
Implementing Rate-based Protocols
Luca De Cicco and Saverio Mascolo

Abstract—End-to-end rate-based congestion control algorithms
are advocated for audio/video transport over the Internet instead
of window-based protocols. Once the congestion controller com-
putes the sending rate, all rate-based algorithms proposed in
the literature schedule packets to be sent spaced at intervals
that are equal to the inverse of the desired sending rate. In
this paper we show that such an implementation exhibits a
fundamental flaw. In fact, scheduling the sending time of a
packet is affected by significant uncertainty due to the fact that
it is handled by the Operating System, which manages a CPU
shared by other processes. To overcome this problem, the Rate
Mismatch Controller (RMC) is designed aiming at counteracting
the disturbance on the effective sending time due to the CPU
time-varying load. Experimental results using Linux OS highlight
the effectiveness of the proposed controller.

I. INTRODUCTION

Today, the most part of the Internet traffic is handled by the
TCP [1], which implements a congestion control protocol [11]
that has been extremely successful to guarantee network stabil-
ity without admission control. The TCP congestion control is a
window-based protocol that sends a window W (Tk) of packets
every time Tk an acknowledgment packet is received. This
behaviour originates the bursty nature of the TCP, i.e. the fact
that packets are sent in bursts of length W (Tk). From the point
of view of the network, the burstiness of the TCP increases
network buffer requirements since queue sizes at least equal
to the order of W (Tk) must be provided for efficient link
utilization. Sending a burst of W (Tk) packets is simple to be
implemented but it is not appropriate both from the point of
view of router buffers and from the point of view of users of
real-time applications.

The basic idea for reducing traffic burstiness induced by
window-based congestion control is to design rate-based con-
gestion control where packets are sent equally spaced in time
at interval proportional to the inverse of the sending rate. The
sending rate rc is computed every sampling time, f.i. every
RTT , or every time a feedback report (or ACK) packet is
received from the network or from the receiver. Feedbacks can
be implicit, such as timeouts or DUPACKs, or explicit such as
Explicit Congestion Notification (ECN) [16]. Once the sending
rate rc is computed, it is passed to a sending engine, or send
loop, which is in charge of scheduling packets queued in the
transmission buffer at the specified rate rc.

Several rate-based schemes have been proposed in literature
for the transport of multimedia streams [8], [9], [13], [18] but
much less attention has been devoted to the implementation

Luca De Cicco is post-doc at Dipartimento di Elettrotecnica ed Elettronica,
Politecnico di Bari, Via Orabona 4, Italy ldecicco@poliba.it

Saverio Mascolo is a Faculty member of Dipartimento di Elet-
trotecnica ed Elettronica, Politecnico di Bari, Via Orabona 4, Italy
mascolo@poliba.it

at user space of a rate-based congestion control algorithm.
This may be at the root of the fact that, up to now, there
is no evidence that a rate-based protocol is emerging as a
widespread adopted solution. In fact, it is worth noting that
YouTube employs standard TCP for delivering videos and
implementations of peer-to-peer video distribution systems,
which accounts for the 65% of the peer-to-peer traffic that in
turn accounts for 60% of the Internet traffic [15], also employs
TCP even though the use of TFRC had been long debated
[5], [23]. Finally, Skype audio/video implements proprietary
congestion control mechanisms at application layer over the
UDP protocol [6], [7].

The analysis or design of rate-based control algorithms
is out of the scope of this paper which indeed focuses on
implementing a rate-based congestion control algorithm at ap-
plication level over a general purpose Operating System (OS).
The problem here is that the unpredictable CPU load, which
is due to other processes that share the CPU, prevents exact
timing in packet sending. A significant experiment reported in
the paper shows that a required constant sending rate can in
practice turn into an effective sending rate that is as low as
one half of the desired one. In order to overcome this issue,
the Rate Mismatch Controller (RMC) is proposed aiming
at producing an effective sending rate re(t) that efficiently
tracks the rate rc(t) computed by a rate-based congestion
control algorithm. It is worth noting that we are focusing on
application layer protocols that are usually implemented in the
user space in order to be portable on different platforms. The
fact that the protocol runs in user space emphasizes the effects
of the interaction between the OS and the application.

