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Abstract: Video streaming services employ the Internet to distribute content to an ever-
increasing number of concurrent viewers. The delivery architecture employed by leading video
platforms requires players to run a control algorithm dynamically choosing the video bitrate
to match the time-varying network bandwidth and avoid playback interruptions due to buffer
underruns. Such an algorithm is generally designed to (selfishly) improve the quality individually
perceived by users. Consequently, this control architecture leads, in the optimal case, to
maximize the average quality perceived collectively by all users and not to a distribution of
resources that is fair in terms of user perceived quality. We argue that video service providers
should manage their delivery network to address fairness issues to gracefully degrade the
perceived quality equally for all users when resources become scarce. Even though the general
problem of providing a fair level of perceived quality does not scale with the cumbersome
number of concurrent users, this paper shows that the Multi-Commodity Flow Problem (MCFP)
optimization framework is a proper and efficient tool to address this open issue. First, we show
how to cast the resource allocation problem to an MCFP and then we propose a strategy to make
the resulting problem tractable for video distribution platforms serving massive audiences. The
performance of the proposed optimal fair resource allocation strategy is assessed using realistic
simulations involving thousands of concurrent video sessions on a real network topology by
varying both the total load on the network and key system parameters.

1. INTRODUCTION AND BACKGROUND

An increasing fraction of users prefer to consume video
content over the Internet instead of using classical TV
broadcast channels. As a consequence, more than half of
the global Internet traffic is today due to video. To make
their services profitable, on-line video content providers
aim at increasing the number of engaged users and pre-
venting service abandonment. Towards this end, such ser-
vices should be designed to provide users with the best
possible Quality of Experience (QoE) given the constraints
due to the user device and the network.

The control architecture employed today by all leading
video platforms (Netflix, Youtube, etc) decouples the prob-
lem into two non-cooperating sub-problems: (i) video ser-
vices control their delivery network to guarantee an op-
timal level of Quality of Service (QoS), by ensuring that
parameters such as end-to-end network bandwidth, packet
losses, and network latency meet specific requirements;
(ii) concurrent users consume video through players that
run Adaptive BitRate control algorithms (ABR) designed
to dynamically select the video bitrate (and video resolu-
tion) from a discrete set L to provide the best possible
QoE given the user device features and the end-to-end

1 This work has been partially supported by the Italian Ministry
of Economic Development (MISE) through the CLIPS project (no.
F/050136/01/X32).

network bandwidth. This fully decoupled control approach
has the merit of being very simple to be implemented but
has some important limitations. In fact, since no com-
munication between users is available, ABR algorithms
running at the players are designed to (selfishly) improve
the individual QoE obtained. In addition, the architec-
ture of current delivery networks is designed to provide
to concurrent users sharing the same network resources
(i.e., network links) a fair share of network bandwidth.
The issue here is that such a QoS-fair distribution of
network resources does not translate in equalizing the
quality perceived by users. In fact, it is well-known that
the video bitrate required to obtain the same level of
QoE by users with large screen devices (f.i.,Smart TVs)
might be considerably larger compared to the one needed
by devices with small screens (e.g. smartphones). Conse-
quently, video distribution networks that do not run an
algorithm to allocate resources taking into account the
obtained user quality cannot provide a fair level of QoE to
users when the network resources become scarce. Hence,
we argue that video services should implement a QoE-
aware network resource allocation strategy (as opposed to
QoS-aware strategies) to provide video flows sharing the
same bottleneck a differentiated network bandwidth with
the objective of equalizing the video quality obtained by
heterogeneous devices.



Several authors have addressed the issue of designing QoE-
aware ABR controllers (see Yin et al. (2015); Cofano et al.
(2018); De Cicco et al. (2019) and references therein).
However, QoE-fair network resource allocation for video
streaming has received far less attention and has been
addressed only in a few recent papers (Georgopoulos et al.
(2013); Cofano et al. (2016); Kleinrouweler et al. (2016)),
all reporting the need of a Video Control Plane (VCP)
to allow cooperation between clients and the delivery
network. Georgopoulos et al. (2013) propose for the first
time a solution to deliver a fair level of QoE to users
by slicing shared bottlenecks through a Software Defined
Networking (SDN) switch. Each video session is assigned
to one network slice whose size is obtained by solving a
max-min fairness problem. Cofano et al. (2016) design and
systematically analyze the performance of an SDN-based
VCP in the case of a single bottleneck.

