
ERUDITE: a Deep Neural Network for Optimal Tuning of
Adaptive Video Streaming Controllers

Luca De Cicco
luca.decicco@poliba.it
Politecnico di Bari

Bari, Italy

Giuseppe Cilli
g.cilli2@studenti.poliba.it

Politecnico di Bari
Bari, Italy

Saverio Mascolo
mascolo@poliba.it
Politecnico di Bari

Bari, Italy

ABSTRACT
Adaptive video streaming systems are expected to provide the best
user experience to improve service engagement. To this purpose,
the video player implements a controller to dynamically choose
the most suitable video representation to be downloaded. It is well-
known that finding one tuning of the controller’s parameters which
performs satisfactorily in a wide range of scenarios is very chal-
lenging. This paper studies the problem of providing users with
(near) optimal Quality of Experience (QoE) for Dynamic Adaptive
Streaming over HTTP (DASH) systems. We present ERUDITE, a
closed-loop system to optimally tune – at run-time – the adaptive
streaming controller’s parameters to adapt to changing scenario’s
parameters. The proposed system is based on a Deep Neural Net-
work (DNN) which continuously provides the streaming controller
with estimates of optimal parameters based on measured metrics
such as bandwidth samples and overall obtained QoE. The DNN is
trained using a dataset that we have built by finding, for thousands
of scenarios, the optimal adaptive streaming controller’s param-
eters using a Bayesian optimization algorithm. Results, gathered
considering a large number of diverse scenarios, show that ERU-
DITE is able to provide near optimal performances by reducing
impairments due to rebuffering and video level switching.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Comput-
ing methodologies → Control methods; • Computer systems
organization→ Neural networks.

KEYWORDS
Adaptive Video Streaming, Gaussian Optimization, Deep Neural
Networks, Quality of Experience

ACM Reference Format:
Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo. 2019. ERUDITE: a
Deep Neural Network for Optimal Tuning of Adaptive Video Streaming
Controllers. In 10th ACM Multimedia Systems Conference (MMSys ’19), June
18–21, 2019, Amherst, MA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3304109.3306216

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’19, June 18–21, 2019, Amherst, MA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6297-9/19/06. . . $15.00
https://doi.org/10.1145/3304109.3306216

1 INTRODUCTION
Video streaming is the primary source of Internet traffic globally
and platforms such as YouTube, Netflix, and Facebook stream video
contents to an ever-increasing audience worldwide. In order to
ensure smooth reproduction of the video, streaming services must
implement adaptivity to cope with the time-varying nature of the
end-to-end available bandwidth. To this purpose, such systems
employ adaptive video streaming controllers to dynamically select
the video representation, or level, to download from a set of available
bitrates L ={l1, l2, . . . , lL} with the ultimate goal of providing the
best possible Quality of Experience (QoE) to the user. It is now
well-established that the QoE is related to the following metrics,
listed in decreased order of importance [3]: i) the rebuffering ratio
and frequency, which should be kept as small as possible; ii) the
average video bitrate, which should be as high as possible to improve
visual quality; iii) the video level switching frequency and amplitude,
which should be contained to provide a smooth user experience.

In this paper, we take an original approach which sits in be-
tween model-based and model-free methodologies. In particular,
we propose ERUDITE: a dEep neuRal network for optimal tUning of
aDaptive vIdeo sTreaming controllErs. ERUDITE is built around a
controller whose parameters are dynamically tuned using a Deep
Neural Network (DNN) to adapt to different video contents and
bandwidth traces. The idea is to employ a controller whose theoret-
ical properties have been analyzed and leave the optimal tuning of
its parameters to a DNN which suggests the most appropriate set
of controller’s parameters to be set. The proposed design allows to
separate the time-scales of the decisions of the closed-loop system:
i) a faster inner loop – managed independently by the adaptive
video streaming controller – reacts to sudden and unpredictable
changes in scenario’s parameters (i.e., the bandwidth); ii) a slower
outer loop – governed by the DNN – acts as a supervisor and dy-
namically tunes the controller to adapt to long-term changes in
scenario’s parameters and achieve the best possible QoE.

ERUDITE differs from the approach proposed in [27] since it does
not take decisions by directly considering bandwidth predictions,
rather it reactively changes the controller’s parameters when per-
formance drops are measured. ERUDITE also differs significantly
from Pensive [21], in that we do not invoke the DNN to select
the video level at each chunk download. Instead, we leverage the
DNN to find the best tuning to adapt to time-varying scenario’s
parameters.

The proposed methodology has been tested on a wide set of
scenarios by considering a rich set of bandwidth traces and a large
and diverse video catalog characterized by videos having different
video chunk durations and video levels. Results show that ERU-
DITE is able to provide near optimal QoE by continuously refining

https://doi.org/10.1145/3304109.3306216
https://doi.org/10.1145/3304109.3306216
https://doi.org/10.1145/3304109.3306216

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo

the set of controller’s parameters in response to varying scenario
conditions.

The rest of the paper is organized as follows: Section 2 reviews
the existing control strategies for adaptive video streaming sys-
tems; Section 3 gives an overview of the proposed system; Section 4
describes the procedure employed to obtain the optimal controller
parameters; Section 5 presents the scenario dataset employed to
train ERUDITE’s DNN; Section 6 presents the proposed DNNs archi-
tectures along with the procedure employed for training; Section 7
presents the results obtained; Section 8 discusses how to integrate
ERUDITE into running streaming services and highlights future
research directions, finally, Section 9 concludes the paper.

2 BACKGROUND
Several methodologies have been explored for designing adap-
tive video streaming controllers. Classical approaches base their
decisions on the estimated available bandwidth (rate-based ap-
proaches) [16], on the buffer level (buffer-based) [14, 23], or on
the combination of the two strategies [12, 17]. These algorithms
do not directly optimize a particular QoE functional based on the
metrics presented above, but rather strive to improve such metrics
individually. Recently, a new class of algorithms has been devel-
oped taking decisions based on the optimization of QoE-related
functionals. From the methodological point of view, control theo-
retical approaches, such as Model Predictive Control (MPC) [27],
have been proven to be a viable solution to improve the QoE. The
model-based approach proposed in [27] decides the video level to
download based on a dynamical model of the system and on the
available bandwidth predictions over a given time horizon. With
this information, an optimization problem is solved at run-time at
each decision step, i.e. every time a segment is downloaded. Al-
though each of the aforementioned approaches provides a different
and unique solution to ultimately improve the user’s experience,
the performance of all of them strongly depends on the setting
of their parameters. For instance, in FESTIVE [16], the parameter
p helps to tolerate the buffer fluctuation caused by variability in
chunk sizes while the trade-off factor α influences the efficiency
and stability of the controller. Moreover, similarly to MPC, it is
necessary to set the width of the prediction horizon, i.e. the number
of bandwidth samples that should be used to perform bandwidth
estimation and, in this regards, in [21] the authors show that when
throughput predictions are incorrect, MPC’s performance can de-
crease significantly. Additionally, BOLA [23] requires to set the
parameters V to manage the trade-off between the buffer size and
the optimal utility and γ as to properly weight utility and smooth-
ness. Finally, PANDA [19] has a total of six parameters, among
which the probing convergence rate k , the smoothing convergence
rate α , and the safety margin ε are those that affect instability the
most.