The rest of this paper is organized as follows: in Section II
the state of the art of the proposed solutions in the literature is
presented; in Section III we focus on defining implementation
issues of send loops; in Section IV we propose the RMC and
we perform a mathematical analysis in order to prove the
effectiveness of the proposed controller; Section V provides
a performance evaluation of the proposed controller carried
out by using the Linux OS; finally, Section VI summarizes
the main findings presented in this work.

II. RELATED WORK

Research on rate-based congestion control algorithms has
been active since a decade and has produced a significant
amount of literature [8], [9], [13], [18]. In comparison, issues
raised by the implementation of a rate-based sending protocol
have received less attention.

The first simple solution to the issue of implementing a
rate-based congestion control can be found in [18], where a
rate-based congestion control protocol named Rate Adaptation



Algorithm 1 Send loop proposed in RFC 3448
Let us define:

∆ = min (tipi/2, tg/2) (2)

and tg as the o.s. timer granularity. The algorithm follows:
1) Send k-th packet at time tk
2) Evaluate tipi,k ← p

rc(Tk) so that the k+1-th packet
should be sent at time tk+1 = tk + tipi,k

3) Check the system time tnow, evaluates ∆ by using (2)
and if tnow > tk+1 −∆:

a) send the packet immediately
b) otherwise, schedule a timer whose length is tk+1−

tnow

4) When the timer expires the algorithm restarts in 1.

Protocol (RAP) is proposed. In that paper, authors suggest
to evenly space packets at intervals equal to the inter-packet
interval (IPI) tipi, which is computed as follows:

tipi =
p

rc(t)
(1)

where p is the packet size and rc(t) is the rate determined by
the congestion controller. Equation (1) implies that the highest
the rate the closest the packets should be sent in order to
reflect the instantaneous sending rate rc(t). At first glance,
this simple algorithm seems to be able to provide a sending
rate that matches rc(t) and mitigates burstiness. However, as
it will become more clear shortly, the algorithm neglects the
important feature that a general purpose OS cannot guarantee
perfect timing in packet sending due to other processes and
timer granularity.

A more involved approach addressing the issue of imple-
menting a rate-based congestion control is presented in [9]
where a send loop is proposed to implement the rate-based
TCP Friendly Rate Control (TFRC) algorithm. The proposed
solution is shown in Algorithm 1.

The algorithm is based on the one proposed in [18] but it
considers for the first time the uncertainty of the inter-packet
intervals due to the fact that the send loop process shares
the CPU with other processes. In particular, the third step of
the Algorithm 1 tries to counteract the effect of imprecise
timer duration by sending a packet (step 3.a) without waiting
for all the inter packet interval in the case this interval has
elapsed except that for an amount equal to ∆ given by (2).
We interpret the step 3.a as a heuristic aiming at anticipating
the packet sending time to compensate when the sending times
are delayed due to imprecise timers. Moreover, an additional
note in [9] considers the case when tipi is too small because
the rate is high. In such cases authors recommend to send
short bursts of several packets separated by intervals of the
OS timer granularity.

TCP pacing is another technique aiming at spacing packets
sending in order to mitigate burstiness when window-based
congestion control protocols are used [2], [10], [14]. In fact,
TCP produces a very bursty traffic when accessing high-speed

networks that can lead to link underutilization and high packet
losses in case router buffers are not large enough. Recently,
it has been shown that sub-RTT time scale burstiness that are
due to the nature of the TCP packet sending mechanism can
lead to macroscopic effects on steady state bandwidth sharing
[22]. TCP pacing evenly spaces a congestion window worth
of packets in a RTT by scheduling timers whose length is
equal to RTT/cwnd. The implementation issues affecting
this technique have been studied in [12], [21]. In particular,
[21] points out that software timer based approaches are not
accurate enough when high rates need to be produced. The
solution proposed in the paper is a module executed in kernel
space, which inserts dummy packets between real packets in
order to implement packet pacing. Dummy packets have to
be later discarded by the switch where the network interface
card (NIC) is connected. The proposed solution becomes very
involved when multiple flows access the same link because
in this case packet gaps length have to be recalculated ac-
cordingly [21]. In [12] authors propose a solution that needs
an ad-hoc designed NIC and modifications to the operating
system and to packet headers in order to be implemented.

