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Abstract—Immersive multimedia content delivery is becoming
increasingly popular due to the spread of Head Mounted Dis-
plays. In particular, omnidirectional video streaming is gaining
ground among video delivery platforms. Delivering 360° video
content over the Internet requires much larger bandwidth
compared to classic 2D videos. Therefore, for the purpose of
reducing bandwidth consumption, the tiling technique breaks
down the video into smaller portions so that those falling
outside the user’s viewport are encoded at a low resolution
whereas those in the viewport are encoded at a higher resolution.
This operation can be performed only when the user’s future
viewports are known in advance. Thus, it is necessary to provide
a trustworthy prediction of future viewports. In this work, we
show that users have a tendency to explore the environment at
the beginning of the video and then to focus on one of the regions
attracting more attention (Points of Interest). This insight is
helpful when it comes to designing viewport-adaptive streaming
techniques. On this basis, we propose a viewport prediction
approach that combines Long Short-Term Memory (LSTM)
networks and the classic naive technique. Preliminary simulative
tests show promising results.

Index Terms—Omnidirectional Videos, Head Mounted Dis-
play, Points of Interest, Machine Learning, LSTM

I. INTRODUCTION

Immersive videos are considerably spreading in several
fields such as entertainment, gaming, and precision agricul-
ture [1], [2], [3]. The streaming of Omnidirectional Videos
(OVs) already represents a substantial feature for leading plat-
forms such as YouTube or Facebook. Compared to classical
2D videos, OVs are more difficult to handle since they require
higher bandwidth to provide the same level of visual quality
to users. Streaming a 360° video would require a network
bandwidth of 400 Mbps to deliver a video quality similar to
that of a 4k resolution 2D video, which would need about 25
Mbps instead [4], [5]. As a consequence, choosing a suitable
compression process is crucial when OVs are transmitted.

Immersive videos are produced by capturing scenes from
different angles using special cameras. Generally, immersive
content is rendered through a suitable device called Head
Mounted Display (HMD), which allows users to freely ex-
plore the environment and choose which portion of it to
watch. Therefore, it is important to point out that in each
instant the HMD shows only a part of the captured scene to
the user. Such a frame, called viewport, is roughly a sixth
of the whole omnidirectional scene [6]. As a result, sending
the whole scene with a high resolution would unavoidably
imply a waste of bandwidth, which could be employed to
improve the quality of the viewport. Hence, the viewport-
adaptive streaming technique has been proposed for 360°
video streaming over the Internet. With such an approach,
only the regions currently falling into the user’s viewport
are encoded at high resolution, whereas the other regions
are encoded at a lower quality (or not delivered at all in

the extreme case). This way, bandwidth is optimally utilised
provided that the video provider knows in advance the future
viewports the user is going to watch. However, it is not trivial
to get a trustworthy estimation of future viewports.

The first step towards saving bandwidth is devising a
good encoding technique for OV delivery. In particular, 3D
spherical scenes must be broken down in order to be encoded
and transmitted. The state of art provides several approaches,
such as the Facebook pyramidal projection [7], which projects
the 3D spherical scene onto the different sides of a pyramidal
3D object. The base of the pyramidal 3D object, presenting
less distortion, keeps the portion of the video with the most
interesting content. The other video portions are mapped
on the sides. Then, the pyramid is unfolded and mapped
onto a 2D plane. However, this technique presents several
encoding inefficiencies that impact the resulting quality and
the achievable bitrate reduction [8]. Other techniques could
be the barrel layout and the offset projection mapping [9].
The most widely adopted strategy is the EquiRectangular
Projection (ERP), which simply consists of projecting 3D
scenes onto a 2D plane. This way, it is possible to treat the
video as a common 2D video when it is delivered over the
network and then, once it reaches the user, it is projected
back onto a sphere so as to be correctly visualised with the
HMD.

