
Characterizing Adaptive Video Streaming Control Systems

Giuseppe Cofano, Luca De Cicco, Saverio Mascolo

Abstract— Adaptive video streaming systems aim at provid-
ing the best user experience given the user device and the
network available bandwidth. To the purpose, a controller
selecting the video bitrate from a discrete set L has to be
designed. The control goal is to maximize the video bitrate
while avoiding playback interruptions and minimizing video
bitrate switches. In the literature two different approaches,
which we name rate-based actuation and level-based actuation,
have been explored. The first one adapts both the received
rate and the video bitrate, whereas the second acts only on
the video bitrate. In this paper we advocate the adoption
of level-based actuation controllers and we propose a hybrid
dynamical system that models the essential features of such a
class of controllers. With this model we are able to derive the
minimum obtainable video bitrate switching frequency which
can be considered as a benchmark for any level-based actuation
controller. Finally, we show how to design the video level
set L to obtain a performance trade-off between switching
frequency and storage cost requirements at the servers. The
theoretical results are validated through numerical simulation
and experimental evaluation.

I. INTRODUCTION

Video streaming services, such as YouTube and Netflix,
generate an ever increasing fraction of the Internet traffic [4].
Providers have to deal with the challenge of delivering a
seamless multimedia experience at the maximum obtainable
Quality of Experience (QoE) across a wide range of devices
and access networks. From the point of view of video
providers, improving user engagement is the key requirement
due to its direct connection to revenues. To this purpose
the video content has to be made adaptive by employing
a control algorithm designed to dynamically select the video
bitrate. Today, the leading approach for implementing adap-
tivity is the stream-switching (or multi bitrate): the server
encodes the video content at different bitrates, the video
levels, and the control algorithm selects the video level to
be sent. Due to its implementation and deployment simplic-
ity, such an approach is today employed by leading video
streaming services such as Netflix, Hulu, Vudu, Livestream,
and YouTube. The two main adaptive streaming standards,
MPEG Dynamic Adaptive Streaming over HTTP (DASH)
and HTTP Live Streaming (HLS), adopt this approach. From
the control architecture point of view, the leading choice is
to place the controller at the client so that video distribution

The authors are with the Dipartimento di Ingegneria Elettrica
e dell’Informazione, Politecnico di Bari, Via Orabona 4,
Bari, Italy. Emails: giuseppe.cofano@poliba.it,
luca.decicco@poliba.it, mascolo@poliba.it

This work has been supported by the Italian Ministry of Educa-
tion, Universities and Research (MIUR) through the MAIVISTO project
(PAC02L1_00061).

can be performed by means of standard HTTP servers and
scalability can be achieved through CDNs.

In order to improve user engagement, the following goals
have to be pursued: 1) avoiding playback interruptions;
2) maximizing video quality (level or bitrate); 3) minimizing
the start up time; 4) minimizing the number of video level
switches [12]. Two cooperating techniques are employed:
1) an algorithm to dynamically select the video level, which
should ideally match the available bandwidth and 2) a play-
out buffer controller that is employed to absorb bandwidth
variations and avoid playback interruptions. Playout buffer
control algorithms can be designed by taking one of two
different approaches: the buffer can be controlled by acting
either on the received rate (rate-based actuation approach)
or on the video level (level-based actuation approach). It is
now well-known that the mainstream rate-based actuation
approach leads to issues such as poor bandwidth utilization
and unfairness in presence of concurrent flows [9], [2],
whereas the level-based actuation approach can lead to a
possible increase of the number of level switches at steady
state.

In addition to the aforementioned requirements, content
and network providers also aim at minimizing distribution
costs such as server storage and network bandwidth utiliza-
tion. This involves a fundamental trade-off: in fact, since the
higher the video encoding quality the higher the video file
size, user engagement can be increased only at the price of
higher server storage and network bandwidth costs.

