:
Giuseppe Ribezzo, Luca De Cicco, Vittorio Palmisano, Saverio Mascolo.
2020. TAPAS-360°: A Tool for the Design and Experimental Evaluation
of 360° Video Streaming Systems: https://github.com/c3lab/tapas360. In
Proceedings of the 28th ACM International Conference on Multimedia (MM
’20), October 12–16, 2020, Seattle, WA, USA.ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3394171.3414541

1 INTRODUCTION
Internet media delivery has evolved to a mature technology that
is at the base of popular on-line video streaming services such
as YouTube and Netflix. Today, the challenge is to design media
delivery systems that are also able to stream immersive video con-
tent which comprise Omnidirectional Videos, or 360° videos, and
volumetric content, or 6DoF videos. Immersive videos add several
dimensions to the classical 2D videos and allow user to explore a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3414541

scene from different point of views, enhancing the overall viewing
experience. Specifically, 360° videos are produced by capturing a
scene in all directions simultaneously with a number of video cam-
eras. The user, equipped with a Head Mounted Display (HMD), is
free to explore the recorded environment. Due to the inherently
larger resolutions entailed by 360° videos, the design of viewport
adaptive algorithms which dynamically select which portion of the
spherical video to be streamed at the highest quality are now a hot
research topic.

Experimental research in this area requires building a full
pipeline which starts from immersive content generation and
ends at video consumption using a player. All these components
must implement the required features to make the interaction
with the 360° scene possible. If the research community has
proposed several tools for the design and experimental evaluation
of Adaptive BitRate (ABR) algorithms [2, 10], the same cannot be
said about omnidirectional videos. As a result, it is quite difficult to
reproduce the results of different viewport adaptive algorithms
and to make fair comparison among such algorithms.

In our previous work [2], we proposed a TAPAS a framework al-
lowing the researcher to only concentrate on the design of the ABR
algorithm without the need of implementing a complete player for
classic 2D adaptive streaming. Building on the core functionalities
of TAPAS, this work presents TAPAS-360°, a tool which signifi-
cantly extends TAPAS and allows rapid prototyping of viewport
adaptive control algorithms used for the distribution of immersive
content. The tool has been designed to decrease the computational
load required for each video stream generated on the testing ma-
chine. In particular, since panoramic video decoding is the process
having the greatest impact on the computational load, TAPAS-360°
allows to optionally disable the video decoding process while keep-
ing the dynamics of the playout buffer, and therefore of the overall
video streaming session, unchanged. Consequently, it is possible to
carry out accurate experiments involving a large number of con-
current flows using the same machine. This feature is fundamental
for experimentally studying the performance of the video distribu-
tion system as the number of streams that insist on the same link
changes. Moreover, the tool can be easily used in combination with
common network emulation tools such as, f.i., MahiMahi1 to per-
form experiments in a controlled network environment, allowing
the reproducibility of the obtained results. Additionally, traces of
head movement [1, 6] can be used to experimentally evaluate the
performances of the viewport adaptive algorithms with respect to

1http://mahimahi.mit.edu/

Open Source Software MM '20, October 12–16, 2020, Seattle, WA, USA

4477

https://doi.org/10.1145/3394171.3414541
https://doi.org/10.1145/3394171.3414541
http://mahimahi.mit.edu/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3394171.3414541&domain=pdf&date_stamp=2020-10-12

Downloader

QualityController

Parser360MediaEngine

2 3 4 51

segment

manifest

feedback

action

playout buffer

HTTP
Server

GET

Tapas360Player

feedback
dict

feedback

feedback

segment

ViewController

feedback

view

(view, current
angle)

(for optional
rendering purposes)

HMDEmulator
feedback

Figure 1: Workflow of the TAPAS-360° tool

different viewing patterns, or to test field-of-view prediction algo-
rithms. At the best of our knowledge, there are no open-source tools
available that implement the features described above. TAPAS-360°
currently supports only viewport-adaptive schemes that download
the whole sphere, whereas supporting schemes that download only
portions of the whole sphere is a planned feature to be implemented
in the future.