To actually implement viewport-based adaptive streaming
techniques with ERP, it must be possible to separate the
portion of the scene watched by the user from the rest, to
be sent at a lower resolution. To this purpose, every frame of
the projected 2D video is divided into smaller portions so as
to easily identify the part of the scene the user is interested
in. The most widely adopted technique is called tiling [10],
and consists of breaking down frames into smaller frames. As
already explained, viewport-based adaptive streaming can be
employed only when future viewports are known wrt a user.
However, in practice, it is only possible to make predictions
about future viewports. Obviously, the more accurate such
predictions, the higher the Quality of Experience (QoE), i.e.,
the degree of satisfaction of the user. Several techniques
have been proposed in the literature. In [11], the authors
focus on long-term predictions of the user viewport. After
clustering users’ similar viewing behaviours associated with
the roll, pitch and yaw angles, pre-computed functions are
built for each cluster. Then, such functions are employed
online to predict a user’s future viewports. Another approach,
presented in [12], implements machine learning methods
to predict future head rotations on the basis of past head
and eye motions and other users’ motions. In this case,
good accuracy is maintained up to a one-second horizon,
which means only considerably short-term predictions are
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considered. In [13], RAPT360 is proposed, i.e., a strategy
that employs reinforcement learning and optimisation tech-
niques to perform viewport prediction and rate adaptation.
Notice that all of the aforementioned works are based on
the precise position of the user’s head in order to predict
the exact position of their eyes or viewport in the future.
In addition, most of them do not consider video streaming
standards, which are necessary to actually implement any
viewport-adaptive streaming technique. A standard-compliant
approach can be found in [14], where the Mosaic technique
is introduced. Mosaic is a neural network-based viewport
prediction technique that assigns a specific bitrate to the
different tiles in such a way that QoE is optimised. In this
case, too, only users’ viewports are considered.

In this work, we show that, in most videos, users may
present a predictable behaviour based on the content of the
video. In particular, we show that users, after an initial
exploring phase, tend to follow a Point of Interest (PoI).
PoIs are regions in the video representing the most interesting
part of the scene, which therefore attract the user’s attention.
After this analysis, we propose to map, for each instant of
time, the gaze trajectory of a user to one of the PoIs or to
the exploring status. Then, machine learning techniques and
traditional approaches are combined to get an improvement
in the viewport prediction.

II. USERS’ BEHAVIOUR

In this section, we are going to analyse some datasets con-
taining users’ viewport trajectories for a number of selected
OVs. The goal of such an analysis is to prove that users, after
an initial phase in which they explore the scenario around
them, tend to follow one of the PoIs contained in the scene.
This information is crucial to develop a viewport prediction
algorithm that is not based on the exact position of the user’s
head but on the position of the PoIs.

To this end, 6 existing datasets have been selected [15],
[16], [17], [18], [19], [20]. Among these, 31 videos have been
chosen with the condition that at least one PoI is present. As
a consequence, videos with too many PoIs or with no PoIs
at all (e.g., documentaries) have been neglected.

Before analysing data, some necessary processing is
needed. All videos have been converted to the same format
and then an ERP has been performed. At this point, for each
video and user, the dataset contains the tuple (time, x, y),
where time indicates the time samples in seconds of the video
while x and y are the coordinates on the ERP of the fixation
point, i.e., the point the user’s eyes are watching. Then, for
each time sample, the PoIs are manually selected, i.e., a
rectangle around the PoI is considered and the corresponding
width, height, and coordinates of a reference point in the
rectangle are saved. Notice that this procedure could be
performed automatically by using already existing machine
learning algorithms. Once the PoIs identifying regions of the
frames are generated, it is possible to overlap such regions
with the fixation points of the users to check which of them
fall in a PoI. Let us point out that, for each user, we do not
consider the single fixation point but a rectangle that models
the Field of View (FoV) of the user, i.e., the viewport. After
this check, for each video, user, and time sample, we have
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Fig. 1: Examples of PoIs tracked by a user in two different
videos
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Fig. 2: Average tracking percentage for each video

generated a file containing the PoI watched. Notice that if
no PoI overlaps the FoV, then the user is supposed to be in
exploration mode. As a preliminary analysis, 5 videos and
30 users have been selected. Then, for each user, we can
depict the profile of the PoIs watched during the video. An
important assumption made throughout this work is that the
number and id of PoIs present in the videos do not change
over time.

