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ABSTRACT
Virtual Reality/Augmented Reality applications require streaming
360° videos to implement new services in a diverse set of fields
such as entertainment, art, e-health, e-learning, and smart facto-
ries. Providing a high Quality of Experience when streaming 360°
videos is particularly challenging due to the very high required
network bandwidth. In this paper, we showcase a proof-of-concept
implementation of a complete DASH-compliant delivery system
for 360° videos that: 1) allows reducing the required bitrate, 2) is
independent of the employed encoder, 3) leverages technologies
that are already available in the vast majority of mobile platforms
and devices. The demo platform allows the user to directly experi-
ment with various parameters, such as the duration of segments,
the compression scheme, and the adaptive streaming algorithm
parameters.

CCS CONCEPTS
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ologies → Virtual reality;
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1 INTRODUCTION
Virtual Reality/Augmented Reality applications are gaining momen-
tum due to the availability of cheap Head Mounted Displays (HMD).
In this ecosystem, streaming of 360° videos is a key technology en-
abling new applications such as immersive cinema, social-media,
health-care, and education. Today, video streaming platforms such
as Facebook and YouTube are starting to offer 360° videos on their
platforms. The challenges that these new services have to face are
numerous, among which we cite: 1) standardization of new video
formats, 2) design of control algorithms for bitrate selection, 3) de-
sign of new compression techniques suitable for 360° videos. In
particular, to quantify the impact of the last issue, in [5] authors
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show that streaming a 360° video requires a network bandwidth
of ~400Mbps to deliver a video quality similar to that of a full HD
resolution 2D video.

In an effort to reduce the required bitrate, several approaches
have been proposed in the recently published literature. The com-
mon feature of these techniques is that only a portion of the video,
the one in the current Field of View (FoV) of the user – named the
Region of Interest (RoI), is downloaded by the client. In this spirit,
the slicing technique divides the video into a number of portions
which are encoded and stored separately in different bitstreams [9].
The issue of this approach is that a RoI may spanmultiple slices each
one requiring a separate decoding process at the client, making this
solution not viable for mobile users. Another issue is that the client
has to download in parallel the slices composing the RoI, which
makes the adaptive streaming algorithm more complex. A promis-
ing approach overcoming the above-mentioned issues is tiling, a
concept recently introduced in HEVC [8] and proposed for DASH
video delivery systems in [1]. The video is spatially divided into
a number of tiles which are encoded independently and possibly
stored into a single bitstream. This way, the client selects a subset of
tiles and a single process is able to decode the compressed bitstream.
The drawback of this approach is that the representations can only
vary the bitrate, but the size of each tile must remain constant,
i.e. the tile grid cannot change [1]. Another issue is that tiling effi-
ciency, in terms of required bitrate to obtain the same video quality,
is inversely proportional to the number of tiles [7]. Finally, in the
case of sudden changes of the viewpoint, new tiles should be down-
loaded and rebuffering events might occur in the case segments
are not downloaded fast enough. From a technological standpoint,
the proposed approaches require encoders supporting tiling that
are still in the experimental stage1 and hardware decoding of these
new formats is not yet available and deployed in mobile devices. We
believe that the issues described above might hinder the penetration
of this technology.

In this paper, we present a DASH delivery system for 360° videos
that: 1) allows reducing the required bitrate, 2) is encoder-agnostic,
3) leverages technologies that are already available in the vast ma-
jority of mobile platforms and devices. We showcase the proposed
system through a proof-of-concept implementation which employs
a modified version of the Shaka player. The proposed approach is
described in Section 2, whereas technical aspects are provided in
Section 3.

2 THE PROPOSED SYSTEM
Figure 1 shows the overall architecture of the proposed delivery
system which is composed of: 1) a video content generation system;

1https://github.com/gpac/gpac/wiki/Tiled-Streaming employs the Kvazaar encoder, an
open source implementation of HEVC implementing tiling.
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Figure 1: The proposed delivery system architecture
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2) a player running at the client whichmanages the control logic and
the rendering of the received video; 3) an HTTP server providing
the video content.