2 BACKGROUND
Classical 2D adaptive video streaming requires the video content to
be encoded at different bitrates and resolutions, generally referred
to as video levels or representations which are temporally divided
in segments of fixed durations. The HTTP server indexes these
segments and produces a manifest which provides relevant infor-
mation about the segment such as encoding bitrates, resolution,
duration, and a URI pointing to the segment. The client fetches
and analyzes the manifest to build a data structure that is used for
downloading video segments. For each video segment, a controller
– the ABR algorithm – dynamically decides which video level to
request to obtain the best possible quality given the bandwidth
available with the constraint of avoiding interruptions in playback.
Both the HLS and MPEG-DASH standards require that the ABR
algorithm is implemented on the client.

Differently from classical 2D videos, immersive video streaming
systems manipulate the omnidirectional content where the part
of the video currently visualized by the user (the user viewport) is
roughly one-sixth of the entire video resolution. Streaming such a
large resolution video on the Internet entails a remarkable waste
of network bandwidth. In an effort to reduce the required bitrate,
recent literature has focused on designing viewport adaptive strate-
gies mainly relying on the tiling technique [3, 5, 9]. Tiling technique
requires the immersive content to be spatially divided into several
portions named tiles. Viewport adaptive algorithms aim at fetching
the tiles falling into user’s viewport at higher quality, while keeping
the other at lower quality (or not delivered at all).

3 TAPAS-360°
Figure 1 shows a block diagram of the TAPAS-360° tools high-
lighting the main components and the corresponding connections
between them. In addition to the features of rapid prototyping,
flexibility of use, and modularity inherited from the predecessor [2],
TAPAS-360° integrates a whole series of new modules allowing
the management of immersive content compliant with the MPEG-
DASH SRD specifications [4]. In the following, the essential details

of the components is provided, whereas specific implementation
details are left to the documentation of the project available in the
project repository.

3.1 Tapas360Player
Tapas360Player is the central module that deals with orchestrat-
ing the operations of all TAPAS-360° components. This module
implements the player logic and updates the log files that are pop-
ulated during the experiments and that can be used in the post-
processing phase for analyzing the performance of the implemented
algorithms. The communication between modules is implemented
through the exchange of a feedback dictionary. This dictionary
contains all the pieces of information that are useful for performing
the experiments and to pass data from one module to the other.

The playmethod is used to start the experiment andmanages the
user interaction, initializes the feedback dictionary, and orchestrates
the operational flow of the various modules composing TAPAS-360°.

3.2 Parser360
The main task of this module is to retrieve and store information
about the videomanifest. It performs the parsing operation required
for the particular streaming standard (HLS or MPEG-DASH) in use.
Parser360 populates and keeps updated the playlists data struc-
ture. In this data structure, each segment is identified by the relative
URI. Moreover, the piece of information about the particular level
(or representation), together with the respective parameters such
as resolution and bitrate, are stored to allow the required control ac-
tions being performed. In the case of immersive content, additional
information about the possibly different viewpoint representations
is also stored. At the end of the update process, the playlists data
structure is passed to the Tapas360Playermodule for updating the
feedback dictionary: in the case of live streaming, the playlists
data structure is continuously updated, while in the case of video on
demand (VoD) the data structure is populated once at the startup.

The implementation of a parser requires the extension of
the BaseParser360 class and the definition of two methods:
start(), which retrieves and analyzes the manifest to populate
the playlists data structure and updateSegmentsList(), which
keeps updated the playlists structure.

3.3 MediaEngine
MediaEngine is the module dealing with the management of the
playback operation. In details, it is responsible for maintaining the
playout buffer, providing optional features for the possible decoding
and rendering of the video stream. BaseMediaEngine provides the
skeleton class defining the following methods: start(), stop(),
pushData() and getQueuedTime().

Going into detail, the start() method initializes the play-
out buffer and the other components required by the specific
MediaEngine implementation. MediaEngine allows the configu-
ration of the parameter min_queue_time that is the minimum
duration of video stored in the buffer to start the video playback.
Each time a video segment download is completed, the pushData()
callback is called and the segment is pushed to the playout buffer.