This paper addresses the problem of designing a QoE-fair
optimal resource allocation strategy through a constrained
optimization problem on a generic distribution network
made of programmable switches with the help of traffic
engineering techniques based on network slicing. The main
novel aspects of this paper compared to the current state
of the art are two: (i) a generic distribution network is
considered instead of focusing only on the single bottle-
neck case as studied by several authors (Georgopoulos
et al. (2013); Cofano et al. (2016)); (ii) it is shown that
the Multi-Commodity Flow Problem (MCFP) optimiza-
tion framework is an effective methodology to achieve a
QoE-fair distribution of network resources. After casting
the QoE-fair resource allocation problem to an MCFP
(Section 2), a traffic clustering approach is proposed to
sensibly reduce the number of network slices and variables
in order to make the resulting problem tractable for video
distribution platforms serving a massive audience (Sec-
tion 3). Such a clustering approach assigns video sessions
based on a proposed similarity metric that depends on the
video visual quality. We implement the proposed resource
allocation strategy in a realistic simulator to compare the
performances obtainable when video content can be deliv-
ered using multiple network paths with those achievable
in the single-path case. Finally, simulations assess the
performance sensitivity to different parameters, such as
the total load on the delivery network and the number of
clusters (Section 4).

2. MULTI COMMODITY FLOW PROBLEM

In this section, we briefly review the multi-commodity
flow problem (MCFP), the optimization framework that
we leverage to design the proposed QoE-fair network
bandwidth allocation strategy. The term commodity refers
to a tuple composed of a source node, a destination
node, and a volume that identifies the resources needed
to satisfy the commodity. In the case of the network
bandwidth allocation problem that we are considering,
a commodity refers to a video session (or aggregate of
video sessions) whose source node is the video server,
the destination node represents the client consuming the
video, and the volume represents the video bitrate required
to obtain the maximum video quality. In general, the
MCFP aims at maximizing a proper utility function with

a set of constraints to allocate network resources in order
to optimally satisfy all the commodities.

The following description of the MCFP employs the link-
path formulation and the terminology introduced by Pióro
and Medhi (2004). The delivery network is represented
by a capacitated graph G = (N ,E ), where N =
{n1, n2, . . . , nN} is the node set and E = {e1, e2, . . . , eE} is
the edge set. Each edge or link e ∈ E , which can be identi-
fied by a node pair, is assigned with a bandwidth capacity
ce. The commodities related to the delivery network can
be represented by the set of demands D = {1, 2, . . . , D},
where each demand d ∈ D contains a source-destination
node pair and the corresponding traffic volume Hd, i.e.
the required network bandwidth for that demand. Fur-
thermore, a demand d can be satisfied through a set of
admissible paths Pd where each path p ∈Pd connects the
source node to the destination node of the demand. All the
paths contained in Pd are computed off-line and represent
the shortest paths connecting source node to destination
node of demand d. Consequently, the demand volumeHd is
split in path flows routed on paths belonging to Pd, where
each path flow is denoted with xdp (p ∈Pd). The objective
of the MCFP is to optimize such path flows. In this work,
the nodes of the graph G identify the network switches, 2

whereas the links are partitioned in bandwidth slices whose
number and size depend on the MCFP solution. Mo and
Walrand (2000) introduce the α-fairness utility function
that can be employed in the MCFP to size the bandwidth
slices. In particular, we consider the following multi-path
weighted α-fairness utility function:

U(X) =
∑

d
wd
X1−α
d

1− α
(1)

where Xd =
∑
p xdp is the total bandwidth (or total

flow) allocated to demand d, X = [X1, X2, . . . , XD]T is
the vector of the total bandwidths for each demand, and
wd is a weight associated to the demand d. The value of
α ∈ R+ affects the balance between link utilization and
fairness when equation (1) is maximized Mo and Walrand
(2000). In fact, when α = 0 it can be shown that the link
utilization is maximized with no regards to the fairness
among flows, whereas if α → +∞, the resources are
allocated in such a way that the minimum rate flow is
maximized (max-min fairness problem). Finally, if α = 1,
the Proportional Fairness (PF) optimization problem is
obtained (Nash Jr (1950)). The latter case represents a
satisfying balance between fairness and link utilization,
that is exactly what we seek to achieve in our problem
setting. For this reason the proportional fair case, i.e.
α = 1, is considered. The resulting MCFP multi-path
weighted proportional fair optimization problem is:

Maximize
∑

d
wd logXd (2)

s.t.
∑
p

xdp = Xd (3)∑
d

∑
p

δedpxdp ≤ ce, ∀e ∈ E (4)

Xd ≤ Hd (5)

In fact, it is straightforward to prove that, for α = 1,
(1) becomes U(X) =

∑
dwd logXd. In (4), δedp represents

2 In the following, we will refer to nodes and SDN switches inter-
changeably as well as edges with links.



the link-path indicator and it is equal to 1 if the path
p associated to the demand d uses the link e, otherwise
it is set to 0. The constraints (4) are imposed to respect
the capacity of the link ce, i.e. the sum of all the path
flows xdpusing link e should not exceed the capacity of that
link. Constraint (5) ensures that the total bandwidth Xd

allocated for demand d is bounded by the demand traffic
estimation given by Hd.

It is straightforward to show that Problem (2)-(5) is
convex since the objective function is convex and the
constraints are linear. Thus, the solution is represented
by a unique global maximum that could be achieved
either at one single point or at a convex set of feasible
points (Bertsekas et al. (1992); Pióro and Medhi (2004)).

3. THE RESOURCE ALLOCATION STRATEGY

In the following we present the proposed control strategy
to distribute network resources in such a way that a
fair level of QoE is delivered to concurrent heterogeneous
users. To the purpose, we show how to cast the MCFP
(Problem (2)-(5)) to achieve the aforementioned goal.
This includes designing the demand weights wd so that
the maximization of (2) results in a QoE-fair resource
allocation. The idea that we pursue is that demand weights
should relate to a utility function mapping the relationship
between the network bandwidth assigned to a video session
and the obtainable visual quality (Section 3.2).

3.1 Definitions

The DASH standard requires that each video v belonging
to the video catalog V = {v1, . . . , vV } is encoded into
different representations or levels l ∈ Lv that can be
identified by the couple l = (b, r) where b ∈ Bv is the
encoding bitrate and r ∈ Rv is the video resolution.
In practice, the ABR algorithm running at the client
dynamically selects the video level l ∈ Lv that best
matches the current available network bandwidth of the
path connecting the user to the video server. In this
paper, we make the reasonable assumption that the control
algorithm selects a video level whose bitrate b matches on
average the average end-to-end path bandwidth. This is
a nonrestrictive assumption since all well-designed ABR
algorithms are in practice implemented in this way (see
for instance Cofano et al. (2018)).

Now, let us define a video request t as the couple (v, c),
where v ∈ V and c is the user class belonging to the set
C = {c1, c2, . . . , cC}. Since the screen resolution is one
of the most important parameters impacting the QoE,
we propose to classify users based on such a parameter.
Consequently, the terms “user class” and “user screen
resolution” are used interchangeably in this work.

We next define the set Lt for each video request t = (v, c),
such tat Lt = {l ∈ Lv : r ≤ c} ⊆ Lv. In other words, Lt

contains the levels of Lv whose resolution is less than or
equal to c. Since we assume that clients having a screen
resolution equal to c do not request video levels whose
resolution is higher than c, then for a given video request
t, the levels chosen by the ABR algorithm will be contained
in Lt.

It is now immediate to assign to each video request t its
reference level lt = (bt, c) ∈ Lt as the representation with
resolution c having the maximum bitrate bt.

We can now define a video session as the tuple (src,dst, t)
where: src ∈ N is the switch the server delivering the
requested video is connected to; dst ∈ N is the switch the
client is connected to; t = (v, c) is the video request.

Finally, we are ready to define the demand d as the
aggregate of the nd video sessions identified by the same
tuple (src,dst, t). Consequently, the demand volume Hd is
equal to ndbt where bt is the bitrate of the reference level
lt defined above. In such a way, Hd can be interpreted as
the minimum amount of network bandwidth that has to
be allocated to the aggregate of the nd video sessions com-
posing the demand d so that each of these video sessions is
served with a bandwidth share bt. It is straightforward to
see that, in such a situation, if the constraint (5) is strictly
verified (i.e., Xd = Hd), it results that all the video flows
belonging to this demand will enjoy the maximum visual
quality possible. Conversely, in cases when the delivery
network is overloaded, it might occur that the solution of
the MCFP leads to Xd < Hd for some demands. In such
cases, video sessions belonging to the demand d will obtain
a bandwidth share less than the bitrate of the reference
level lt.