PENSIEVE [21] takes a drastically different approach and designs
a model-free reinforcement learning algorithm to dynamically se-
lect the video level bitrate. In particular, based onmeasured features,
such as the estimated bandwidth samples and the video-related fea-
tures including future video segment sizes and the current state of
the buffer, the learning algorithm drives a neural network with the

0.00 0.02 0.04
p1

0.000

0.001

0.002

0.003

0.004

0.005

p 2

0.074

0.
21
0

0.347

0.
48
4

0.621
0.758

0
.8
9
4

(a) Scenario A

0.00 0.02 0.04
p1

0.000

0.001

0.002

0.003

0.004

0.005

p 2

-0.200

-0.200

-0.077

-0.077

0.046

0.
04
6

0.169

0.
16

9

0.291

0.4
14

0.53
7

0.660

(b) Scenario B

Figure 1: QoE contour lines with respect to two of the four
controller’s parameters computed for two different scenar-
ios. The other two parameters, i.e., p3 and p4, are set to the
same value in both the scenarios. The star indicates the op-
timal parameters for Scenario A.

ultimate goal of maximizing the reward, namely the QoE measured
a-posteriori.

Recently, a novel technique for auto-tuning ABR controller has
been presented. Similarly to ERUDITE, Oboe [2] dynamically adapts
the parameters allowing the controller to perform better across a
wide range of network conditions. Compared to the system pro-
posed in this paper, there exist noticeable differences we would like
to point out. Firstly, Oboe clusters multiple bandwidth dynamics
into network states that differ only by mean and variance. Next, for
each of such clusters, it pre-computes the set of parameters max-
imizing the QoE. During the online stage, Oboe detects which of
these states best approximate the experienced bandwidth evolution
and updates the controller’s parameters accordingly. In contrast,
ERUDITE leverages bandwidth dynamics and video features and,
therefore, it is able to capture subtle differences which might not
be evident by only looking at mean and variance. Moreover, Oboe
schedules a parameters update each time it detects a change in the
network state, ignoring the buffer evolution. Instead, ERUDITE
continuously monitors the system performance in order to provide
updates only when the underlying ABR controller fails.

Finally, an interesting and different approach based on game
theory is proposed in [4, 5]. Authors cast decisions to be taken
by the adaptive streaming controller to a bargaining process and
consensus problem. The consensus point is reached through optimal
decisions considering several network conditions and QoE metrics.
An extensive experimental evaluation shows that the proposed
algorithm is able to obtain promising results in terms of QoE in a
large set of scenarios.

3 SYSTEM OVERVIEW
In this section, we propose a methodology to provide (near) optimal
QoE for adaptive video streaming delivery systems. Indeed, the
setting of the controller’s parameters defines the way the system
dynamically reacts to time-varying scenario features. Notice that

ERUDITE: a DNN for Optimal Tuning of AVS Controllers MMSys ’19, June 18–21, 2019, Amherst, MA, USA

classical adaptive streaming controllers typically keep these val-
ues constant during the entire streaming session. It follows that
it is not possible to find a unique set of controller’s parameters
performing well in a wide number of scenarios. To give a concrete
example, consider Figure 1 that shows the contour lines of the func-
tions mapping the parameters’ values to the obtained QoE for two
different scenarios. These maps have been obtained by using the
optimization process that will be described in details in Section 4
with respect to a controller with four parameters. The figure clearly
shows that the optimal set of parameters obtained for the scenarioA
(marked with a star in Figure 1a), provides very poor performances
if applied to the scenario B (Figure 1b). Moreover, the mapping for
scenario A has low variance, meaning that parameters’ values set
in the neighborhood of the optimal lead to a small performance
drop. On the other hand, scenario B is clearly more challenging
and small perturbations in the optimal parameters lead to severe
performance degradation.

In particular, we propose a system to optimally tune – in the
sense that will be defined below – the adaptive streaming con-
troller’s parameters to adapt to varying scenario’s parameters. In
this paper, we employ the term scenario to refer to parameters influ-
encing system performances which fall outside the design parameter
space (the controller’s parameters). In particular, we consider the
features of the user selected video clip and the available bandwidth
time-evolution as the key scenario parameters. In this paper, we do
not consider other parameters such as the user device resolution
and context features.

Figure 2: ERUDITE architecture. A neural network acts as
a supervisor and dynamically tunes the parameters of the
AVSS’ controller to some values ã∗ to improve the QoE.

Figure 2 shows the architecture of the proposed system. Firstly,
the parameters of the Adaptive Video Streaming System (AVSS) con-
troller are initialized to some default values that are known to ensure
the stability of the system. Then, the streaming session starts and
the client continuously fetches video segments (or chunks) from the
server at a video level li ∈ L selected by the AVSS control algorithm.
The download of new chunks proceeds until the playout buffer is
full enough and the player can start to drain it mitigating the risk
of incurring in rebuffering events. At this point, the player begins
to render the downloaded frames and, simultaneously, evaluate the
AVSS performances based on measured objective QoE-related met-
rics. A performance drop buffer measures the achieved performance
in a time window of durationW and cumulatively stores the error
committed with respect to the expected highest performance for the

Figure 3: Optimal computation procedure employed to
build the ground truth dataset.

experienced scenario. A Trigger module monitors the cumulative
error and, if necessary, activates the Neural Network (NN) to update
the controller’s parameters to some values ã∗ which approximate
the optimal parameters.

Deciding when to activate the NN is not trivial. Obviously, the
NN has to be activated only after the reception of new bandwidth
measurements to provide it with different features to work on.
However, we argue that it is not advisable to trigger the NN at
each received bandwidth sample for two main reasons. First, the
dynamics of the system takes some time to settle and, consequently,
it is not appropriate to update the set of parameters before the
system extinguishes its transient; this implies that the time inter-
val between two consecutive updates must be larger than a fixed
threshold, i.e., a minimum number of bandwidth samples should be
collected before enabling an update. Second, too frequent updates
might cause the system to overfit to bandwidth evolution.

Additionally, the selection of the NN input features has to be
carried out carefully. To make an example, bandwidth samples are
clearly important features having a remarkable impact on perfor-
mances. However, the number of samples to feed the NN with
is a non-trivial hyperparameter. Considering a small number of
samples reduces the number of features and thus accelerates the
forward propagation process. However, taking (too) few samples
would make the system overfit to the bandwidth noise as fewer
bandwidth samples would be evaluated to predict which set of
parameters might improve the performances in the near future.
Similarly, too many samples would fail in coping with scenarios
in which sudden changes in the available bandwidth occur since
a larger number of past samples would shadow recent bandwidth
evolution.

Next, the training process of the NN requires to determine for
each training sample, i.e., the scenario, the corresponding ground
truth. In our case, we consider as the ground truth the optimal
controller’s parameters for a given scenario. As already shown in
Figure 1, identifying the mapping between the controller’s param-
eters and the corresponding QoE is generally a challenging task
regardless of the employed AVSS controller. Therefore, we strive to
obtain an approximation of such a mapping by using an optimizer.
Then, we leverage this approximation to find the optimal parame-
ters without performing a complete search in the parameters’ space
which is practically unfeasible in most cases. The process is sum-
marized in Figure 3. In the optimization phase, the optimizer probes
system’s performance J on multiple sets of controller’s parameters
ai . At each iteration, the optimizer refines its understanding of the
underlying mapping ai 7→ J (ai) by evaluating the system on a set

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo

around which it has not enough information yet. At the end of this
phase, a sequence of n sets of controller’s parameters ai is returned
together with the corresponding performance J (ai).

As the neural network expects a unique ground truth for each
training sample, further processing is necessary to identify which
one, among the n sets of parameters, achieves the best perfor-
mance. We argue that this goal cannot simply be reached by naively
choosing the parameter set with the highest reward (i.e., a∗ =
argmax J (ai)). In fact, with such a choice, performances are likely
to be very sensitive to small perturbations in the scenario param-
eters. Instead, in the optimum selection phase, we extract n′ < n
candidates and, for each of them, we compute a robustness index ri
estimating the performance sensitivity to perturbations of the sce-
nario’s parameters. Then, we use as the ground truth the candidate
a∗ with the best compromise between QoE and robustness.