The getQueuedTime() method allows to read the length of the
playout buffer measured in seconds. This information is useful for

Open Source Software MM '20, October 12–16, 2020, Seattle, WA, USA

4478

the ABR controller. The Tapas360Playermodule uses this method
to allow updating the feedback dictionary.

The specific implementation of MediaEngine must extend
BaseMediaEngine. This way, different logics for draining the
buffer, decoding and playing the video stream can be defined.
To allow different degrees of simulation details, two multimedia
engines have been implemented in TAPAS-360°: GstMediaEngine
and FakeMediaEngine. FakeMediaEngine emulates the player
status by tracking the length of the playout buffer based on
the information contained in the incoming segments without
demuxing nor decoding the received video stream. Instead,
GstMediaEngine provides a complete multimedia engine. Based
on GStreamer 1.02 multimedia framework, it is able to manage both
fMP4 and ts media formats, granting compatibility with HLS and
MPEG-DASH streaming standards. Moreover, it can work into two
modes: nodec mode, only demuxing the incoming stream flow;
dec mode, with video stream decoding and rendering capabilities.

Both FakeMediaEngine and GstMediaEngine modules allow to
disable the video decoding process to keep CPU and memory usage
low while perfectly emulating the dynamics of the playout buffer,
therefore having the same overall system dynamics as in the case
where the received video stream is decoded and rendered. This is a
key feature that enables to experimentally study the performance
of the video distribution system as the number of streams that
share the same bottleneck varies. Moreover, GstMediaEngine in
decmode can decode, render and possibly store the rendered video
stream on the filesystem (see Section 4.3).

3.4 QualityController
The QualityController is the module responsible for implement-
ing the ABR algorithm. Its goal is to decide, based on feedback
information such as the estimated bandwidth, the length of the
playout buffer, and the status of the player, which video represen-
tation to download from those listed in the manifest.

BaseQualityController provides the interface class that a
QualityController must inherit. Important methods that have to
be implemented are: 1) calcControlAction(), that implements
the control logic by calculating the maximum bitrate value that
should be downloaded; 2) isBuffering(), that checks if the
player is currently into downloading (buffering phase) or in idle
phase (used to insert OFF pauses between the download of two
consecutive segments).

To clarify how the QualityController module works, the
salient logical sequence of operations that Tapas360Player
implements is reported. Tapas360Player maintains a feedback
dictionary which stores various information such as the length
of the playout buffer and the estimated bandwidth. At the end
of the download of each segment, Tapas360Player, using the
updateSegmentsList() method exposed by Parser360 class, up-
dates the feedback dictionary and executes calcControlAction()
to obtain the video level to be used for the download of the next seg-
ment and sets the period of inactivity by using setIdleDuration().
In particular, calcControlAction() returns the maximum bi-
trate value that can be downloaded based on the information
contained in the feedback dictionary. This value is then passed to

2https://gstreamer.freedesktop.org/

quantizeRate() that selects the highest video level index from the
possible values contained in the feedback dictionary. In its default
implementation, the quantizeRate() method selects the highest
video level lower the bitrate calculated by calcControlAction().
Finally, the isBuffering() method checks if the system is either
buffering or idle. This is a useful method to keep track of the player
state and manage rebuffering events. BaseQualityController
provides a default implementation for this method, returning
True if the length of the playout buffer is less than a certain
threshold, but more advanced mechanisms can be implemented by
overloading this method.

3.5 ViewController
The ViewController is a new component that immersive video
streaming systems are required to implement. Its goal is to select
the best viewpoint representation according to the position of the
user’s head which is reported by the HMD device.

The implementation of the ViewController needs to extend
the BaseViewController class and to implement the getView()
method, which actually defines the viewpoint selection algorithm.

An example implementation of view controller, named
ConvetionalViewController, is included in the code base which
provides a simple control logic that takes as input the current
position of the user’s head. The ConventionalViewController
implements the View Selection Algorithm (VSA) described
in [7]. In that paper, different viewpoint representations are
prepared server-side, each one consisting in a different Region
of Interest (RoI), the particular region of the video where the
visual quality is higher with respect to the other regions. Each
viewpoint representation is identified by a URL and correlated to
a tuple storing the identifier and the yaw angle pointing to the
corresponding RoI. The VSA goal is to select the best viewpoint
representation based on the current user view direction.