The contribution of this paper is twofold. Firstly, we
advocate the use of level-based actuation controllers and we
propose a model, in the form of a hybrid dynamical system,
to generalize and analyze such controllers. Based on this
model we derive the minimum switching frequency at steady
state, which can be considered as a benchmark for any level-
based actuation controller. Secondly, we take the provider
point of view and we show how to design the video level
set L to obtain a trade-off between switching frequency and
storage costs.

II. ADAPTIVE VIDEO STREAMING

A video streaming system allows a client to play a
video that is sent by a remote server through an Internet
connection. The client employs a playout buffer to absorb the
instantaneous mismatches between the encoding bitrate and
the network available bandwidth that in best-effort Internet is
unpredictable and time-varying. However, if the bandwidth
gets below the video bitrate for a sufficiently long time,
the buffer will eventually gets empty and a re-buffering
phase will be triggered: the player gets paused for a time



interval, the re-buffering time, allowing the buffer to reach
a safety threshold before the playing can be resumed. The
leading approach for implementing adaptivity is the stream-
switching (or multi bitrate): the server encodes the video
content at different bitrate levels forming a discrete set L
and the adaptive control algorithm dynamically selects the
video level to be streamed.

The goal of adaptive video streaming control algorithms
is to maximize the users perceived Quality of Experience
given the available bandwidth. Several factors concur to its
maximization. In particular, the bitrate has to be maximized,
possibly matching the available bandwidth, whereas the start
up time, the frequency of re-buffering events and the number
of video level switches have to be minimized. The control
algorithm can act on the received rate and on the selected
bitrate.

A. Plant model

In this Section we present a fluid-flow model of the playout
buffer length. Given a video of total duration Tv , each
video frame can be uniquely associated to a time instant
tv ∈ [0, Tv] . We define the video encoding bitrate as
l = dD/dtv , where dD is the amount of bytes required to
store a portion of video of duration dtv . Indeed, by definition
the encoding rate is always strictly greater than zero. We
denote, with some abuse of notation, the video level selected
by the controller with l(t). The received rate r(t) can be
defined as r(t) = dD/dt, i.e. the amount dD of bytes that
are received in a time interval dt. We denote with b(t) the
end-to-end available bandwidth and with q(t) the playout
buffer length, i.e. the total duration of video stored in the
playout buffer and measured in seconds1.

As any storage element, we can model the playout buffer
length as an integrator:

q̇(t) = f(t)− d(t),

where f(t) is the filling rate and d(t) is the draining rate.
If in a time dt an amount of video duration dtv is received
by the client and stored in the playout buffer, then – by
definition – the instantaneous filling rate is equal to dtv/dt.
Thus, from f(t) = (dtv/dD) · (dD/dt) it readily turns out:

f(t) =
r(t)

l(t)
. (1)

The playout buffer is drained by the player: when the video
is playing, in any τ seconds τ seconds of video are played,
i.e. d(t) = 1; on the contrary, when the player is paused the
draining rate is zero. Thus, the draining rate is given by:

d(t) =

{
1 playing
0 paused

(2)

Finally, combining (1) and (2) yields the playout buffer
length model:

1For the rest of the paper we will use the terms “buffer” and “queue”
equivalently.

q̇(t) =
r(t)

l(t)
− d(t). (3)

B. Control approaches

Based on the actuation variable, video streaming control
systems can be classified as 1) rate-based and 2) level-based.
In the first case the actuation variables are both the video
level l(t) and the received rate r(t), in the second one only
the video level l(t) is used.