Finally, we split our generated ground truth dataset into train,
test, and validation sets. Each of them is, furthermore, split into
five subsets, each one holding scenarios where video traces have
segments with the same duration. We consider and compare the
performance obtainable with two NN architectures, a Multilayer
Perceptron (MLP) and a Convolutional Neural Network (CNN). For
each of these architectures, we train five neural networks, one for
each considered segment duration (ranging from 2 s up to 10 s).
We have decided to split the dataset in such a way since segment
duration is constant throughout the duration of a session. Moreover,
the segment duration is known to have a remarkable impact on
performances.

4 BUILDING THE GROUND TRUTH
In this section, we discuss the methodology we propose to compute
off-line the ground truths for each considered scenario. First, we
briefly introduce the adaptive streaming controller (Section 4.1).
We next present the adopted optimizer (Section 4.2) and the metrics
that contribute to the definition of the optimal (Section 4.3). Finally,
we describe how the optimal sets are selected to build the ground
truth dataset (Section 4.4).

4.1 The AVSS controller
In this work, we have decided to use the hybrid buffer-based/rate-
based adaptive streaming controller ELASTIC [12]. Notice that this
choice does not affect the generality of the methodology proposed
in this paper. In fact, as previouslymentioned in Section 2, ERUDITE
can be used to optimally tune any adaptive streaming controller
compliant to the DASH standard.

ELASTIC control law is defined as follows:

l(tk) =

l(tk−1) qL ≤ q(tk) ≤ qH (1)
r b(tk)

1 − kpe(tk) − kI eI (tk)

z
otherwise (2)

where b(tk) is the estimated available bandwidth at the end of the
download of the k-th segment and J·K : x 7→ li is a quantizer
function mapping x to the closest video level li ∈ L = {l1, . . . , lL}

(li < li+1) which is lower than x . The error e(tk) is given by

e(tk) =

qL − q(tk) q(tk) < qL,

qH − q(tk) q(tk) > qH ,

0 otherwise.

Notice that eI (tk) is the cumulative sum of the past values of the
error e(tk) and defined as

eI (tk) =

{
0 qL ≤ q(tk) ≤ qH ,∑
k (tk − tk−1)e(tk) otherwise.

In a nutshell, the algorithm works as follows: as long as the playout
buffer level stays inside the hysteresis (qL ≤ q(tk) ≤ qH), the video
level is kept constant (eq. (1)) to contain the amount of video level
switches which is known to have an adverse effect on the QoE.
When q(t) gets outside the hysteresis, the controller sets the video
level according to (2). Notice that (2) aims at steering q(t) towards
the hysteresis when the playout buffer length is outside of it. Thus,
at “steady state”, if the available bandwidth stays roughly constant,
it turns out that the queue length is confined in the hysteresis and
the video level switches between the two adjacent levels which are
closer to the available bandwidth [10]. An important consequence
of this property is that ELASTIC ensures that the average video
level bitrate matches the average available bandwidth [12].

The resulting system dynamics depends on the settings of four
non-negative parameters: the proportional and integral constants,
kp and kI respectively, and the two hysteresis thresholds qL and qH .
Intuitively, the higher qL the less the chances to incur in rebuffering
when abrupt bandwidth drops occur. The distance between the two
thresholds, i.e., the hysteresis width, affects the responsiveness of
the controller to bandwidth variations. Setting a large hysteresis
width δ = qH − qL delays video level changes and contains the
number of video switches. The setting of kp and kI affects the
controller dynamics when the queue is outside the hysteresis (2).
The larger kp and kI the faster the response to changes of the
playout buffer length.

In order to ensure system stability, all the parameters defined
above must be positive, i.e. the feasible parameter’s domain set is
the positive orthant of R4. However, regarding the low hysteresis
threshold qL we argue that this should be no smaller than one
segment duration in order to ensure a minimum of one segment is
stored in the buffer, i.e., qL ≥ τ . Similarly, the hysteresis should not
be smaller than one segment duration since lower values would
rule out the effect of the hysteresis. It follows that the domain set
where the optimization procedure shall find the optimal values of
parameters is defined as:

D B {(kp ,kI ,qL, δ) ∈ R
4 |kp ≥ 0,kI ≥ 0,qL ≥ τ , δ ≥ τ }. (3)

with τ being the segment’s duration of the scenario experienced.

4.2 The optimization phase
The optimizer we have used is the SAFEOPT implementation of
the Bayesian Optimization Algorithm [6, 24], in its version named
SWARM SAFEOPT [13] which further speeds up the entire opti-
mization process while keeping RAM usage low. SAFEOPT requires
the definition of a reward functional measuring the performance

ERUDITE: a DNN for Optimal Tuning of AVS Controllers MMSys ’19, June 18–21, 2019, Amherst, MA, USA

obtained when tuning the controller with the chosen set of param-
eters. Additionally, the algorithm allows defining safety conditions
which have to hold to consider a set of parameters safe to be used.
Defining safety conditions restricts the search to those regions of
the parameters’ space that are considered safe.

In our case, the reward is defined as the normalizedQoE (QoEnorm).
We consider a set of parameters to be safe if the fraction of the
streaming session during which the buffer length has been higher
than the low threshold qL is above 80%. This safety condition al-
lows excluding cases exhibiting a high reward yet having very small
buffer lengths for a large fraction of the streaming session.

Given a scenario, at the i-th iteration of the optimization process,
SAFEOPT returns a set of safe parametersai = [kp ,kI ,qL, δ]

⊤ ∈ D,
where D is the set defined by (3). Then, the streaming session is
run with respect to the current scenario and the set of parameters
ai . Finally, the evaluatedQoEnorm is fed back to SAFEOPT which is
used to update a Gaussian Process (GP), meant to be an estimation
of the underlying relation between parameters and performance. At
the end of this process, SAFEOPT produces a new set of parameters
ai+1 to be used in the next iteration. During the optimization phase,
we compute two metrics for each ai : i) a measure of how the system
performed,QoEnorm (see Section 4.3), and ii) a measure quantifying
the sensitivity of the obtained QoE performance with respect to
variations of the scenario, i.e., the estimated robustness of ai (see
Section 4.4).

4.3 QoE definition
The QoE is estimated by using the functional defined in [8]

QoE(Q, F , S) = 4.85Q − 4.95F − 1.557S + 0.5, (4)

where: i) Q is the average downloaded video bitrate normalized
with respect to the video level lL having the highest bitrate; ii) F
is the penalty due to rebuffering episodes defined as in [8]; iii) S is
the video level switching penalty. In particular, Q is computed as
follows:

Q =
E[l(tk)]

lL
.

F is defined as the linear combination of two terms: the first one
depends on the frequency bfreq of rebuffering events during the
entire streaming session; the second one is based on the average
duration btime of such rebuffering events:

F =
7
8
·max

(log(bfreq)
6

+ 1, 0
)
+
1
8
·
min(btime, 15)

15
Finally, the switching cost S is computed as follows:

S =
Nsw

Nchunks
·

1
Nsw

Nsw∑
i=1

∆li
lL − l0

S is thus the product of two terms: the first one is the normalized
number of switches, i.e. the ratio between the number of video level
switches Nsw and the downloaded chunks Nchunks; the second one
is the normalized average bitrate excursion covered at each switch.