Video content generation. We start by describing the video con-
tent generation component. In this paper, we consider the original
uncompressed scene to be produced in Equirectangular Projection
(ERP) format. Notice that this is not a limitation since any other
format is in principle supported by using format adapters filters.2
The original video is manipulated in order to create N different
views vi , one for each considered RoI, constituting the views set
V = {v1, . . . ,vN }. Saliency maps could be used to tailor the selec-
tion of the number and position of the RoIs [2, 6]. The way RoIs are
identified is not the focus of this paper. In particular, we assume
each RoI to be a spherical lune with a dihedral angle equal to 120◦
(i.e., the FoV angular width) centered at a particular yaw angle αi as
shown in Figure 2(a). The regions outside the RoI, namely the ones
at its left (L) and its right (R), are divided into two spherical lunes
of equal dihedral angle. Each spherical lune maps to a particular
vertical strip of the ERP video (Figure 2(b)). The ERP video is ma-
nipulated in such a way that the RoI is always placed in the center
of the frame as Figure 2(c) shows. The idea is to downscale the

2https://trac.ffmpeg.org/wiki/RemapFilter

portions of the video outside the RoI, which are less likely to be in
the user’s FoV, to reduce the required encoding bitrate (Figure 2(d)).

We employ this strategy due to the following reasons. First of
all, we use spherical lunes as RoI because more complex strategies
(such as ones employing spherical sectors [3]) may introduce ineffi-
ciencies into the intra-frame operations, leading to higher bitrate
requirements [1, 10]. Moreover, we choose to maintain the RoI at
the center of the frame– applying a rotation before downscaling –
to better exploit the motion compensation algorithm by keeping the
continuity between the scaled and non-scaled areas [1, 10]. Finally,
we have chosen to use the downscaling operation – instead of HEVC
tiling – due to the fact that this technique is 1) a technology-ready
solution, independent of the employed codec, 2) can be efficiently
handled by hardware decoders at the client-side, 3) can use well-
established and mature algorithms (interpolation, filtering, etc.) to
improve the resulting video quality.

Now each of the N views vi ∈ V is encoded into M video
representations at different bitrates lj (and resolutions) constituting
the video level set L = {l1, . . . , lM }. At the end of this procedure,
we obtain the set of representations R = V × L composed of N ·M
files that are stored at the server and indexed through an MPD
manifest. Technical details on the DASH manifest are provided in
the Section 3.

The client. We now describe the client-side part of the proposed
system. The client implements both the control logic needed to
dynamically select which video segment to download and video de-
coding and rendering functionalities. The control logic is composed
of two cooperating components: 1) a view selection algorithm (VSA)
which dynamically chooses the most suitable view representation
v(t) ∈ V to be downloaded based on measurements provided by
the HMD accelerometer; 2) a quality selection algorithm (QSA) that
dynamically selects the video level l(t) ∈ L in order to avoid play-
back interruptions due to rebuffering while maximizing network
channel utilization.

Let us focus begin by describing the way the view is selected.
The VSA strives to select the best view representation depending
on the current user’s head position. In particular, let us assume that
the user is currently watching the view v1 ∈ V corresponding to
a RoI centered at yaw angle α1 (see Section 2) and the user turns
his head to a yaw angle α . In order to improve visual quality, the
algorithm triggers a switch to a view representation vi ∈ V whose
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RoI is centered at a yaw angle αi that has the minimum absolute
distance from α .

The QSA acts similarly to classic DASH adaptive video streaming
algorithms. In fact, our approach only needs one playout buffer
since theQSA does not have the necessity of downloading in parallel
segments of different views (which would need separate buffers to
be handled). This is a major advantage compared to other strategies
requiring controlling multiple playout buffers since the proposed
design significantly simplifies the control logic. The only difference
wrt classical DASH adaptive video streaming algorithm is the way
the QSA reacts to a view switch required by the VSA. Consider the
case in which a switch from view vA to view vB is triggered by the
VSA. At this instant, the playout bufferwould store a certain number
of segments of the view vA. Playing such segments would delay
the positive effect on visual quality of the triggered view switch. To
improve the video quality as soon as possible, it is required to drain
from the playout buffer queue an appropriate number of seconds
belonging to the segments of thevA view. Thus, the only additional
functionality that QSA is required implement is an algorithm that
computes the proper number of seconds (of the vA view) to be
evicted from the tail of the buffer. From this point on, the view
switch is completed and the downloader will start downloading
segments of the view vB at the video level l(t) computed according
to the control logic implemented by the QSA.