Let us consider the rate-based actuation approach. For sim-
plicity let us assume that the available bandwidth measured
by the client is constant and equal to B̂. In this case the
video level l(t) is typically selected as the maximum l ∈ L
less than the available bandwidth B̂ [1]. Since l < B̂, it turns
out that, according to (1), the filling rate would be greater
than 1, i.e. the queue would always grow. Hence, with this
approach, the received rate r(t) is required to be set equal to
l(t) to make q(t) match a threshold qT . However, the client
cannot set r(t) to a desired value since, for each t, video
segments are downloaded at a rate equal to the end-to-end
available bandwidth B̂. Thus, the only way to achieve, at
least on average, the desired received rate r(t) is to insert
idle periods between the downloads of two consecutive video
segments. In other words the client alternates between an
ON and an OFF phase: during the ON period, the client
receives at a rate r(t) = B̂, whereas during the OFF period
it stays idle, i.e. r(t) = 0. With this control approach
the average received rate can be set equal to the selected
video level by properly setting the OFF period duration. The
advantage of this approach is that video level switches occur
only when the bandwidth changes. However, this approach
has two drawbacks: 1) the available bandwidth is always
underutilized; 2) it has been experimentally shown that the
ON-OFF traffic pattern causes the video flows to obtain a
bandwidth share significantly less than the fair one when
competing with long-lived TCP flows [2], [9], [11]. To tackle
these issues, several adaptive streaming algorithms have been
proposed so far. FESTIVE has been specifically designed to
address the fairness issues arising in a multi-client scenario
[10]. A different strategy to obtain r(t) = l(t) is to shape the
sending rate at the server as proposed in [3]. Interestingly,
it has been shown that this strategy is also employed by the
Akamai control algorithm [6], [7].

In the level-based actuation approach, the video segments
are downloaded back to back, thus eliminating the ON-
OFF traffic pattern, i.e. r(t) is always equal to B̂. As a
consequence, full utilization and fairness with greedy TCP
flows can be achieved. The control is done by throttling
l(t) in order to keep q(t) in a range [qL, qH ]. With this
approach, in fact, it would be impossible to steer q(t) to
a target qT because of the quantized nature of l(t). The
drawback of this approach is that at steady state video level
switches occur even with constant bandwidth B̂. In [14]
a PI is employed to steer the buffer level to a setpoint.
In [5] feedback linearization is used to design ELASTIC, a
controller that steers the buffer level to the target. ELASTIC



has been experimentally compared with several rate-based
actuation controllers and it has been shown that it is able
to overcome rate-based actuation controllers issues such
as bandwidth underutilization and unfairness with greedy
TCP flows at the price of a possible increase of video level
switches number at steady state.

III. LEVEL-BASED ACTUATION CONTROL

The goal of this section is to characterize the behavior
of the family of the stream-switching controllers acting only
on the video level l(t). To the purpose, we employ a queue-
based controller which is representative of this family. In
Section III-A we provide a formal model of the closed-loop
system. In Section III-B we prove that an asymptotically
stable limit cycle exists and, based on this analysis, we
derive some key properties quantifying the effect of the
design parameters on the QoE. From now on, we assume a
piecewise constant available bandwidth input function, which
can be considered in practice a worst case scenario. Thus,
without loss of generality, we analyze the system behavior
in response to a step input of amplitude B.

A. Hybrid Model

The control goal of a generic adaptive streaming control
system is to obtain: G1) full utilization of the available
bandwidth at steady state, i.e. r(t) = B; G2) preventing re-
buffering events (q(t) = 0) while keeping the queue as low
as possible to minimize network bandwidth, client memory
and to enforce liveness in the case of live streaming; G3)
minimizing video level switches at steady state. It is easy
to show that it is not possible to completely avoid video
level switches at steady state while matching G1 and G2.
However, when a video level switch from li to lj occurs, the
larger the distance between li and lj the higher is the QoE
impairment [12]. For this reason, though we cannot avoid
switches at steady state, we should at least avoid switches
between non-adjacent video levels. Thus, at steady state any
optimal controller in the sense above defined has to switch
the video level l(t) between the two adjacent video levels l
and l such that l < B < l. In particular:

l =
argmax l

l ∈ L s.t. l < B
, (4)

l =
argmin l

l ∈ L s.t. l > B
. (5)

Among all the optimal controllers, we consider the simplest
controller yet capturing the desired optimal steady state
behavior. In particular, the proposed controller employs two
thresholds qL and qH (qL < qH ). When q(t) gets above
the higher threshold qH , the video level is increased by
selecting l(t) = l, whereas when q(t) < qL the video level
is decreased to l. When q(t) ∈ [qL, qH ], the video level
is not changed. It is worth to notice again that, due to the
sampled and quantized nature of the actuation on l(t), any
queue-based control law causes the oscillation of the queue
level q(t) within a range (excluding the trivial case that the
bandwidth is equal to one of the video levels).