As an example, Fig. 1 shows the PoIs followed by two
users wrt to two different videos. In the first case, the video
has only one PoI, which has been identified by 0 in the
figure, while -1 indicates the case in which the user is in the
exploration phase. The video in the second figure shown has
4 PoIs instead. Notice that such profiles may be very different
according to a user’s behaviour. For this reason, for each user,
a PoI tracking percentage has been computed. This way, it is
possible to measure the portion of video playback time spent
watching at least one PoI. The PoI tracking percentage T has
been computed as follows:

T = 100 · ∆tPoI

Ttotal
= 100 · NSPoI

Ntotal
(1)

where ∆tPoI is the time spent by a user watching at least
one PoI while Ttotal is the total duration of the video. Since
in the list we built the video playback time is sampled every
∆t seconds (∆t = 0.03s), the same percentage is obtained
by dividing NSPoI

, i.e., the number of samples in which at
least one PoI is watched, by Ntotal, i.e., the total number of
samples. Fig. 2 shows the average PoI tracking percentage
for each of the 5 videos considered. Overall, it is possible
to state that, on average, users spend 81.44% of the video
playback time watching a PoI.

As a matter of fact, it is also important to understand when,
at least on average, users explore the scene and when they
follow a PoI. To this purpose, in Fig. 3 we show the average
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Fig. 3: Average number of users in exploration phase

number of users who do not watch any PoI, i.e., those who
are in the exploration phase, for each time sample. From the
figure, it is immediate to conclude that the trend of users
in the exploration phase is in general decreasing over time.
Hence, we can deduce that a user generally tends to explore
the scene at the beginning of the video until they find a PoI
that attracts their attention. From then on, the user is supposed
to always follow a PoI up to some scarce moments of new
exploration.

III. POI PREDICTION

In this Section, we provide some insights that are useful to
define an effective viewport prediction strategy. The algorithm
used in our tests employs a specific kind of neural network
called Long Short-Term Memory (LSTM) [21].

LSTMs are Recurrent Neural Networks (RNNs) that are
able to process entire sequences of data, thus being ideal for
data prediction. In our case, on the basis of a certain number
of behaviours associated with users, the LSTM predicts which
PoI–not the exact point–the current user is likely to watch
in the following n seconds. Obviously, as n increases, the
prediction accuracy is expected to plummet. It is therefore
important to tune n in order to get the best trade-off between
accuracy and prediction.

To the best of our knowledge, the technique currently
adopted to predict future viewports is the naive approach,
i.e., a technique whose prediction is simply represented by
the last viewport observed by the user, thus supposing they
do not move for the next n seconds [22]. Such an approach
performs more or less well depending on the video content.
For this reason, we advocate a hybrid approach that combines
both LSTM networks and the naive approach. As a first
step, we have considered the following procedure: LSTM
networks are used when their predictions on the scenes
just watched by the user have an accuracy that is higher
than a certain threshold. Otherwise, the naive approach is
adopted. Another important issue is that the aforementioned
approaches have to be adapted to the standards adopted in
the video streaming field, in particular to MPEG-DASH and
Adaprive BitRate (ABR) algorithms. MPEG-DASH standard
divides the video into fixed-length segments (or chunks) to
enhance the transmission. Then, these chunks are encoded
at different resolutions, called levels. On the user’s side, the
ABR algorithm decides, according to the available bandwidth,
the most suitable level to download to avoid video playback
stalls. Therefore, the proposed approach should indicate to the

ABR algorithm which tiles need to have a higher resolution
wrt the others. Obviously, the resolution levels of the tiles
depend on the available bandwidth, which is unpredictable.
However, one could measure the visual quality experienced
by the user by means of a full-reference video quality
assessment tool such as the Structural SIMilarity (SSIM) or
the Video Multi-method Assessment Fusion (VMAF). These
tools estimate the visual quality by comparing each frame
of the degraded video with the reference frames of the non-
degraded video.