3.2 Measuring the visual quality

The achievement of a fair level of QoE among users rep-
resents the main goal of the proposed resource alloca-
tion strategy. Such an objective is reached through the
allocation of network resources in a multi-path fashion.
For this reason, a mapping between the allocated network
bandwidth related to a video session and the achieved QoE
is needed (Fiedler et al. (2010)). Such a mapping will be
the key to design appropriate demand weights wd that
allow to solve Problem (2)–(5) by allocating the network
bandwidth based on the users’ obtainable visual quality.

Notice that the procedure described in the following should
be performed off-line each time a video is added to the
catalog. At the end of this procedure, we will obtain a
number of mappings equal to the number of defined user
classes for each video. The resulting mappings will be
associated to the corresponding video as a metadata.

The visual quality of a video v ∈ V is measured in the
following way: for each level l ∈ Lv, and user class c ∈ C ,
a mapping denoted as Qt : Lv 7→ [0, 1] is computed, which
relates the video level to the corresponding visual quality
when the video is played on a device with resolution c. 3

Therefore, a full-reference video quality assessment tool,
such as the Video Multi-method Assessment Fusion
(VMAF) (Li et al. (2016)), can be used to compute for
each video level l ∈ Lv the corresponding visual quality
belonging to the range [0, 1] given a user class c ∈ C .

3.3 Demand Weights computation

The importance of a proper computation of the demand
weights wd used in (2) lies in the fact that the solution

3 Recall that t = (v, c) denotes the video request.



of Problem (2)–(5) will result in the optimum QoE-fair
(rather than a throughput-fair) allocation of resources.
From Section 2 we know that the larger the weight wd the
larger the assigned bandwidth slice Xd to the video flows
belonging to demand d. It is then important to compute
suitable weights that allow to obtain a higher bandwidth
for demands associated to users with large screens and
lower bandwidth to users with low resolution screens.

It should be stressed that the weight wd associated to a
demand d = (src,dst, t) does not depend on the source
and destination node, but only on the particular video v
and the user class c, i.e., on the video request t. As a
consequence, given two demands d1 and d2 associated to
the same video request t, the weights associated to them
will coincide, namely wd1 = wd2 = wt.

Let us define the couples (xi, yi) for i = 1, . . . , Lt (Lt =
|Lt|) where xi = bi ∈ Bv and yi is obtained through the
mapping Qt as previously described, i.e., yi = Qt(li). It
is possible to compute the weight wt as the parameter of
a fitting function. In particular, we propose to consider
a least square problem fitting the data (xi, yi) through
the function y = a · log x having a as the unique fitting
parameter. Then we impose wt = 1/aβ where β is a
positive parameter to be properly tuned. It is easy to
show that this proposed procedure assigns weights that
increase as the user device resolution becomes higher,
which is exactly what it is needed to provide users with
high resolution with higher network bandwidth shares. We
will experimentally show that the value of β affects the
obtainable QoE and needs to be properly tuned.

3.4 Video clustering

In this paper, we consider the multi-path case, where each
demand d is realized by splitting it among a pre-computed
number of available paths of the delivery network, i.e.
|Pd |. It follows that, in the multi-path case, the number
of variables involved in the solution of the optimization
problem is equal to the number P of all the possible paths
available for each demand, i.e. if P = {P1 ,P2 , ...,PD}
where D is the cardinality of the demand set D , then P =
|P|. Since a demand is defined as the triple (src,dst, t) ∈
N × N × T , it follows D = N · (N − 1) · T . Now,
recalling that a video request t ∈ T is defined as the
couple (v, c) ∈ V ×C , it turns out that the cardinality of
T is equal to V ·C, i.e. the product of the video catalog size
and the number of user classes. Thus, considering a video
provider serving a catalog size in the order of millions 4

it is easy to understand that the number of the video
requests would make the cardinality D, and consequently
P , too high and would result in an intractable optimization
problem.