In the following we propose a hybrid dynamical model
H of the considered system by employing the framework
proposed in [8]. The formal model allows us to rigorously
prove that the queue length keeps within the range [qL, qH ]
at steady state regardless of the initial conditions. Moreover,
it allows us to provide some key properties of the system.

Before defining the model, we have to consider some
trivial cases. If B ∈ L , there is no switching between
adjacent levels at steady state. However, this is a purely
mathematical condition that never holds in the practice: we
exclude it by imposing that B /∈ L . If q(t) grows above
a threshold qmax � qH , the control algorithm reacts with
a safety mechanism by employing the ON-OFF pattern to
reduce the rate and prevent the download of the entire
video. Therefore, the proposed model holds only as long as
q(t) < qmax.

Let us now define H . The state of the system is given by
x = [q, l] ∈ X = [0, qmax]×L . For convenience of notation
we define the sets:

cL = {x ∈ X : q < qL}

cH = {x ∈ X : q > qH}

cT = {x ∈ X : qL ≤ q ≤ qH}

csup = {x ∈ X : l = l}

cinf = {x ∈ X : l = l}

The flow set C and jump set D are then given by:

C = (cL ∧ cinf ) ∨ cT ∨ (cH ∧ csup)

D = (cL ∧ csup) ∨ (cH ∧ cinf )

The flow map is defined as:

f(x) =

[
B

l
− 1, 0

]
(6)

The jump map is given by:

g(x) =

{
[q, l] ifx ∈ (cL ∧ csup)

[q, l] ifx ∈ (cH ∧ cinf )

B. System properties

The following theorem ensures that the queue length keeps
within the range [qL, qH ] regardless of the initial conditions.

Theorem 1: The set A = cT is uniformly globally pre-
asymptotically stable (UGpAS) for the hybrid system H .

Proof: the proof is omitted due to space limitations.
We can further characterize the dynamical behavior of the

system with the following simple proposition.
Proposition 1: Given B ∈ (li, li+1), the evolution of

the queue of H at steady state is a triangular wave with
switching period given by:

Ts = (qH − qL)

(
li

B − li
+

li+1

li+1 −B

)
. (7)

Proof: the proof is omitted due to space limitations.
Figure 1 shows the limit cycle dynamics.



qL

t

t

l(t)

li+1

li

B

∆tLH ∆tLH

Ts

qH

q(t)

Fig. 1: Limit cycle

The level switching period Ts should be as large as
possible to provide a good user experience. The following
Proposition characterizes the worst case switching period,
which corresponds to the minimum value taken by Ts.

Proposition 2: The minimum switching period T s is
given by:

T s =
(qH − qL)Di

Di + 2− 2
√
Di + 1

, (8)

with Di = (li+1 − li)/li (the video level relative distance),
when B =

√
lili+1.

Proof: the proof is omitted due to space limitations.

Remark 1: Eq. (8) can be employed to tune video levels
and queue thresholds such that a target worst case switching
period is obtained. Since the function (8) is monotonically
decreasing with a vertical asymptote in Di = 0, the worst
case switching period decreases as the relative distance of
two adjacent levels increases. Importantly, (8) also expresses
that, if Di is fixed, i.e. Di = D ∀i, T s is independent on
i. This is a key design choice that provides a predictable
performance across the entire range of bandwidths B ∈
[l0, lN−1].