In the experiments, we have employed a certain number of
LSTM layers and a dense layer. This architecture receives
as an input a temporal series of k elements and outputs
the following m, which represent the prediction. Reminding
that n is the prediction in terms of seconds, it results that
n = m · ∆t. Notice that input data contain the past k PoIs
watched by the user. As a consequence, there are as many
temporal series as the number of users in the dataset. A part
of such series composes the training set and is divided into
fixed-length vectors, which represent the input to the LSTM.
During the training phase, on the basis of each input vector,
the network tries to predict the PoI observed by the user
in future instants. Such predictions are then compared to
the actual PoIs to compute the loss function. Through an
adam optimiser, the weights of the networks are updated at
each iteration in order to minimise this function. When the
training phase ends, the testing phase starts, during which the
remaining part of the temporal series is fed in input to the
network. This time the weights do not change since the goal
is to evaluate the performance of the trained network.

To carry out the first tests, we have considered the dataset
illustrated in Section II. A part of it has been used as a training
set, whereas the rest forms the test set. We have considered a
chunk duration of 1s and we have fixed the number of input
chunks to the LSTM to be equal to 25 with a prediction
length set to 3 (m = 3). Depending on the video analysed,
it is necessary to tune the number of layers, neurons, and
hyperparameters in general. It is important that the network
is also able to predict the case in which a user will be in the
exploration phase. This way, it is possible to download the
whole frame at a lower resolution since the user’s eyes are
moving and thus they do not have enough time to focus on
a particular point of the frame.

Let us now describe in more detail the procedure adopted
for the download of the chunks. The ABR algorithm running
at the user’s device is designed to avoid video playback stalls,
i.e., situations in which the video playout buffer used to store
video chunks gets completely depleted. This means that the
buffer must contain at least 1 chunk. Therefore, supposing
that we set the number of chunks in the buffer to be exactly
equal to one to guarantee a more reactive quality adaptation,
for the first 25 seconds, the naive approach is employed
because the LSTM framework requires 25 chunks as an input
sequence, which are not available yet. After 25 seconds, the
LSTM framework receives the first 25 chunks of video and
predicts the next 3 chunks, i.e., the 26th, 27th, and 28th

chunk. Notice that in this moment the user is watching the
26th chunk and the playout buffer contains the 27th. When
the playback of the 26th chunk ends, the viewport trajectory
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of this chunk is compared to the trajectory of the first chunk
predicted by the LSTM framework. In particular, we observe
how many times the prediction failed. If the number of
failures does not exceed a certain threshold, the 28th chunk
predicted by the LSTM framework is downloaded while the
user watches the 27th chunk that was already present in the
buffer. Otherwise, it is the naive approach to provide the 28th

chunk, which will contain just the last viewport observed by
the user for the whole duration of the chunk. At this point, the
user watches the 27th chunk while the 28th is in the buffer.
The LSTM framework receives input chunks from 2 to 26
and the procedure iterates.

For the first experimental simulations, we have considered
a quite complicated video, containing 4 PoIs (plus the ad-
ditional case of the exploration). We have set up a network
with 3 LSTM layers, each of which has 50 neurons, and a
final dense layer. Preliminary results show that the proposed
hybrid approach presents a prediction accuracy of about 60%
whereas the naive approach ensures about 58% accuracy.
Despite the slight improvements, we have reason to believe
that an enhancement in the design of the proposed LSTM-
based framework could lead to relevant outcomes. To this
end, a system that optimises the hyperparametes of LSTM
networks is needed to improve the prediction accuracy. A
framework based on Optuna [23], i.e. a tool that tunes
the hyperparameters of a network to maximise an objective
function, is currently being investigated.

IV. CONCLUSIONS

In this short paper, we have shown that users watching
omnidirectional videos, after an initial phase in which they
explore the environment, tend to follow one of the Points of
Interest present in the video, i.e., the regions in the frame
that are more interesting. Then, we have proposed to employ
LSTM networks to make predictions on the viewport the user
is likely to watch in the immediate future, based on the PoIs.
The approach described shows promising results and, with
further studies and tuning, could significantly improve those
currently adopted.
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