While (4) is suitable for evaluating how different sets of pa-
rameters perform with respect to a given scenario, normalization
is needed to compare the performance across different scenarios.
In fact, Q depends on the scenario’s average available bandwidth
E[b(tk)]: a large value of E[b(tk)] is likely to lead to a higher value

of Q . However, it is straightforward to show that it is not possible
for the controller to obtain a Q larger than Qmax = E[b(tk)]/lL
without eventually incurring in rebuffering episodes. Thus, the
maximum achievable QoE for a given scenario can be obtained by
substituting in (4) Q = Qmax, S = 0, and F = 0 (no penalty due to
switching and rebuffering):

QoEmax = 4.85Qmax + 0.5 (5)

Finally, we define the normalized QoE as

QoEnorm =
QoE

QoEmax
. (6)

From now on, we will refer to QoEnorm as QoE for the sake of
notational conciseness.

4.4 The optimum selection phase
The measured QoE alone is not sufficient to properly determine
the ground truth. In fact, the real system will have to deal with a
time-varying scenario, therefore, the sensitivity of the controller’s
parameters towards variations of bandwidth traces and video fea-
tures must be as small as possible. To compute the robustness ri
associated to each parameter set ai , we have adopted the following
approach.

Let us consider the j-th scenario sj for which SAFEOPT has
explored a number of parameters a[j]i , i = 1, 2 . . . ,N . In the fol-
lowing discussion, we drop the apex [j] for notation brevity. Let
QoEi , Qi , Fi , Si be the performance metrics corresponding to the
parameter ai . Then, for each considered metric we construct the
following sets, denoted as metrics sets, to discard points not achiev-
ing sufficiently high performances in any of the aforementioned
metrics: SQoE = {ai | QoEi ≥ P90,QoE }, SQ = {ai | Qi ≥ P90,Q },
SF = {ai | Fi ≤ P10,F }, SS = {ai | Si ≤ P10,S } where Px ,S
denotes the x-percentile computed over the metricM .

Next, we compute the robustness of ai . Strictly speaking, in
order to evaluate how ai performs with respect to variations of
the scenario it has been computed for, K noisy versions of the sce-
nario should be computed, with noise affecting both the bandwidth
trace and the video segments sizes. However, such an approach
is extremely time-consuming since, for each ai , K new streaming
sessions should be run and evaluated. We found that, instead of
keeping ai fixed and perturbing the scenario, comparable results
can be achieved by tackling the dual problem. For each ai we ran-
domly generate 1000 new points ai ,k = N

(
ai ,σ2

i
)
and evaluate

performance on those while keeping the scenario unchanged1. The
advantage of this approach is that we do not need to run any sim-
ulation. Instead, we leverage the Gaussian Process G iteratively
refined by SAFEOPT, to get an estimate of the performance of ai ,k .
The robustness of each set of parameters is then given by:

ri = c
2
i ·MSE

k

(
QoEi ,G (ai ,k)

)
where ci ∈ {0, . . . , 4} is the number of metric sets where ai lives
in, formally defined as

1Since each point is 4-dimensional, generating 1000 new random points means ex-
ploring the parameters’ domain D by taking approximately 5 new values in each
coordinate’s direction.

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo

ci=

�����
{
A ∈

{
SQoE ,SQ ,SF ,SS

} ����ai ∈ A

}�����.
Notice that ci acts as a regularizer preventing points having a high
score in only one or two of these metrics from being chosen as the
ground truth. Finally, we promote to ground truth the point with
the highest QoE among those whose robustness was higher than
that of the 90-percentile:

a∗ = argmaxQoE(a), witha ∈ {ai | ri ≥ P90,r }

We do not follow the naive approach of choosing as optimum a∗ the
set of controller parameters with the highest robustness to exclude
corner cases (that indeed do exist) in which points with very high
robustness result in a poor QoE.

5 SCENARIOS DATASET CONSTRUCTION
In this section, we describe the scenario datasets. We define a sce-
nario as the tuple sj = (Tj , τj ,vj), where Tj is the bandwidth trace,
τj denotes the video segments duration in seconds, and vj is the
considered video. The bandwidth traces are picked from a dataset
that we have built by merging two publicly available datasets. The
first dataset2 contains 3G bandwidth traces collected in Sydney
under vehicular driving conditions [7]. Bandwidth samples have
an average of µ = 1518.35 kbps and a standard deviation equal to
σ = 503.10 kbps. We have also considered the bandwidth traces
made publicly available in [25] which consider six means of trans-
portation: foot, bicycle, car, tram, train, and bus. Average and stan-
dard deviation of this dataset are respectively µ = 3118.2 kbps and
σ = 1464.0 kbps.

Regarding the videos catalog, we downloaded the 23 video clips
released in [22]. For each clip, five versions corresponding to five
different segment durations are provided: 2 s, 4 s, 6 s, 8 s, 10 s. Each
video is available at ten bitrates L = {l1, . . . , l10} ranging from
~ 185 kbps up to ~ 4215.1 kbps. Then, to generate feature diver-
sity, for each of these videos we have generated new videos by
selecting five out of the ten available representations (i.e., Leven =

{l2, l4, l6, l8, l10} and Lodd = {l1, l3, l5, l7, l9}). At the end of this
operation, we have obtained 345 videos using the dataset [22].

Moreover, we have built a dataset by fetching ~ 200 YouTube
4K videos with the same segment durations and 8 available lev-
els (minimum video levels ~ 317.75 kbps, maximum video bitrates
~ 17322 kbps). This way, we ended up with a very diverse video
catalog of roughly 1000 videos having different segment sizes and
video level sets.

We have generated ~ 4000 scenarios by randomly picking videos
and traces from the corresponding datasets. Finally, for each sce-
nario sj we have computed the optimal set of controller’s param-
eters a[j]∗ by using the methodology presented in Section 4. Thus,
a sample of our ground truth dataset is given by the tuple x j =
(sj ,a

[j]
∗). Finally, we split the ground truth dataset into training, test,

and validation sets holding respectively ~ 2600, ~ 700, and ~ 700
samples.

2https://github.com/aubokani/Bandwidth-Dataset.git

Figure 4: Architecture templates for MLP and CNN neural
networks.

6 NEURAL NETWORKS TRAINING
In this section, we describe the dataset employed to train the neu-
ral networks. We have divided the input features into two cate-
gories: bandwidth samples features and video features. Concerning
bandwidth features, we have considered the last 80 consecutive
bandwidth estimates provided by the AVSS as inputs to the NN
(see Figure 2). Regarding the video, we have considered the follow-
ing features: (f1) the nominal bitrate of the highest level lL ; (f2)
the nominal bitrate of the lowest level l1; (f3) the average of the
relative distances (in bitrate) between nominal level bitrates, i.e.
f3 =

1
L ·

∑L−1
k=1(lk − lk−1)/lk ; (f4) the minimum, (f5) the average

and (f6) the maximum of the coefficient of variation cv ,k = σk/µk
per level bitrate, where µk and σk are the mean and variance of the
video segments bitrate for the k-th video level, respectively. There-
fore, the total number of features is 86. Finally, we implemented
dataset normalization. Input features were normalized by Z-score.
Normalization was done independently for the level-dependent
features and as a whole for the bandwidth samples as they rep-
resent different outcomes of the same statistical process. Ground
truths were normalized with the min-max normalization. We have
employed TensorFlow [1] to implement and train the neural net-
works. The following NN architectures have been considered and
compared in our work.

Multilayer Perceptron (MLP). For each layer, the Rectified Linear
Unit (ReLu) activation function was used with the exception of
the last layer where a linear activation was preferred to assess the
regression task. We have also applied weight regularization using
L2-norm and a regularization strength equal to 0.001.