It is also interesting to compare it with the switching
period computed in the case of a video level set L =
{l0, l0 +P, l0 + 2P, . . . , l0 + (N − 1)P}, which corresponds
to set adjacent video levels with a constant distance of P .
Since in this case Di = P/li, we obtain from (8):

T s(li) =
∆q

P
(P + 2li + 2

√
Pli + l2i ), (9)

which means that T s is not independent on i and can be
approximated as a linear function when li � P .

IV. OPTIMAL VIDEO LEVEL DESIGN

Let us now consider the problem of the design of video
level set L . In an adaptive streaming system the minimum
and the maximum video levels l0 and lM are a design
requirement that fixes the range within which the actuation
signal can vary. Moreover, by taking into account the Re-
mark 1, we can proceed by fixing the target Ts and ∆q2 in

2Recall that ∆q cannot be made too large (see the control goal G2 in
Section III-A).

(8) to get a unique value of D, which is independent on each
li. Notice that D is bounded by Dmax = (lM − l0)/l0. Once
D and l0 are fixed, each video level li can be expressed as:

li = (1 +D)il0 (10)

The number N of levels is a function of D equal to:

N(D) =

⌈
log lM − log l0

log(D + 1)

⌉
+ 1 (11)

To give an example, let us take a typical use case (see
for instance [7]) in which l0 = 300kb/s (240p) and lM >
4500kb/s (1080p) and we require a worst case period of 150s
with a hysteresis range of qH − qL = 15s. From (8) we get
roughly D = 0.5, which means that we need to use the
following 8 levels:

L = {0.3, 0.45, 0.675, 1.0, 1.52, 2.28, 3.42, 5.12}Mb/s.

However, the storage cost for a video of duration T is
proportional to the sum of the size of all the video versions:

S(D) = T

N(D)−1∑
k=0

li = T l0
(1 +D)

⌈
log lM−log l0

log(D+1)

⌉
+1 − 1

D

(12)
Thus, we need to consider the trade-off between the min-
imization of the switching frequency, which is inversely
proportional to D, and the minimization of the storage cost,
which instead is increasing with D. To the purpose, we
formulate the following optimization problem:

min.
D∈(0,+∞)

J(D) = S(D) + αfs(D),

where J(D) is a one variable function with a freely ad-
justable weighting parameter α ≥ 0. We expect that, when
α is small, the storage component dominates and large values
of D will be obtained, meaning that few and far apart levels
should be employed. In particular, when α = 0, the trivial
solution L = {l0, lM} is obtained. On the contrary, with
increasing values of α the QoE component dominates and
D gets smaller and smaller converging to 0.

Let us now analyze the derivatives of the two functions.
The derivative of the switching frequency fs = 1/Ts is equal
to:

∂

∂D

1

∆t
=

1

∆q

D + 2− 2
√
D + 1

D2
√
D + 1

. (13)

It can be shown that it is a monotonically decreasing function
which is equal to 1/(4 ·∆q) for D = 0 and asymptotically
converges to 0.

The derivative of (12) turns out to be:

∂S

∂D
=

1− (1 +D)
log lM−log l0

log(D+1)

D2
(14)

that is monotonically increasing and goes from −∞ to 0.
∂S
∂D + α∂1/∆t

∂D = 0 has only one zero depending on α.
Figure 2 shows the optimal value of D as a function of α
for several values of A = log lM − log l0. In particular, the
optimal value of D monotonically decreases converging to



10 15 20 25
1

1.5

2

2.5

2.7
2.8
2.9
3
3.1
3.2
3.3

α

D
o
p
t

Fig. 2: Family of functions Dopt(α) when the parameter A =
log lM − log l0 varies

Server
HTTP Internet Video

Adaptive

Player

Client HostServer Host

point
Measurement

NetShaper

Fig. 3: Testbed setup.

0 when α goes to +∞, due to the fact that with a small
α the storage term dominates, whereas with a large α the
switching frequency term dominates, as expected.