III. SEND LOOP ISSUES FOR RATE-BASED APPLICATIONS

The TCP window-based congestion control evaluates and
immediately sends the amount of data W (Tk) when an ACK
is received. In this case the sending of packets is ACK-clocked
and there are no open implementations issues. On the other
hand, in the case of rate-based congestion control algorithms
a stream of packets has to be sent at rate rc(t) by scheduling
packets to be sent at precise instants using timers. For this
reason, in the case of rate-based congestion control, packets
are sent using a send loop that is asynchronous wrt to the
reception of ACK packets.

Figure 1 shows a high-level model of the network con-
gestion control machinery that is made of the following
components: 1) a generic congestion control algorithm, acting
as the controller, that decides the appropriate sending rate rc(t)
based on the feedback, being it implicit or explicit, provided
by the network; 2) a block named Sending Engine (or send-
loop) representing the actuator of the control system, required
to implement packet sending at rate rc(t); 3) the network that
represents the considered plant.

In the case of a window-based congestion control, the
Sending Engine block implements the task of sending the
whole amount of data W immediately on ACK reception. On
the other hand, in the case of rate-based control, the Sending
Engine has the difficult task of providing a packet sending rate
close to the one computed by the controller in the presence of
timers affected by uncertain duration.

We can assume, without loss of generality, that rate-based
congestion control schemes evaluate the input rate every time
a new feedback report (or ACK) is received by the sender.
Assuming that the k-th feedback report is received at time
Tk, the send loop has to schedule packets to be sent so that
the resulting rate matches rc(Tk) during the time interval
[Tk, Tk+1]. Let us define the packet sending policy as the set



Control

Controller Actuator

Congestion rc(t) Sending
Engine

feedback

Network
re(t)

Sender

Plant

Figure 1: Sending Engine (send loop) which actuates the
congestion control algorithm

Pk = {(p(k)
i , t

(k)
i )|0 ≤ i ≤ nk} with Tk = t

(k)
0 < t

(k)
1 <

. . . < t
(k)
n = Tk+1, indicating that at time t(k)

i a packet of size
p
(k)
i has to be sent. We define a packet scheduling policy to

be zero-bursty, if it is allowed to schedule just one packet at
once, that is, ∀i ∈ {1, . . . nk}, ∀k : t(k)

i 6= t
(k)
i+1 and such that

the packets in each interval are evenly spaced. It is important
to notice that in order to schedule the packet p(k)

i to be sent
at time t(k)

i a timer will be set at time t(k)
i−1 whose length is

t
(k)
i − t(k)

i−1.
Thus, we can say that in order to have a zero-bursty

scheduling policy, given p(k)
i and r(Tk) we have to schedule

nk timers of equal lengths. It will soon become clear that
the zero-bursty scheduling cannot be enforced for any given
r(Tk).

The simple send loop employed by [18], [9] does not take
into account some key implementation issues.

In first instance, the send-loop has to schedule a timer
whose duration becomes smaller and smaller when the rate
increases. However, timer durations are lower bounded by the
OS timer granularity tg that depends on the frequency the
CPU scheduler is invoked. By noting that typical values for tg
are in the order of 1−10ms, (1) gives the maximum achievable
rate:

rmax =
p

tg
(3)

Equation (3) implies that even with a timer granularity as low
as 1 ms and a packet size p = 1500B a maximum rate rmax

of 12Mbps is obtainable.
In second instance, the sending rate produced by packet gap-

based algorithms is not accurate due to the fact that timers are
not precise in a general purpose OS [3].

Let us take a closer look at the way the CPU scheduler
assign processes to the CPU. When a process is running but
the CPU is not assigned to it, the process is said to be in the
wait queue. The amount of time a process spends in the wait
queue before obtaining again the CPU is defined as waiting
time tw and it depends on the CPU load [17]. For this reason,
if a process schedules a sleep timer whose nominal duration
is t seconds, the process will be actually assigned again to the
CPU after t+ tw seconds.

Therefore, the actual packet sending rate produced by the
send loop is affected by the OS load, which acts as a
disturbance on the send loop. In particular, the effective rate
re is determined as re = s/(t+ tw), which is less than rc.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

1 2 3 4 5 6 7

Actual
1 3 4 5

tw

2

t
(k)
ipi

Timing

Perfect
Timing

Tk

r(Tk) r(Tk+1)Tk+1

t
(k)
ipi

Figure 2: Perfect packet scheduling provides the desired rate,
whereas the timers error tw due to the operating system
interaction induce performance degradation

Figure 3: Input rate relative error as function of the nominal
sleep time t

Figure 2 shows how the scheduled sleep timer of length
t
(k)
ipi is affected by the waiting time tw, which significantly

degrades the performance of the rate-based control.
It is important to notice that the entity of the disturbance that

is due to the interactions with the operating system depends
on the particular implementation of the OS process scheduler
and on the way timers are handled.