In order to tackle such an issue, we propose to act on the
video catalog. The employed procedure is the following:
for each user class c ∈ C , we partition the video catalog
V in a number K of clusters {V c

1 , . . . ,V
c
K} according to

a clustering algorithm. Let K = {1, . . . ,K} be the set of
the video cluster indexes. Since K is a design parameter,

4 In practice, video catalog of the order of millions or billions are
possible for user providers distributing user-generated videos such as
YouTube and Vimeo.

Fig. 1. The proposed Video Control Plane

it can be chosen such that K � V . We can now assign
each video request t = (v, c) to a traffic class t̃ = (k, c)
where k ∈ K is the cluster the video v belongs to (i.e.,
v ∈ V c

k ). In this way, the video requests t = (v, c) having
v mapped to the same video cluster V c

k belong to the
same traffic class t̃ = (k, c). After redefining the demand
as the aggregate of video sessions having the same triple
(src,dst,t̃), the cardinality of the new demand set will be
equal to N · (N − 1) ·K ·C, that can be made manageable
by properly setting K � V .

Let us consider all the video requests t having a user class
equal to c ∈ C . Each video request is associated to a couple
(wt, bt) where wt is the weight computed as discussed in
Section 3.3 and bt is the associated reference video level
bitrate. Once a user class c is fixed, in order to obtain
K clusters, the k-medoid clustering algorithm could be
used. As a consequence, each video belonging to the cluster
V c
k will be identified with a point in the cluster k, which

represents the medoid computed by the algorithm for each
cluster k ∈ K . Thus, for a specified user class c, the
medoid associated to a cluster k will represent the whole
traffic class t̃ = (k, c), i.e. all the videos in that cluster,
through its coordinates (wt̃, bt̃).

Figure 1 gives an overview of the proposed resource al-
location strategy and how it can be implemented in a
Video Control Plane. In particular, after the visual qual-
ity evaluation of the video catalog, the fitting functions
described in Section 3.3 perform the clustering procedure
of the videos in order to obtain the traffic classes. Notice
that these operations can be performed off-line since the
video catalog and the user classes are always available.
Then, a video request classifier associates each received
video session to the corresponding traffic class and then
the optimizer, on the basis of the demands defined as
(src,dst, k, c), the traffic classes, and the delivery network
graph solves the MCFP.

4. RESULTS

In this section we employ a clusterization of video requests
and then we implement the QoE-Proportional Fair (PF)
multi-path optimization problem described in Section 3
to carry out a performance evaluation of the proposed
allocation strategy via simulations. The analysis is per-
formed by varying three main parameters: the delivery
network load, which represents the total traffic volume of
concurrent video sessions, the number of paths P , i.e., the
maximum number of paths that can be used to realize a
specific demand from a source node, and the number of
clusters K.
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Fig. 2. QoE-Fairness vs Average Visual Quality

In order to prove the effectiveness of our proposed alloca-
tion strategy, we consider as the baseline (BL) the QoE-
unaware allocation strategy that associates each video
session to the same traffic class. It is important to notice
that the BL case is the approach currently used by video
delivery services, which are unaware of the heterogeneity
of the user devices and video contents.

We have developed the PF allocation strategy in a sim-
ulator composed of three modules allowing to implement
realistic scenarios of typical video distribution networks.
The first module is the video session generator, which
randomly generates a configurable number of video ses-
sions (src,dst, t)having access to the network graph G,
the video catalog V , and the set of user classes C . The
second module is the solver, which employs the CVXPY
Python tool (Diamond and Boyd (2016)) to implement
problem (2)-(5) and which makes use of the Splitting
Conic Solver (SCS) 5 (O’Donoghue et al. (2016)). Once
the optimization problem is solved, the third module called
QoE evaluator computes the obtained QoE for each video
session (src,dst, t)composing the load. The resulting QoE
depends on the bandwidth share assigned by the solver and
the corresponding visual quality given by the Qt mapping.
Finally, we use the definition of fairness F among video
sessions proposed by Hossfeld et al. (2017):

F = 1− 2σ

where σ is the standard deviation of the QoEs obtained by
concurrent video sessions. The maximum of the fairness
index is 1, which is obtained only when concurrent video
sessions obtain exactly the same visual quality.