V. SIMULATIONS AND EXPERIMENTAL EVALUATION

In this section we validate the model and the properties
of the level-based actuation control algorithm proposed in
Section III by comparing numerical simulations with experi-
mental data. Simulations of the proposed hybrid model have
been done through the Matlab Hybrid Equations (HyEq)
Toolbox [13]. The proposed control algorithm has been
then implemented on the video player Adaptive Video
Player (AVP) and tested over a real network scenario.

Figure 3 shows the employed testbed: an Apache HTTP
server has been installed on a Debian Linux server, whereas
a Ubuntu Linux client machine runs the Adaptive Video
Player (AVP). AVP has been implemented using the
GStreamer3 libraries and supports the HTTP Live Streaming
(HLS) format4. In order to perform bandwidth shaping and to
set propagation delays, we have used the tool NetShaper,
a tool we have developed that is similar to Dummynet. The
video sequence “Sintel”5, encoded at five different bitrates
L = {300, 600, 900, 2500, 4000}kb/s, has been employed.
In all the runs the available bandwidth B has been set to
1500kb/s unless otherwise specified.

Figure 4 compares the dynamics of the system state
x = [q(t) l(t)]T in the case of simulations (left) and
experimental runs (right) obtained when ∆q = 12s. The
simulated system accurately models the real control system.
The only difference is that in the real system the queue gets

3http://gstreamer.freedesktop.org/
4http://tools.ietf.org/html/draft-pantos-http-live-streaming-07
5http://www.sintel.org/

10 15 20 25 30 35 40
40

60

80

100

120

140

160

180

∆q [s]

T
s
 [
s
]

 

 

experimental data

model

model with correction factor

Fig. 5: Comparison between experimental and model data

slightly below (above) the lower (higher) threshold before
a video level switch is triggered, whereas in the model the
video level switch is triggered exactly when the queue gets
equal to the thresholds. This difference is due to the fact
that the model does not capture the presence of the chunks,
which make the control actuation in the real system discrete.

We have then validated (7) on the real system. Sev-
eral runs, each one with a different ∆q ∈ Q =
{12, 16, 20, 24, 28, 32, 36}s, have been carried out. In each
run the average switching period Ts has been measured.
Figure 5 shows that (7) (dashed line) quite accurately fits
the average measured Ts of the real system (solid line). In
order to compensate for the discrete behavior of the real
system due to the presence of the chunks, ∆q in (7) has been
increased by adding a correction factor equal to 2Tchunk,
where Tchunk = 4s is the duration of the single chunk.
The dash-dotted line in Figure 5 shows that the corrected
switching period Ts better fits the experimental data.

Finally, we have experimentally compared the worst case
T s obtained when video levels are designed in the same
range [300, 4000]kb/s either according to the optimal proce-
dure or the equally spaced one described in Section III-B.
In these experiments the available bandwidth is set equal
to the worst case bandwidth B for each couple of adjacent
levels (li, li+1) according to B =

√
lili+1. With the optimal

procedure the set LA = {300, 573, 1094, 2090, 4000}kb/s is
obtained. Figure 6 compares the average worst case measured
T s (thick solid line) to the one computed with (8) (thick
dashed line). It has to be noticed that encoders are not able to
produce video levels that match precisely the target levels for
low bitrates. In fact, we have measured that the actual bitrates
of l0 and l1 are equal to, respectively, 342kb/s and 595kb/s,
with a relative error equal to 0.14 and 0.03 wrt the target
levels. Despite of this, (7) nicely predicts the worst case
switching period T s. With the equally spaced design pro-
cedure (thin line), LB = {300, 1225, 2150, 3075, 4000}kb/s
is obtained and T s grows approximately linearly, as expected
from (9) (thin dashed line).