In order to further illustrate these concerns, we have im-
plemented a simple send loop under the Linux 2.6.19 OS1,
which schedules a packet to be sent every t seconds, and
we have logged the actual rate achieved for different nominal
rates. Let rc denote the nominal rate so that the sleep time is
calculated as s/rc, whereas the relative error is evaluated as
100 · (rc− re)/rc. Figure 3 shows the effect of the sleep time
t on the relative rate error. In particular, when the nominal
timer length t approaches the OS timer granularity tg the
relative rate error increases up to 53%. It is worth noticing
that when the tests were run, the system CPU was idle, so
that the disturbance was due only to the operating system
scheduler. Moreover, the Linux scheduler offers advanced fea-
tures designed to implement a low latency OS such as kernel
preemption, o(1) complexity and dynamic task prioritization
[4]. This is not the case with other operating systems, such
as Symbian to name one, which is characterized by a timer
granularity of ∼ 15ms [20].

It is worth to notice that the concerns we have discussed

1We have used a Linux Kernel compiled with a timer frequency of
1000 Hz, so that the OS timer granularity is 1 ms.



Gr(s)

dcpu(t)

−
e(t)rc(t) yr(t)

−
re(t)

Figure 4: Block diagram of the system

here, have been also recently addressed in a thread on the
DCCP IEFT working group mailing list [19] and no solution
has been found yet.

For these considerations, in order to actuate the sending
rate evaluated by the congestion controller, it is necessary to
design a mechanism that is able to counteract the uncertainty
in timer expirations especially when timer durations are close
to the OS timer granularity, as it happens in the case of high
rates.

In the next Section we design a feedback controller able
to compensate the disturbance acting on the exact timer
expiration due to OS timer granularity and load.

IV. THE RATE MISMATCH CONTROLLER

In this Section we propose a controller having the goal of
producing an effective sending rate re(t) that efficiently tracks
the rate rc(t) computed by a rate-based congestion control
algorithm. As we have already discussed, this goal is not trivial
due to the fact that the code in charge of sending packets is
executed by a CPU that is shared by other concurrent processes
and managed by the OS.

Figure 4 shows the block diagram of the feedback loop in
which the Rate Mismatch Controller (RMC) is introduced in
order to reject the disturbance dcpu(t), which models the effect
on exact timing of packet sending. The effective rate re(t) is
measured and compared to the desired rate rc(t) to give the
error e(t) = rc(t) − re(t) that acts as the input of the RMC.
The Rate Mismatch Controller Gr evaluates the rate yr(t) the
send loop should provide in order to counteract the disturbance
dcpu(t).

For the sake of simplicity, and in view of the fact that the
controller has to be discretized and implemented in a code,
we propose the simplest control law that is able to reject a
step disturbance, that is an integral control law with gain kr.
Therefore, the transfer function of the controller is:

Gr(s) =
kr

s

so that the output of the controller is:

yr(t) = kr

∫ t

0

e(τ)dτ (4)

In the following the control law (4) is first discretized and then
implemented in the proposed send loop.

A. Discretization of the controller

The control law (4) must be discretized in order to be imple-
mented in the send loop. By substituting e(t) = rc(t)− re(t)
in (4) it turns out:

yr(t) = kr(
∫ t

0

rc(τ)dτ −
∫ t

0

re(τ)dτ) (5)

When we have described the model in the continuous time
domain (Figure 4) we assumed that the actual rate re(t) was
available as a feedback signal. However, in practice the send
loop sends packets so that the integral of the actual rate re(t)
:

de(t) =
∫ t

0

re(τ)dτ (6)

which is the amount of data de(t) that has been injected in
the network until the time t , is already known. By combining
(5) and (6), we obtain:

yr(t) = kr(
∫ t

0

rc(τ)dτ − de(t)) (7)

One motivation of choosing a simple integrator controller is
now clear: the variable bytes_sent de(t) is available and
updated every time a packet is sent and it is not affected by
any measurement error. To complete the discretization of (7)
we need to discretize the integral

∫ t

0
rc(τ)dτ that can be done

by using the backward Euler method:

dc(tk) = dc(tk−1) + (tk − tk−1)rc(tk) (8)

where tk indicates the k-th sampling time and dc(tk) the
discretized integral of rc. The discretization of de(t) is
straightforward:

de(tk) = de(tk−1) + bs(tk) (9)

where bs(tk) is the amount of data effectively sent in the k-th
time interval.