ConventionalViewController, in its current implementation,
assumes RoIs are centered at 0°, 120° and 240° with a dihedral angle
of 120°, resulting in three different tiles set. Nevertheless, Saliency
maps could be used to tailor the selection of the number and position
of the RoIs [6]. Notice that we plan to add support for saliency maps
to be integrated in the base view controller class soon so that view
controllers will be able to readily access this optional information.

The VSA algorithmworkflow is described briefly in the following.
The getView() method returns to Tapas360Player the viewpoint
representation that the user is currently viewing. At the end of
the download of each segment, Tapas360Player – through the
getHMDStatus() method exposed by the HMDEmulator class – up-
dates the feedback dictionary which also stores the current view-
point and the angles representing the position of the user’s head.
Next, it executes the getView() method which returns the view-
point representation to be selected. At this point, the downloader au-
tomatically downloads the correct viewpoint representation and the
current bitrate representation selected by the QualityController.

3.6 HMDEmulator
In TAPAS-360, the design of ViewController requires to receive
in input the current angular position from an HMD to perform
the viewpoint selection strategy. HMDEmulator is the module that

Open Source Software MM '20, October 12–16, 2020, Seattle, WA, USA

4479

https://gstreamer.freedesktop.org/

emulates the reading of the angles of the user’s head position which
normally are provided by the HMD device.

HMDEmulator implements the getCurrentViewAngle()
method, which accepts the playback timestamp and returns the
angular data of the current position of the user’s head. Such
information can be also exploited for viewport adaptive control
algorithms based on saliency maps. The emulation of the user’s
head movement is obtained by reading a Comma-Separated Values
(CSV) file which contains the angular data relating to the user’s
head movement at each timestamp of playback. In this way,
publicly available datasets such as [1, 6, 8] can be easily used to
allow result reproducibility.

4 USE CASES
In this section we describe some of the use cases for which TAPAS-
360° has been designed for.

4.1 2D video streaming
The most common use case is the design and the development of
new ABR strategies3. To this end, only the BaseController.py
class has to be extended, implementing the control logic in the
calcControlAction() method. The new ABR algorithm can be
added to play.py by simply importing it. The command line for
testing the algorithm is:

$python3 play.py -a [CONTROLLER] -u [URL]

where [CONTROLLER] is the name of the class containing the algo-
rithm being tested and [URL] is the URL indicating the manifest
of the testing video. TAPAS-360° will fetch the video segments in-
dicated in [VIDEO-URL] as a regular video player would do under
the bitrate adaptation algorithm implemented. The logs/ folder
contains a list of subfolders, indexed for streaming session, with all
the logs useful for postprocessing and performance evaluation.

4.2 Viewport-adaptive streaming
The most interesting use case is the design and experimental evalua-
tion of viewport adaptive algorithms. To this end, the developer can
extend only the BaseViewController.py class. The getView()
method implements the viewport adaptive strategy. Similarly to
the QualityController algorithm, play.py has to be modified im-
porting the new class and adding a custom entry into the flags list
(if needed). To test the newly implemented algorithm the following
command can be used:

$python3 play.py -r True -b [VIEWCONTROLLER] -u [URL]

where [VIEWCONTROLLER] is the name of the class implementing
the viewport adaptive algorithm and [URL] is the URL indicating
the manifest of the testing video. Similarly to the ABR case, TAPAS-
360° will perform the viewport adaptation strategy in the same
way as a 360° video player would do. This is possible because of
the HMDEmulator is fed with a trace representing head movement4
having the format [time, alpha, beta, gamma], where time is
a timestamp and alpha, beta, gamma are the three components of
the Euler angles. Custom HMD traces can be used in TAPAS-360°

3Notice that this use case was already possible with TAPAS [2], but we mention it for
the sake of completeness.
4We provide a default example trace in the repository named hmd_trace.csv.

by employing the --hmd_trace flag. Also in this case useful logs
are available into the logs/ folder.