3 DEMO SETUP
In this section, we describe a proof-of-concept that implements the
360° video delivery system presented in Section 2.

3.1 Content generation
The proposed content generation mechanism described in the previ-
ous section has been implemented as a filter chain using FFMPEG3,
in such a way that the solution is suitable both for on-demand and
real-time streaming. We have employed 10 benchmark videos at 4K
resolution (i.e., 3840 × 2048) paying attention at selecting contents
to obtain a video catalog sufficiently representative of different
video categories and features. Each of the three vertical strips in
which the video is divided (left, RoI, right) has a resolution equal
to 1280 × 2048. As described in Section 2, for each view vi ∈ V
the regions outside the RoI are downscaled in order to reduce the
encoding bitrate. We define the downscale factor d as the ratio be-
tween the width of the downscaled video and the original video
width w , i.e. d = (2wd + wRoI)/w , where wd is the width of the
downscaled regions outside the RoI andwRoI is the width of the RoI.
In our demonstration we are considering videos with an original
widthw = 3840px, which means that the width of the RoI is equal
towRoI = w/3 = 1280px. We let the downscaled widthwd to vary
in the set {240px, 480px, 720px, 1080px}.

Table 1 reports the average bitrate reduction (in percentage),
along with the 95% confidence intervals, measured for each of the
considered downscale factors. The downscaled videos have been
encoded using the FFMPEG H.264 encoder with a CRF (Constant
Rate Factor) value equal to 20. 4

3https://ffmpeg.org/ffmpeg-filters.html
4https://trac.ffmpeg.org/wiki/Encode/H.264

Table 1: Average bitrate reduction (with 95% confidence in-
terval reported in the parentheses) for the considered down-
scaled resolutions in the case of CRF=20.

Downscale
factor d

(%)

Downscaled
resolution

(px)

Average Bitrate reduction
(%)

54.17 240 px 51.3 (48.0-54.7)
41.67 480 px 37.49 (34.1-40.8)
29.17 720 px 25.44 (21.9-28.9)
10.42 1080 px 7.90 (3.0-12.7)

<AdaptationSet ... maxWidth ="3840" maxHeight ="2160" ... >

<Viewpoint schemeIdUri ="urn:mpeg:dash:viewpoint :2011"

value =" camera_id=0,adaptive_pano ,rotations =0:120: -120 ,
viewpoint_id =0, width =1760 , side_width =240"/ >

<Representation id="0/ dash /0/" ... width ="1280" ... />

<Representation id="0/ dash /1/" ... width ="1920" ... />

<Representation id="0/ dash /2/" ... width ="3840" ... />

[...]

<AdaptationSet ... maxWidth ="3840" maxHeight ="2160" ... >

<Viewpoint schemeIdUri ="urn:mpeg:dash:viewpoint :2011"

value =" camera_id=0,adaptive_pano ,rotations =0:120: -120 ,
viewpoint_id =1, width =1760 , side_width =240"/ >

[...]

Figure 3: Excerpt of the DASH manifest

The results show that the proposed approach is promising and
provides a percentage bitrate reduction scaling almost linearly with
the percentage downscale factor d . Notice also that confidence
intervals are quite tight, indicating that the proposed scheme is not
content-sensitive.

3.2 DASH Manifest
Our implementation is MPEG-DASH compliant and leverages the
Viewpoint elements defined by the standard, which are intended
for offering multiple camera viewpoints belonging to the same
scene (e.g. within Sports events, Concerts, etc). We exploit these
descriptor elements to include all the information needed for the
client to properly process our video representations. Figure 3 shows
an excerpt of the extended DASH manifest file as an example.