Finally, it should be noted that the feedback variable de(tk)
is delayed by one sample interval. In fact, when we are to
send data at time tk we know the amount of data sent until
the previous sampling time tk−1, i.e. de(tk−1). The error is
then evaluated as:

e(tk) = dc(tk)− de(tk−1)

Thus, the discretized control is as simple as:

yr(tk) = kr(dc(tk)− de(tk−1)) (10)

The control action expressed by (10) can be intuitively
interpreted as follows: a fraction of the amount of data that
have not been sent at time tk because of the disturbance dcpu

will be sent at the time tk+1 thus being able to control the
error. By considering equations (10), (8) and (9) the block
diagram of the RMC represented in Figure 5 can be easily
derived.

Let us consider the closed loop dynamical system depicted
in Figure 5: it is easy to show that the closed loop response
re(t) can be made faster by increasing kr . However, the



1
1−z−1

1
1−z−1

−
dc(tk)rc(tk)

de(tk−1)

−
kr

yr(tk)
z−1

Send Loop

re(tk)

dcpu(tk)

re(tk−1)

Figure 5: Digital Rate Mismatch Controller

value of kr is in practice upper bounded because of stability
constrains as shown in the following Proposition.

Proposition 1: A necessary and sufficient condition for the
stability of the proposed controller is 0 < kr < 2.

Proof: By computing the transfer function between Rc(z)
and Re(z) it results:

Re(z)
Rc(z)

=
krz

z − 1 + kr

It is well-known that a linear discrete-time system is asymp-
totically stable if and only if all its poles lie in the unity circle
of the complex plane. This turns out the condition that the
only pole of the controller z = 1 − kr must lie in the unity
circle, i.e. 0 < kr < 2.

Proposition 2: The proposed controller rejects step distur-
bances dcpu(t) = 1(t) regardless the value of the controller
gain kr.

Proof: By computing the transfer function between
Dcpu(z) and Re(z):

Re(z)
Dcpu(z)

=
z − 1

z − 1 + kr

and considering that Dcpu is a step disturbance we can write:

Re(z) = Dcpu(z)
z − 1

z − 1 + kr
=

z

z − 1 + kr

Finally, it is sufficient to use the final value theorem to obtain
the steady state value of the output due to the disturbance
dcpu:

re(∞) = lim
k→∞

re(tk) = lim
z→1

z − 1
z

Re(z) = 0

B. Send loop implementation

In this Section we have proposed a control algorithm
that steers to zero the error between the effective rate re(t)
produced by the send loop and the input rate rc(t) computed
by the end-to-end rate-based control. To the purpose of imple-
menting this control, we need to execute the send loop in an
asynchronous thread every sampling time Ts. The sampling
time is chosen as a fraction of the minimum round trip time
RTTm as follows:

Ts = max (RTTmin/N, Ts,min)

Algorithm 2 Pseudo-code of the proposed Send loop

1 while (running) {
2 r_c=get_congestion_control_rate();
3 data_to_send=rmc(r_c);
4 bytes_sent=0;
5 while(bytes_sent<=data_to_send) {
6 packet=get_packet_from_tx_queue();
7 if(data_sent+size(packet)<data_to_send)
8 send(packet);
9 else

10 break;
11 bytes_sent = bytes_sent + size(packet);
12 }
13 rmc_update_data_sent(bytes_sent);
14 sleep(T_s);
15 }

where Ts,min is lower bounded by tg . It is worth to notice
that the lower Ts, the lower is the burstiness generated by the
send loop.

The pseudo-code of the proposed send loop is reported
in Algorithm 2. At each iteration of the infinite outer loop
(line 1), the rate mismatch controller evaluates the data to
be sent yr(tk) (data_to_send) by using the function
rmc(r_c) and the inner loop (lines 7 to 16) sends a number
of packets without exceeding the amount of data_to_send
bytes (line 10). At this point the thread sleeps for Ts seconds
and then the algorithm continues.