Convolutional Neural Network (CNN). We havemodified the base-
line neural network presented in [26] to fit our problem. Firstly, we
have removed the Batch Normalization layers [15] since we have

https://github.com/aubokani/Bandwidth-Dataset.git

ERUDITE: a DNN for Optimal Tuning of AVS Controllers MMSys ’19, June 18–21, 2019, Amherst, MA, USA

ãA a∗ ãB 0.4 0.6 0.8 1.0
0.4

0.6

0.8 .75

.59

.74

Q
oE

Figure 5: Example of a one-dimensional reward mapping.

found they did not help generalization in our specific case. This
way, each convolutional block is a 1-D convolutional filter followed
by the ReLu activation function as to introduce non-linearity. Sec-
ondly, the features extracted from the global average pool layer [20]
were concatenated with the six level-dependent features (Figure 4).
The remaining part of the network’s architecture is a simple Multi
Layer Perceptron.

On both network’s architectures, we adopted the Adaptive Mo-
ment Estimation (ADAM) [18] as optimizer with a learning rate of
10−5 in the MLPs and 10−4 in the CNNs, β1 = 0.99 and β2 = 0.999,
and – at each iteration – we shuffled the training set to improve
generalization. We tested 300 network’s hyperparameters config-
urations, 50 for the MLP and 250 for the CNN, for a total of 60
NN architectures for each of the five segment durations we have
considered. Hyperparameters include the number of layers, the
number of nodes per layers, the number of filters and filter sizes
in the CNN, and the percentage of training samples given as batch
input during training. Moreover, for some configurations, we have
applied the Savitzky–Golay filter to bandwidth traces as to remove
the intrinsic noise. To avoid overfitting, every 100 iterations of
the training process, we estimated the generalization performance
measuring the overall loss achieved on the test set.

6.1 Loss function
In the following we propose the Weighted Mean Squared Error
(WMSE) that we employ to define the loss function. For the sake
of illustration, let us consider the scalar case in which a function
QoE : R→ R maps the unique controller parameter a to the corre-
sponding system performanceQoE(a) as shown in Figure 5. Suppose
that two different predictions, ãA and ãB , have been made with re-
spect to the optimal value a∗. The prediction error exhibited by the
NN can be expressed by the distance between the prediction and the
optimal, i.e. e(ã,a∗) = |ã − a∗ |. However, although the prediction
errors are identical, i.e. e(ãA,a∗) = e(ãB ,a∗), the corresponding
performances QoE(ãA) and QoE(ãB) are extremely different. Con-
sequently, in this example, the performance drop would be much
higher if the NN would have predicted ãA instead of ãB since the
slope of the function in the left neighborhood of a∗ is much higher
than in the right counterpart. It follows that employing a simple
MSE to evaluate the distance between the optimal sets and the pre-
dicted ones is not suitable to evaluate network performance. Thus,
in order to get a better measure of the NN performance, information
on the underlying reward function must be encoded so that each
committed error is weighted proportionally to the estimated loss

of system performance. To this purpose, we use the estimate of
the reward function returned by SAFEOPT which has the form of
a Gaussian Process G . Let a∗ be an optimal set of the controller
parameters and ai its i-th parameter. Suppose that a∗ is normalized,
i.e. ai ∈ [0, 1]. We approximate the left and right partial derivatives
of QoE at a∗ with respect to ai as follows:

wL
i =

G (a1, . . . ,ai − h, . . .) − G (a∗)

h
,

wR
i =

G (a1, . . . ,ai + h, . . .) − G (a∗)

h
.

where h = 5 · 10−3. Thus, for each component ai , we obtain one
left weight wL

i and one right weight wR
i which quantify the loss

of performance with respect to predictions ãi having values lower
or higher than ai , respectively. With this setting, the loss function
takes the following shape:

L (ã∗,a∗) =

√⌊a∗ − ã∗⌋ ◦wL
2 + ⌊ã∗ − a∗⌋ ◦wR

2
where ⌊x⌋ = [max(0, xi)]i=1, ...,4, ∥·∥ denotes the Euclidean norm,
and x ◦y denotes the element-wise product between two vectors
of the same length, namely the Hadamard product.

7 RESULTS
This section investigates the performance achieved by the proposed
approach. We divide this investigation into two parts. We start in
Section 7.1 by evaluating the open-loop case to quantify how the
proposed neural networks, trained with the procedure presented in
Section 6, approximate optimal performances. Next, in Section 7.2
we discuss the results obtained by ERUDITE, i.e., when we close
the loop with the NN which continuously provides estimates of the
optimal parameters to the ELASTIC controller (see Figure 2).

7.1 The open-loop case
We compare the performance of the 300 NN architectures described
in Section 6 with those achieved with two baseline approaches.
The first one, named random, randomly picks a set of parameters
from those contained in the train set of the corresponding segment
duration; the second one, named centroid, assigns a set of parameters
aτc for each segment duration τ . Each component of aτc , i.e., aτc ,i
with i = {1, . . . , 4}, is the median computed over the i-th parameter
in the optimal parameters’ sets corresponding to that segment
duration. We also assessed the optimal performances by evaluating,
for each scenario sj , the corresponding QoE (see eq. (6)) when
setting ELASTIC with the optimal parameters a[j]∗ for that scenario.

For each strategy and each segment duration τ ∈ {2, 4, 6, 8, 10} s,
we ran ~120 simulations using the scenarios of the validation set.
The simulations have been carried out by implementing the ELAS-
TIC controller (see Section 4.1) using the hybrid modeling frame-
work presented in [9] that we have shown to provide very precise
results compared to experiments with considerably shorter execu-
tion times.

Table 1 summarizes the hyperparameters’ values which we have
found to achieve the best performance. Unsurprisingly, we found
that MLP models benefit from the use of the Savitzky–Golay filter,

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo

Table 1: Best neural networks architectures.

Arch. Hyper-param.
Segment duration τ

2 s 4 s 6 s 8 s 10 s

MLP Layers [48, 24, 16, 4] [128, 64, 32, 16, 4] [96, 48, 24, 8, 4] [96, 48, 24, 8, 4] [64, 32, 16, 8, 4]

CNN
Filters size {8, 5, 3} {12, 7, 5} {12, 7, 5} {8, 5, 3} {12, 7, 5}
Num. of filters [32, 64, 32] [32, 64, 32] [32, 64, 32] [32, 64, 32] [32, 64, 32]
Layers [64, 32, 16, 8, 4] [96, 48, 24, 4] [48, 24, 16, 4] [48, 24, 16, 4] [128, 64, 32, 16]

2 4 6 8 10
Segment duration τ [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Q
oE

Optimals CNN MLP Centroid Random

Figure 6: Average QoE as function of the segment duration

while most of CNN’s best architectures perform a better bandwidth
filtering through the 1-D convolutional layers.

Figure 6 shows an overview of the obtained results in terms of
the average QoE achieved by each strategy as a function of the
considered segment durations. Confidence intervals are equal to
one standard deviation. Notice that smaller confidence intervals
indicate that the algorithm performances are more predictable and
insensitive to different scenarios. Thus, if two algorithms would
have comparable averages, the one with a lower confidence interval
should be preferred. The figure illustrates that the performances
achieved with the NNs outperform those obtained with random and
centroid strategies. In particular, CNNs show the highest average
QoEs for each segment duration together with the lowest standard
deviations, which means that convolutional architectures are capa-
ble of guaranteeing sufficiently high performance when they fail
to predict the correct set of parameters, more than centroid and
random strategies. We have found that such a behavior is mostly
due to the WMSE which pushes predictions away from regions
where low performances are more likely to occur. Moreover, the
figure clearly shows that – as expected – the average QoE decreases
with increased segment durations. In fact, the lower the segment
duration, the smaller the segment’s size and, consequently, the
more frequently the controller selects the video level for the next
chunk, thus reacting to performance drops as soon as they occur.
This means that an incorrect video bitrate selection due to an inef-
ficient parameters’ setting, can be managed better when segment
duration is small, which makes such scenarios easier to deal with.
We found that both random and centroid’s performances drop from

approximately 0.85 to 0.70 as we move from segment durations of
4 s to 10 s. A similar behavior is experienced by MLPs and CNNs.
However, the performance drop is less remarkable for NNs, so that,
even for the toughest scenarios (i.e. those having segment duration
τ = 10 s), the average QoE does not drop below ~ 0.8.