0 100 200 300 400 500
0

10

20

30

q
(t

) 
[s

]

model

0 100 200 300 400 500

1000

2000

3000

t [s]

l(
t)

 [
k
b
/s

]

0 100 200 300 400 500
0

10

20

30

q
(t

) 
[s

]

experimental data

0 100 200 300 400 500

1000

2000

3000

t [s]

l(
t)

 [
k
b
/s

]

Fig. 4: Comparison between simulations (left) and experimental results (right)

0 1000 2000 3000 4000
0

50

100

150

200

250

T
s
[s
]

B[kb/s]

optimal level set

predicted optimal set

equispaced set

predicted equispaced set

Fig. 6: Comparison between optimal level set LA =
{300, 573, 1094, 2090, 4000}kb/s and equally spaced levels
LB = {300, 1225, 2150, 3075, 4000}kb/s

VI. CONCLUSIONS

In this paper we have considered an important class of
adaptive video streaming control systems motivated by its
fundamental advantages in terms of bandwidth utilization
and fairness. We have provided tuning rules of the system
parameters to minimize video level switches, which is the
main drawback of employing such class of controllers. To
the purpose, we have proposed a hybrid dynamical model
of a simple threshold-based controller that is representative
of such a class. Based on the model, we have derived the
minimum switching frequency at steady state as a function
of the thresholds. Moreover, we have shown how to design
the video level set L to obtain an optimal trade-off between
switching frequency and storage cost requirements. The the-
oretical findings have been validated by comparing numerical
simulations and experimental results.

REFERENCES

[1] S. Akhshabi et al. An experimental evaluation of rate-adaptation
algorithms in adaptive streaming over HTTP. In Proc. of ACM MMSys
2011, pages 157–168, 2011.

[2] S. Akhshabi et al. What Happens When HTTP Adaptive Streaming
Players Compete for Bandwidth? In Proc. of ACM NOSSDAV ’12,
pages 9–14, 2012.

[3] S. Akhshabi et al. Server-Based Traffic Shaping for Stabilizing
Oscillating Adaptive Streaming Players. In Proc. of ACM NOSSDAV
’13, pages 19–24, 2013.

[4] Cisco. Cisco Visual Networking Index:Forecast and Methodology
2013-2018. 2013.

[5] L. De Cicco et al. ELASTIC: a Client-side Controller for Dynamic
Adaptive Streaming over HTTP (DASH). In Proc. of Packet Video
Workshop ’13, December 2013.

[6] L. De Cicco et al. A Hybrid Model of the Akamai Adaptive Streaming
Control System. In Proc. of IFAC World Congress ’14, 2014.

[7] L. De Cicco and S. Mascolo. An Adaptive Video Streaming
Control System: Modeling, Validation, and Performance Evaluation.
IEEE/ACM Transaction on Networking, 22(2):526–539, April 2014.

[8] R. Goebel et al. Hybrid Dynamical Systems: modeling, stability, and
robustness. Princeton University Press, 2012.

[9] T.Y. Huang et al. Confused, timid, and unstable: picking a video
streaming rate is hard. In Proc. of ACM IMC ’12, 2012.

[10] J. Jiang et al. Improving fairness, efficiency, and stability in HTTP-
based adaptive video streaming with FESTIVE. In Proc. of CoNEXT
’12, pages 97–108, 2012.

[11] T. Kupka et al. Performance of On-Off Traffic Stemming From
Live Adaptive Segmented HTTP Video Streaming. In Proc. of IEEE
Conference on Local Computer Networks, October 2012.

[12] X. Liu et al. A case for a coordinated internet video control plane. In
Proc. of ACM SIGCOMM 2012, pages 359–370, 2012.

[13] R. Sanfelice et al. A toolbox for simulation of hybrid systems
in Matlab/Simulink: hybrid equations (HyEQ) toolbox. In Proc. of
Hybrid Systems: Computation and Control ’13, pages 101–106, 2013.

[14] G. Tian and Y. Liu. Towards agile and smooth video adaptation in
dynamic http streaming. In Proc. of CoNEXT 2012, pages 109–120,
New York, NY, USA, 2012.