The value attribute of the Viewpoint element is a list of the
following comma separated parameters: 1) camera_id, identifies a
video source (e.g. viewpoints of the same content will have the same
camera_id); 2) video_type, to distinguish scaled panoramic videos
(adaptive_pano) from non-scaled ones (panoramic) and simple 2D
videos (regular); 3) rotations, an ordered list of rotation angles
in degrees of all the viewpoints; 4) viewpoint_id, the index of the
viewpoint in the aforementioned rotations list; 5) width, the width
of the rescaled video; 6) side_width, the width of the rescaled part
of the video.

3.3 The Player
The player has been developed by exclusively using standard web
technologies and open-source libraries to make sure that it can be
run on most modern browsers. The streaming session is handled
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by a modified version of the Shaka player5, an open-source DASH
video streaming player written in JavaScript. The player has been
modified to support two additional features: 1) parsing of the mpd
file to extract information regarding the Viewpoint element of the
manifest; 2) the possibility to evict a certain duration of the video
stored in the playout buffer as described in Section 2 when a view
change is triggered by the VSA.

Regarding the first feature, the Shaka library only provides sup-
port for basic DASH features which do not include the support
of viewpoints. For this reason, we expanded the manifest parser
of Shaka to extract the viewpoint elements as well. Regarding the
second feature, we have modified the Shaka player allowing to
programmatically retain a given amount of the playout buffer (the
safety margin) in order to avoid rebuffering events, and drain the
remaining part to speed-up the visual quality improvement due to
a view switch.

Finally, a module called abr-manager has been written from
scratch to handle all the decisions taken by the video streaming
control algorithm. This module implements both the logic of the
QSA and the VSA. In particular, we employ ELASTIC [4] as the
QSA aiming at adapting the video level l(t) to changing network
conditions. Regarding the VSA, the abr-manager implements au-
tomatic switching between viewpoints according to the user head
position and movements, and can also switch to entirely different
cameras – f.i., a different scene – if the user prefers.

3.4 Video Rendering
The rendering of the received ERP video in VR, as well as the
stereoscopic effect needed to support VR headsets, have been imple-
mented using WebVR and the open source library THREE.js.6 In 3D
graphics, a 3D object is composed of two parts: the mesh, modelling
the physical properties of the object with vertices, edges, and faces;
the texture, which is a composition of one or more images that can
provide to the object the perception of realism. The rendering phase
of the 3D object includes a mapping of the vertices of the mesh
to specific points of the texture. Since our approach downscales
the regions outside the RoI, we exploit this process to rescale them
back to the original resolution. With this purpose, we leverage
the original rendering pipeline to introduce in the Vertex Shader
a modified mapping function that properly associates the vertices
of the mesh to the differently scaled strips of the video frame. It is
important to stress that rescaling the regions outside the RoI does
not incur in an added computational cost compared to the usual
rendering process involved when remapping a standard ERP video.
In fact, the performed operation is equivalent to rendering the ERP
video at the original resolution, but using a different mapping.

3.5 Experimental Scenarios
The demo setup allows the user to experiment with several system
parameters and network conditions and perceive the impact on
the overall experience. The user will wear a VR headset equipped
with a mobile phone which will run the client-logic in the mobile
version of the Google Chrome web browser.

5https://github.com/google/shaka-player
6https://threejs.org

In particular, user will be confronted with several scenarios vary-
ing: 1) the video segments length, in order to assess the impact
of delayed actions (representation switches can only occur at the
segment granularity); 2) video contents, ranging from more static
to highly dynamic scenes with multiple RoIs; 3) network condi-
tions in terms of changing available bandwidths throughout the
experiment set with network emulation tools; 4) downscale factors
d (as reported in Table 1) to assess the visual quality in downscaled
regions outside the RoI. In reason of the large parameter space, we
will provide the user a selected number of interesting scenarios.

4 CONCLUSIONS
In this paper, we describe a practical implementation of a 360°
delivery system based on technologies that are available on the vast
majority of user devices. The delivery system is showcased through
a proof-of-concept implementation which allows experimenting
with various trade-offs involved when tuning system parameters. In
particular, duration of segments, the compression parameters, and
adaptive streaming strategies are considered. Their impact can be
directly assessed by users employing the proof-of-concept system
which makes use of a network environment emulating several
bottleneck capacities and background traffic scenarios.
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