Figure 7 shows the cumulative distribution functions (CDF) of
the relative error on the average QoEs achieved from the considered
strategies with respect to the optimal ones. Furthermore, we show
the CDFs of the performance-related metrics, i.e., the rebuffering
cost F and the switching cost S . Let us consider first Figure 7a and
Figure 7d. The CNN achieves the lowest error on the average QoE in
more than 10% of the scenarios when τ = 4 s and in more than 30%
in the case of τ = 10 s so that CNN is able to provide satisfactory
results even in challenging scenarios. Moreover, CNN rebuffering
costs are comparable to those provided using optimal tuning in
both cases (Figure 7b and Figure 7e), while centroid and random
strategies perform poorly with videos having segment durations
of 10 s reaching a cost of ~ 0.1 in 15% of the scenarios. MLP sits in
between centroid and CNN resulting in rebuffering costs of ~ 0.1
in around 10% of the scenarios. Finally, CNN achieves the lowest
switching penalty in more than 20% of the scenarios with segment
durations of 4 s (Figure 7c) while, in the case τ = 10 s, it outperforms
the other strategies in virtually the entire validation set (Figure 7f).

To summarize, this investigation has shown that among the
considered strategies, the CNN is the one providing the best results
in approximating the optimal performances.

7.2 The closed-loop case
7.2.1 Overall performances. We now investigate the performance
of the closed-loop system shown in Figure 2. For this evaluation,
we generated 40 new scenarios by uniformly sampling traces and
videos from the datasets described in Section. 5. Each scenario
has now a longer duration of 4000 s in order to assess the NN
performances in the long term. Due to lack of space, we only report
the results obtained on the evaluations carried out for segment
durations equal to 4 s and 10 s in order to explore the performance
bounds relatively to both fairly simple scenarios (τ = 4 s) and more
complex ones (τ = 10 s). The Trigger module shown in Figure 2
evaluates the overall system performances at regular time intervals
of lengthW , which we call window width. We have considered
three window widths: 25 s, 50 s, and 100 s. At each evaluation, the
performance error computed as 1 − QoE is cumulatively stored

ERUDITE: a DNN for Optimal Tuning of AVS Controllers MMSys ’19, June 18–21, 2019, Amherst, MA, USA

0.0 0.5 1.0 1.5
QoE (Rel. err.)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

CNN

MLP

Centroid

Random

(a) QoE relative error: τ = 4 s

0.0 0.1 0.2 0.3 0.4
F

0.6

0.7

0.8

0.9

1.0

C
D
F

Optimals

CNN

MLP

Centroid

Random

(b) Rebuffering penalty: τ =4 s

0.0 0.1 0.2 0.3 0.4
S

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D
F

Optimals

CNN

MLP

Centroid

Random

(c) Switching penalty: τ =4 s

0.0 0.5 1.0 1.5
QoE (Rel. err.)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F CNN

MLP

Centroid

Random

(d) QoE relative error: τ =10 s

0.0 0.1 0.2 0.3 0.4
F

0.6

0.7

0.8

0.9

1.0
C
D
F

Optimals

CNN

MLP

Centroid

Random

(e) Rebuffering penalty: τ =10 s

0.0 0.1 0.2 0.3 0.4
S

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D
F

Optimals

CNN

MLP

Centroid

Random

(f) Switching penalty: τ =10 s

Figure 7: Cumulative distribution functions of the QoE-related metrics in the case of videos with segment durations τ equal
to 4 s or 10 s

25 50 100
Window width [s]

0.2

0.4

0.6

0.8
0.9
1.0

1.2

Q
oE

CNN MLP Centroid

(a) QoE, τ = 4 s

25 50 100
Window width [s]

0.0

0.1

0.2

0.3

F

CNN MLP Centroid

(b) F , τ = 4 s

25 50 100
Window width [s]

0.00

0.02

0.04

0.06

0.08

S

CNN MLP Centroid

(c) S , τ = 4 s

25 50 100
Window width [s]

0.2

0.4

0.6

0.8
0.9
1.0

1.2

Q
oE

CNN MLP Centroid

(d) QoE, τ = 10 s

25 50 100
Window width [s]

0.0

0.1

0.2

0.3

F

CNN MLP Centroid

(e) F , τ = 10 s

25 50 100
Window width [s]

0.00

0.02

0.04

0.06

0.08

S

CNN MLP Centroid

(f) S , τ = 10 s

Figure 8: Closed-loop performance function of the NN activation window widthW and segment duration τ

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo

in a performance drop buffer, so that, when this exceeds 0.1, the
Trigger module activates the NN to provide the AVSS with a new
set of parameters. At each evaluation, the performance drop buffer
length is discounted by a discount factor λ = 0.95. This way, old
performance fluctuations are discarded in favor of more recent
feedbacks.

Figure 8 shows the obtained results3 comparing CNN, MLP, and
centroid performances. We have not evaluated the random strategy
since we have already shown that it performs poorly even in the
open-loop case. Let us consider the QoE results shown in Figure 8a
and Figure 8d. In both the figures, the dash-dotted black lines mark
the average performances obtained when setting ELASTIC with
optimal parameters in the open-loop case. The figures show that,
when the CNN is used with a window width equal to 25 s, it clearly
outperforms the other strategies in the case of both small and large
segments. In particular, when τ = 4 s the CNN equates the results
obtained by the optimal strategy in the open-loop case and improves
its performances compared to the open-loop case (see Figure 6).
This indicates that the CNN refines the parameters throughout the
duration of the video session with the beneficial effect of improving
the QoE. The CNN achieves remarkably good performances in
terms of rebuffering, with a negligible measured rebuffering cost F .
In the most challenging case of large segments (τ = 10 s), the CNN
achieves an average QoE of around 0.88, improving the performance
obtained in the open-loop case, and getting very close to the optimal
performance (the black dash-dotted line in Fig 8d).

Differently from the CNN, the best performing setting for the
MLP has been obtained forW =100 s. We argue that in the case
of the MLP when using small window widths overfitting occurs,
whereas in the case of CNN overfitting is prevented by the convo-
lutional filters that are applied to bandwidth features. In particular,
MLP outperforms centroid in the case of large segments, but it
performs slightly worse then centroid in the small segment case.
Generally, MLP performance is affected by the higher rebuffering
(see Figure 8b and Figure 8e) and level switching costs (see Figure 8c
and Figure 8f) measured for both the cases of τ = 4 s and τ = 10 s.