4.3 Subjective and Objective Quality of
Experience evaluations

TAPAS-360° allows to store the fetched segments by simply adding
the option --save_chunks True. The list of the segments is stored
in the subfolder corresponding to the streaming session under the
logs/ folder. This allows to produce video streams that can be
used, together with the video streaming log, to run subjective and
objective QoE evaluations. To this end, TAPAS-360° could be used
to produce a number of “distorted” videos in response to both
time-varying network bandwidths (implemented with tools such
as Mahimahi) and head movements, by feeding TAPAS-360° traces
from datasets such as [1, 6, 8].

5 CONCLUSIONS
This work presents TAPAS-360°, an open-source tool that enables
designing and experimenting omnidirectional video streaming al-
gorithms. The tool allows a fine grained control of the decoding
process to significantly decrease the CPU load and enable experi-
menting with several flows being consumed on a single machine.
TAPAS-360° includes extensible modules to experiment with view-
port adaptive algorithms and to emulate HMD devices using head
movements datasets. The ambition is to attract the research com-
munity to contribute with their algorithms and make TAPAS-360°
an open platform facilitating results reproducibility within the mul-
timedia community.

ACKNOWLEDGMENT
This work has been partially supported by the Italian Ministry
of Economic Development (MISE) through the CLIPS project (no.
F/050136/01/X32). Any opinions, findings, conclusions or recom-
mendations expressed in this work are the authors’ and do not
necessarily reflect the views of the funding agencies.

REFERENCES
[1] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-Degree

Video Head Movement Dataset. In Proc. ACM MMSys ’17. 199–204.
[2] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2014.

TAPAS: a Tool for rApid Prototyping of Adaptive Streaming algorithms. In Proc.
Workshop on Design, Quality and Deployment of Adaptive Video Streaming. 1–6.

[3] J. He, M. Adnan Qureshi, L. Qiu, J. Li, F. Li, and L. Han. 2018. Rubiks: Practical
360-degree streaming for smartphones. In Proc. ACM MobiSys ’18. 482–494.

[4] O. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual, and S.Y. Lim. 2016.
MPEG DASH SRD: spatial relationship description. In Proc. ACMMMSys ’16. 1–8.

[5] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare:
Practical viewport-adaptive 360-degree video streaming for mobile devices. In
Proc. of ACM MobiCom ’18. 99–114.

[6] Y. Rai, J. Gutiérrez, and P. Le Callet. 2017. A dataset of head and eye movements
for 360 degree images. In Proc. ACM MMSys ’17. 205–210.

[7] Giuseppe Ribezzo, Giuseppe Samela, Vittorio Palmisano, Luca De Cicco, and
Saverio Mascolo. 2018. A DASH Video Streaming System for Immersive Contents.
In Proc. ACM MMSys ’18. 525–528.

[8] Silvia Rossi, Cagri Ozcinar, Aljosa Smolic, and Laura Toni. 2020. Do Users Behave
Similarly in VR? Investigation of the User Influence on the System Design. ACM
Trans. Multimedia Comput. Commun. Appl. 16, 2, Article 46 (May 2020), 26 pages.

[9] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 2017.
360probdash: Improving QoE of 360 video streaming using tile-based http adap-
tive streaming. In Pro. ACM MM ’17. 315–323.

[10] A. Zabrovskiy, E. Kuzmin, E. Petrov, C. Timmerer, and C. Mueller. 2017. Advise:
Adaptive video streaming evaluation framework for the automated testing of
media players. In Proc. ACM MMSys ’17. 217–220.

Open Source Software MM '20, October 12–16, 2020, Seattle, WA, USA

4480

	Abstract
	1 Introduction
	2 Background
	3 TAPAS-360°
	3.1 Tapas360Player
	3.2 Parser360
	3.3 MediaEngine
	3.4 QualityController
	3.5 ViewController
	3.6 HMDEmulator

	4 Use Cases
	4.1 2D video streaming
	4.2 Viewport-adaptive streaming
	4.3 Subjective and Objective Quality of Experience evaluations

	5 Conclusions
	References