As in the case of Algorithm 1, the timer duration Ts is
affected by error due to OS timer granularity or, worse, it
can happen that a context switch allocate the CPU to another
process. However, the rate mismatch controller is able to
compensate the effects of this disturbance as it will be shown
in the next Section.

V. EXPERIMENTAL RESULTS

In this Section we present an experimental evaluation of the
proposed controller running on two different versions of the
Linux Kernel, namely 2.6.19 and 2.6.28 implementing the last
two Linux schedulers. In order to evaluate the performances
of the RMC we have implemented the send loop described
in Section IV in a C user space application. The send loop
proposed in RFC 3448 [9] has been carefully implemented by
also taking into account the heuristic in step 3.a of Algorithm
1. In particular we have implemented two versions of the send
loop described in Algorithm 1: the first one, named RFC 3448
- No bursts, does not take into account the issue due to the
granularity tg and it keeps sending one packet per iteration
spaced by tipi = s/r even when tipi is less than the timer
granularity tg; in the second implementation, named RFC 3448
- Bursts, when tipi < tg , tipi is set to min(s/r, tg) and a burst
whose length is b = r · tg is sent as proposed2 in [9].

2When tipi < tp, [9] suggests: “TFRC may send short bursts of several
packets separated by intervals of the OS timer granularity”. The size of the
burst to be sent is not specified. However sending a burst of b = r · tg bytes
in tg seconds should produce the rate r.



The three send loops have been tested con-
sidering constant sending rates rc in the set
R = {1, 10, 100, 200, 400, 600}Mbps. For what concerns the
only tunable parameter kr of the proposed controller we have
run experiments by letting kr ∈ [0.1, 1.9]. Although results are
not reported in this paper due to space limitation, experiments
confirmed that the disturbance is rejected regardless the value
of kr ∈]0, 2[, as we found in Proposition 2.

We have compared the proposed controller with the two
send loops RFC 3448 - No Bursts and RFC 3448 - Bursts
both in the case a Linux Kernel 2.6.19 or a Linux Kernel
2.6.28.1 is employed. The duration of the experiments is 60
s. In the time interval [20, 40] s the CPU load is increased to
∼ 100% by starting five CPU bound (busy-wait) processes in
parallel with the send loop.

Figures 6 (a) and (b) show the average relative error
computed as (rc−E[re(t)])/rc ·100 when rc ∈ R: the figures
show that RMC is able to provide a relative error less than
0.06% , that is a channel utilization of 99.94%, regardless the
value of rc or kernel version employed. On the contrary, RFC
3448 - No Bursts is not able to contain the disturbance and the
relative error is found to be very high: when kernel 2.6.19 is
employed it can be as high as ∼ 99%, whereas when 2.6.28.1
is used it goes up to 90%. Let us now consider RFC 3448 -
Burst: Figure 6 shows that even with sending bursts as large
as re · tg the relative error can be as high as 95% in the case
the Kernel 2.6.19 is used, or up to 4% when Kernel 2.6.28.1
is employed.

Finally, Figures 7 (a) and (b) report the effective rate
evolution when rc = 500Mbps. When the RMC is used, the
effective rate produced by the send loop matches the desired
sending rate and a smooth input rate is produced.

VI. CONCLUSIONS

In this paper we have shown that the send loop required
for implementing end-to-end rate-based congestion control in
high-speed networks is affected by disturbances that have to
be rejected. To this purpose, we have designed, implemented
and tested a Rate Mismatch Controller (RMC) that is able to
produce an effective sending rate that matches the computed
sending rate. The experimental results have shown that, when
no measures are taken to reject the disturbance, the rate relative
error can be as high as 99% in the case of high-speed rates,
whereas RMC is always able to provide rate relative errors
that are less than 0.06%.

REFERENCES

[1] Cooperative Association for Internet Data Analysis.
http://www.caida.org/.

[2] A. Aggarwal, S. Savage, and T. Anderson. Understanding the perfor-
mance of TCP pacing. In Proc. IEEE INFOCOM 2000, Tel-Aviv, Israel,
March 26–30, 2000.

[3] M. Aron and P. Druschel. Soft Timers: Efficient Microsecond Software
Timer Support for Network Processing. ACM Transactions on Computer
Systems, 18(3):197–228, 2000.

[4] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly
Media, Inc., 2005.