7.2.2 Closed-loop system dynamics. We conclude our investigation
by comparing the dynamics obtained in the case of segment size τ =
10 s with the CNN (windowwidth equal to 25 s) with those achieved
by centroid in the case of a YouTube video. Figure 9 compares the
selected video level and the resulting playout buffer dynamics and
shows the way the CNN dynamically selects the gains kp and kI .
Let us start by analyzing the dynamics associated with the CNN
(Figure 9a and Figure 9d). After a transient, the CNN starts to adapt
the four ELASTIC’s parameters (Figure 9b) and the selected video
levels smoothly adapt to the time-varying available bandwidth as
shown in Figure 9a. Notice that during the 4000 s of the simulation,
only three very short rebuffering episodes occurred (see Figure 9d)
resulting in a negligible rebuffering cost (F = 10−5) and an overall
QoE roughly equal to 1.0. The reason for the remarkably good
performance obtained when using the CNN is the way parameters
are dynamically changed. When the simulation starts, ELASTIC’s
parameters are initializedwith centroid values. Then, at t = 400 s the
CNN is activated (see Figure 9e) and new parameters are computed.
In particular, as shown in Figure 9b, both kp and kI are set to
3Confidence intervals are equal to one standard deviation.

very low values until t ≈ 1200 s. This means that during the time
interval [400, 1200] s the video level is computed only based on the
estimated bandwidth (see eq. (2)). Notice that, due to this setting,
during this time interval the queue gets large. Then, the CNN refines
the setting by increasing only the value of kp . This has an important
consequence: ELASTIC now computes the video level by taking
into account both the estimated bandwidth and the current value of
the playout buffer level q(t) (see eq. (2)). This reflects on the queue
evolution that exhibits smaller oscillations above qH . Compared
to centroid’s setting, the CNN sets at steady-state the gain kp to a
higher value, whereas it turns off the integral action (kI ≈ 0).

On the other hand, by employing fixed parameters, centroid is
not able to adapt satisfactorily to changed scenario’s parameters. In
fact, Figure 9c shows that the video level is changed too aggressively,
overshooting the available bandwidth. Consequently, as shown in
Figure 9f, a large number of rebuffering events occurs (rebuffering
penalty F = 0.14) remarkably affecting performances, resulting in
a measured QoE equal to 0.54.

8 DISCUSSION
This section briefly discusses the way ERUDITE can be integrated
in running streaming services.

Ground truth and (re-)training. The first step, which is exe-
cuted off-line, for the integration of ERUDITE is to build the ground
truth used for training the NN (Section 4). This entails finding op-
timal settings for a large number of scenarios. Scenarios could be
built by either employing open datasets providing bandwidth traces
and video traces or by leveraging, if available, the bandwidth traces
and video clip features of already logged video sessions. Next, the
optimization phase can be carried out by either running experi-
ments in a controlled network environment (i.e., using network
emulators and a real video catalog), or by employing accurate sim-
ulators such as the one used in this paper to speed-up such process.
It is well-known that a large training dataset is preferable to ensure
that the NN generalizes well across a wide range of scenarios. How-
ever, in practice, optimizing over a large number of scenarios might
be too time-consuming, even in a simulated environment. Hence,
we suggest to train ERUDITE on a reasonably sized dataset in the
first place. Then, after deployment, ERUDITE’s performance can
be recorded and stored together with the scenarios experienced by
users for future re-training. This approach allows to both expand
the training set while the system is in production and to tackle
those scenarios for which ERUDITE exhibited poor performance.
Finally, the re-training process becomes necessary when the video
clips features drastically change or when the QoE definition varies
to emphasize different metrics.

Video client implementation. ERUDITE is fully compliant to
DASH and does not require any server-side modification (i.e., stan-
dard HTTP servers can be used). In fact, ERUDITE acts externally
to the adaptive video streaming algorithm placed at the client as it
only updates at run time the controller’s parameters (see Figure 2).
This brings an important advantage: the control algorithm itself
does not require any modification; however, an API function should
be implemented to allow changing the parameters of the controller
when requested. Furthermore, the video client should implement
a module to measure and log all the variables that are needed to

ERUDITE: a DNN for Optimal Tuning of AVS Controllers MMSys ’19, June 18–21, 2019, Amherst, MA, USA

0 1000 2000 3000 4000
Time [s]

0

2500

5000

7500

[K
bp

s]

Avg. bw. Video Level

(a) CNN: l (t)

0 1000 2000 3000 4000
Time [s]

0.0000

0.0025

0.0050

0.0075 kp kI

(b) The values of kp and kI chosen by the CNN

0 1000 2000 3000 4000
Time [s]

0

5000

10000

15000

[K
bp

s]

Avg. bw. Video Level

(c) Centroid: l (t)

0 1000 2000 3000 4000
Time [s]

0

25

50

75

100

[s
]

q(t) qL qH

(d) CNN: queue dynamics

0 1000 2000 3000 4000
Time [s]

0

5

10

15
N
N

ac
ti
va
ti
on
s NN activ

(e) CNN activations

0 1000 2000 3000 4000
Time [s]

0

25

50

75

100

[s
]

q(t) qL qH

(f) Centroid: queue dynamics

Figure 9: Closed-loop dynamics (τ = 10 s). (a), (b), (d), (e): CNN dynamics. (c), (f): Centroid dynamics

compute the QoE metric and the features listed in Section 6 regard-
ing the video clip and the estimated network bandwidth dynamics.
Notice that this module is in practice already implemented by any
well-engineered adaptive video streaming system.

ERUDITE is based on a NN to dynamically update the adaptive
streaming controller’s parameters when activated by the Trigger
module. To this purpose, based on the pre-trained neural network
and the measured features, the video client runs the inference phase
that only requires to execute the forward propagation step. It is
important to stress that, compared to black-box algorithms such as
PENSIEVE which rely on a NN to run the adaptation algorithm at
each segment download, ERUDITE has amuch lower computational
footprint since it activates the NN to compute the new controller’s
parameters only when the Trigger module has sensed a decreased
QoE. To make an example, consider Figure 9e which shows that
ERUDITE activated the NN only 17 times during a video session of
4000 s. Considering a segment duration of 10 s, PENSIEVE would
have activated its NN 400 times. Finally, from the implementation
point of view, several efficient javascript libraries exist to implement
the forward propagation phase required by ERUDITE.

Future research directions. This work opens a number of fu-
ture directions, which we briefly discuss here. First, it would be
interesting to evaluate the performance improvements obtainable
using ERUDITE in conjunction with other control algorithms avail-
able in the literature such as f.i., PANDA [19], BOLA [23], BBA [14].
Moreover, comparing ERUDITEwith other adaptive streaming algo-
rithms based on NNs such as PENSIEVE would also be interesting.

Network-assisted algorithms are known to bring performance
improvements in terms of fairness and obtainable video quality [11].
As such, another orthogonal line of work that in our opinion is

worth pursuing is to investigate to what extent including explicit
feedback provided by network operators (such as 5G telcos) to the
NN features would improve the accuracy of the NN in estimating
the optimal parameters. Finally, while the optimization of a scenario
can be executed offline as soon as all its parameters are collected, the
training of the NN requires a higher computational effort. Regarding
this issue, we plan to investigate on when re-training the NN is
necessary as well as on how much additional data is required to
effectively improve ERUDITE’s performance.

9 CONCLUSIONS
This paper proposes ERUDITE, a system to provide users with near-
optimal QoE for adaptive streaming systems. ERUDITE employs a
Deep Neural Network (DNN) continuously providing the streaming
controller with estimates of optimal parameters based on measured
metrics such as bandwidth samples and the measured QoE. First,
we evaluated the system in the open-loop case to quantify the accu-
racy of the proposed DNNs in providing the optimal performances.
Results show that, between the proposed DNNs, the CNN is the best
performing one and obtains QoEs differing from the optimal ones
from 5% up 15% in the most challenging scenarios. We next closed
the loop and measured the performances obtained when the DNNs
provide the adaptive streaming controller with updated parameters
to react to changed scenario’s parameters. Again, CNN was the best
performing strategy. Furthermore, results show that by closing the
loop performances improve compared to the open-loop case. The
CNN provides near optimal performances both in the case of small
segments and in the more challenging case of large segment sizes.