The simulations have been carried out on a realistic video
catalog that we have built by downloading ∼200 hetero-

5 https://github.com/cvxgrp/scs

geneous videos from YouTube. Notice that we have cho-
sen the VMAF metric to compute the video-level/video-
quality mapping Qt as described in Section 3.2. The
VMAF metric has been implemented by using the open-
source tools released by NetFlix 6 . We have assumed that
clients can belong to three possible user classes – which are
representative of most common user devices – identified
by the set C = {720p, 1080p, 2160p}. The load values
considered to generate the video sessions range in the
set {100, 200, 300, 400, 500}Gbps. The employed network
topology is the GARR network 7 , which is composed of 61
switches and 73 links with an average capacity of ∼4 Gbps.
Finally, the set of clusters is such that K ∈ {3, 5, 10},
the set of paths is such that P ∈ {1, 2, 5} and the weight
parameter β belongs to the set {1.1, 1.2, 1.3, 1.4, 1.5}.
Figure 2 shows the trade-off between the average QoE
obtained by the video sessions and the corresponding QoE-
fairness when BL is employed or in the case of the proposed
PF resource allocation strategy. It is worth to stress
that the considered fairness is obtained by computing
the fairness metric F for each slice and then taking the
average value of the fairness associated to all the slices.
Each line represents a particular scenario where a different
line style and marker denotes a specific number of paths
P involved in the allocation and each point of a line is
representative of a specific load. In the PF case, different
colors indicate a different number of clusters K. Moreover,
for space constraints, Figure 2 shows only the cases of
β = 1.1 and β = 1.4. As it is clear from any of the
figures, the average visual quality and the QoE fairness
decrease as the load on the delivery network increases.
This is expected since a higher load results in a lower
allocated average bandwidth share per video session and
consequently in a lower visual quality. Consider Figure 2a
as an example: it shows that in the BL case, independently
of the number of paths, the average visual quality is close
to 0.9 when the load is 100 Gbps, then decreases to 0.8 for
a 200 Gbps load and so on. The fairness presents values
in the range 0.62-0.84 with a corresponding average visual
quality in the range 0.6-0.88. However, the proposed PF
approach proves remarkably better in terms of achieved
QoE fairness for each considered number of clusters K
and paths P . The visual quality presents a negligible
deterioration compared with the BL case. Furthermore, as
expected, the QoE fairness improves as K increases and,
consequently, each line associated to a particular number
of clusters and paths moves to the right and becomes
steeper. Such considerations also hold for all the other
values of β, where K = 5 clusters appears to be the best
trade-off between average visual quality and QoE fairness.

Next, consider Figures 2a and 2b. By varying β from 1.1
to 1.4 the average visual quality visibly drops while the
average fairness remains almost unchanged. Indeed, the
multi-path resource allocation is preferable with respect
to the single-path case due to the possibility of exploiting
more paths to realize a demand.

Let us now analyze in more detail the effect that the choice
of the parameter β has on the QoE fairness in the single-
path case (the multi-path approach gives similar results

6 https://github.com/Netflix/vmaf
7 http://www.topology-zoo.org/files/Garr201201.gml
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Fig. 3. CDF of visual quality for different user classes

and is not shown for space constraints). Figure 3 reports
the CDF of the visual quality obtained by all video sessions
grouped by user class in the case of a 500 Gbps load 8 . The
figure shows that, when passing form β = 1.1 to β = 1.4
(Figures 3b and 3c) the fairness is improved. Moreover,
the obtained fairness in the PF case with β = 1.4 is
remarkably better than the BL case. As a matter of fact,
the PF case with β = 1.4 results in a high fairness since
all the users belonging to any user class will enjoy a
similar visual quality. It is worth stressing that, in the
case of β = 1.5, results in terms of visual quality fairness
deteriorate compared to the β = 1.4 case. In particular,
for β = 1.5 clients with 720p and 1080p resolution obtain
a higher visual quality than 2160p clients.

5. CONCLUSIONS

In this paper, we have proposed a Proportional Fair (PF)
resource allocation strategy to equalize the QoE obtained
by concurrent heterogeneous users for video delivery net-
works. To achieve such a goal, we have shown how to prop-
erly formulate a Multi-Commodity Flow Problem. Next,
we have proposed a clusterization of video sessions with
the purpose of making the number of variables involved in
the optimization problem manageable. The performance
of the proposed PF allocation strategy has been compared
to the case of a QoE-unaware allocation strategy, which
is representative of the currently deployed video delivery
networks. Simulation results show that the proposed PF
allocation strategy is able to remarkably improve fairness
among heterogeneous clients.
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