(a) Linux Kernel 2.6.19 with HZ=100

(b) Linux Kernel 2.6.28 with HZ=100

Figure 6: Rate relative error comparison

[5] Y.H. Chu, A. Ganjam, TS Eugene, S. Rao, K. Sripanidkulchai, J. Zhan,
and H. Zhang. Early deployment experience with an overlay based
internet broadcasting system. In Proc. USENIX Annual Technical
Conference 2004, Boston, MA, USA, June 2004.

[6] L. De Cicco, S. Mascolo, and V. Palmisano. A Mathematical Model
of the Skype VoIP Congestion Control Algorithm. In Proc. IEEE
Conference on Decision and Control ’08, to appear, Cancun, Mexico,
December 9–11, 2008.

[7] L. De Cicco, S. Mascolo, and V. Palmisano. Skype Video Respon-
siveness to Bandwidth Variations. In Proc. ACM NOSSDAV 2008,
Braunschweig, Germany, May 28–30, 2008.

[8] Luigi Alfredo Grieco and Saverio Mascolo. Adaptive rate control for
streaming flows over the internet. ACM Multimedia Systems Journal,
9(6):517–532, June 2004.

[9] M. Handley, S. Floyd, and J. Pahdye. TCP Friendly Rate Control
(TFRC): Protocol Specification. RFC 3448, Proposed Standard, January
2003.

[10] J.C. Hoe. Improving the start-up behavior of a congestion control
scheme for TCP. In Proc. ACM SIGCOMM ’96, Stanford University,
CA, USA, August 28–30, 1996.

[11] V. Jacobson. Congestion avoidance and control. ACM Comput. Commun.



(a) Linux Kernel 2.6.19 with HZ=100

(b) Linux Kernel 2.6.28 with HZ=100

Figure 7: Effective rate re(t) when required rate is 500 Mbps

Rev., 18(4):314–329, 1988.
[12] K. Kobayashi. Transmission timer approach for rate based pacing TCP

with hardware support. In Proc. International workshop on Protocols
for Long Distance Networks (PFLDnet ’06), Nara, Japan, February 2–3,
2006.

[13] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion
Control Without Reliability. RFC 4340, Proposed standard, March 2006.

[14] J. Kulik, R. Coulter, D. Rockwell, and C. Partridge. Paced TCP for
High Delay-Bandwidth Networks. In Proc. IEEE Globecom ’99, Rio de
Janeiro, Brazil, December 5–9, 1999.

[15] Jin Li. Peer-Assisted Delivery: the Way to Scale IPTV to the World.
ACM NOSSDAV 2007, panel session, June 4–5, 2007.

[16] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168, Proposed standard,
September 2001.

[17] Philip J. Rasch. A queueing theory study of round-robin scheduling of
time-shared computer systems. J. ACM, 17(1):131–145, 1970.

[18] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based
congestion control mechanism forrealtime streams in the Internet. In
Proc. IEEE INFOCOM ’99, New York, NY, USA, March 21–25, 1999.

[19] G. Renker. [dccp] [rfc] dccp ccid-3: High-res or low-res timers?
in DCCP IETF WG [electronic discussion list]. Archived at:
http://kerneltrap.org/mailarchive/linux-netdev/2008/11/15/4105494,
November 2008.

[20] Jo Stichbury. Games on Symbian OS: A Handbook for Mobile Devel-
opment. John Wiley & Sons, Inc., 2008.

[21] R. Takano, T. Kudoh, Y. Kodama, M. Matsuda, H. Tezuka, and
Y. Ishikawa. Design and Evaluation of Precise Software Pacing
Mechanisms for Fast Long-Distance Networks. In Proc. International
workshop on Protocols for Long Distance Networks (PFLDnet ’05),
Lyon, France, February 3–4, 2005.

[22] Ao Tang, Lachlan L. H. Andrew, Krister Jacobsson, Karl H. Johans-
son, Steven H. Low, and Håkan Hjalmarsson. Window flow control:
Macroscopic properties from microscopic factors. In Proc. of IEEE
INFOCOM, Phoenix, AZ, 15-17 Apr 2008.

[23] X. Zhang, J. Liu, B. Li, and T.S.P. Yum. CoolStreaming/DONet: A
Data-Driven Overlay Network for Efficient Live Media Streaming. In
Proc. IEEE INFOCOM 2005, Miami, FL, USA, March 13–17, 2005.