MMSys ’19, June 18–21, 2019, Amherst, MA, USA Luca De Cicco, Giuseppe Cilli, and Saverio Mascolo

ACKNOWLEDGMENTS
The authors would like to thank our shepherd Wei Wei and the
anonymous reviewers for their valuable comments and helpful
suggestions. This work has been partially supported by the Ital-
ian Ministry of Economic Development (MISE) through the CLIPS
project (no. F/050136/01/X32). Any opinions, findings, conclusions
or recommendations expressed in this work are the authors’ and
do not necessarily reflect the views of the funding agency.

REFERENCES
[1] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. (2015). https://www.tensorflow.org/ Software available from
tensorflow.org.

[2] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe: Auto-
tuning Video ABR Algorithms to Network Conditions. In Proc. ACM SIGCOMM
’18.

[3] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica,
and Hui Zhang. 2013. Developing a predictive model of quality of experience for
internet video. In Proc. of ACM SIGCOMM ’13.

[4] Abdelhak Bentaleb, Ali C. Begen, Saad Harous, and Roger Zimmermann. 2018. A
Distributed Approach for Bitrate Selection in HTTP Adaptive Streaming. In Proc.
ACM International Conference on Multimedia (MM ’18). 573–581.

[5] Abdelhak Bentaleb, Ali C Begen, Saad Harous, and Roger Zimmermann. 2018.
Want to play DASH?: a game theoretic approach for adaptive streaming over
HTTP. In Proc. of ACM Multimedia Systems Conference (MMSys ’18). 13–26.

[6] Felix Berkenkamp, Andreas Krause, and Angela P. Schoellig. 2016. Bayesian
Optimization with Safety Constraints: Safe and Automatic Parameter Tuning in
Robotics. CoRR abs/1602.04450 (2016). arXiv:1602.04450

[7] Ayub Bokani, Mahbub Hassan, Salil S. Kanhere, Jun Yao, and Garson Zhong.
2016. Comprehensive Mobile Bandwidth Traces from Vehicular Networks. In
Proc. ACM Multimedia Systems Conference ’16 (MMSys ’16).

[8] Maxim Claeys et al. 2013. Design of a Q-learning-based client quality selection
algorithm for HTTP adaptive video streaming. In Proc. Adaptive and Learning
Agents Workshop. 30–37.

[9] Giuseppe Cofano, Luca De Cicco, and Saverio Mascolo. 2016. A hybrid model of
adaptive video streaming control systems. In Proc. IEEE 55th Conference on Deci-
sion and Control (CDC). 6601–6606. https://doi.org/10.1109/CDC.2016.7799285

[10] Giuseppe Cofano, Luca De Cicco, and Saverio Mascolo. 2018. Modeling and
Design of Adaptive Video Streaming Control Systems. IEEE Transactions on
Control of Network Systems 5, 1 (March 2018), 548–559.

[11] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mascolo.
2016. Design and Experimental Evaluation of Network-assisted Strategies for
HTTP Adaptive Streaming. In Proc. of ACM Multimedia Systems Conference
(MMSys ’16). 3:1–3:12.

[12] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2013.
ELASTIC: A Client-Side Controller for Dynamic Adaptive Streaming over HTTP
(DASH). In Proc. 20th Packet Video Workshop (PV).

[13] Rikky R.P.R. Duivenvoorden, Felix Berkenkamp, Nicolas Carion, Andreas Krause,
and Angela P. Schoellig. 2017. Constrained Bayesian Optimization with Particle
Swarms for Safe Adaptive Controller Tuning. IFAC-PapersOnLine 50, 1 (2017),
11800 – 11807. 20th IFAC World Congress.

[14] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A Buffer-based Approach to Rate Adaptation: Evidence from a
Large Video Streaming Service. In Proc. ACM SIGCOMM ’14.

[15] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In Proc. International
Conference on Machine Learning. 448–456.

[16] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2014. Improving fairness, efficiency,
and stability in http-based adaptive video streaming with festive. IEEE/ACM
Transactions on Networking (TON) 22, 1 (2014), 326–340.

[17] Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. 2015. SARA: Segment
aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. In
Proc. IEEE ICCW 2015. 1765–1770.

[18] Diederik P. Kingma and JimmyBa. 2014. Adam: AMethod for Stochastic Optimiza-
tion. CoRR abs/1412.6980 (2014). arXiv:1412.6980 http://arxiv.org/abs/1412.6980

[19] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David
Oran. 2014. Probe and adapt: Rate adaptation for HTTP video streaming at scale.
IEEE Journal on Selected Areas in Communications 32, 4 (2014), 719–733.

[20] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network In Network. CoRR
abs/1312.4400 (2013). arXiv:1312.4400 http://arxiv.org/abs/1312.4400

[21] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proc. ACM SIGCOMM ’17.

[22] Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. 2016. Datasets for
AVC (H.264) and HEVC (H.265) Evaluation of Dynamic Adaptive Streaming over
HTTP (DASH). In Proc. ACM Multimedia Systems Conference ’16 (MMSys ’16).

[23] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-
optimal bitrate adaptation for online videos. In Proc. IEEE INFOCOM ’16.

[24] Yanan Sui, Alkis Gotovos, Joel W. Burdick, and Andreas Krause. 2015. Safe
Exploration for Optimization with Gaussian Processes. In Proc. International
Conference on Machine Learning. JMLR.org, 997–1005.

[25] J. van der Hooft et al. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video
Over 4G/LTE Networks. IEEE Comm. Letters 20, 11 (2016), 2177–2180.

[26] Z. Wang, W. Yan, and T. Oates. 2017. Time series classification from scratch with
deep neural networks: A strong baseline. In Proc. International Joint Conference
on Neural Networks (IJCNN). https://doi.org/10.1109/IJCNN.2017.7966039

[27] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-
theoretic approach for dynamic adaptive video streaming over HTTP. In Proc. of
ACM SIGCOMM ’15.

A SYMBOLS TABLE

Table 2: Symbols table

Symbol Term Meaning

L Video level set Bitrates li of available
representations of a given
video clip.

T Bandwidth trace Time evolution of a
bandwidth trace.

v Video clip Represents a video clip
described by the segment
sizes for each of the video
levels.

τ Segment duration Duration of each video
clip segment expressed in
seconds.

s Scenario Defined by the tuple
(T , τ ,v).

a∗ Optimal parameters The set of the AVSS
optimal parameters for a
given scenario.

QoE Estimated QoE A functional estimating
the QoE of a given video
session.

Q Average downloaded
video bitrate

F Rebuffering penalty Depends on both the
rebuffering frequency and
the cumulative rebuffering
time

S Switching penalty
L (ã∗,a∗) Loss function It measures the drop of

performance when ã∗is
used instead of the
optimal a∗.

W Window width Time interval at which the
Trigger module evaluates
system’s performance.

https://www.tensorflow.org/
http://arxiv.org/abs/1602.04450
https://doi.org/10.1109/CDC.2016.7799285
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
https://doi.org/10.1109/IJCNN.2017.7966039

	Abstract
	1 Introduction
	2 Background
	3 System overview
	4 Building the ground truth
	4.1 The AVSS controller
	4.2 The optimization phase
	4.3 QoE definition
	4.4 The optimum selection phase

	5 Scenarios dataset construction
	6 Neural Networks Training
	6.1 Loss function

	7 Results
	7.1 The open-loop case
	7.2 The closed-loop case

	8 Discussion
	9 Conclusions
	References
	A Symbols table

