
Sample-Efficient Reinforcement Learning for Pose
Regulation of a Mobile Robot

Walter Brescia
Politecnico di Bari

Bari, Italy
walter.brescia@poliba.it

Luca De Cicco
Politecnico di Bari

Bari, Italy
luca.decicco@poliba.it

Saverio Mascolo
Politecnico di Bari

Bari, Italy
saverio.mascolo@poliba.it

Abstract—Reinforcement Learning (RL) has gained interest
in the control and automation communities thanks to its en-
couraging results in many challenging control problems without
requiring a model of the system and of the environment. Yet, it
is well-known that employing such a learning-based approach in
real scenarios may be problematic, as a prohibitive amount of
data might be required to converge to an optimal control policy.
In this work, we equip a popular RL algorithm with two tools
to improve exploration effectiveness and sample efficiency: the
Episodic Noise, that helps useful subsets of actions emerge already
in the first few training episodes, and the Difficulty Manager, that
generates goals proportioned to the current agent’s capabilities.
We demonstrate the effectiveness of such proposed tools on a pose
regulation task of a four wheel steering four wheel driving robot,
suitable for a wide range of industrial scenarios. The resulting
agent learns effective sets of actions in just a few hundreds
training epochs, reaching satisfactory performance during tests.

Index Terms—Deep Reinforcement Learning; Mobile Robots;
TD3; Sample Efficiency.

I. INTRODUCTION AND BACKGROUND

Learning-based model-free approaches are rapidly gaining
interest in the field of robotics due to their ability of controlling
robots without requiring the knowledge of their model, while
fully leveraging their maneuverability and dexterity. Such
approaches allow to design robots that learn from the environ-
ment and are able to adapt to successfully carry out new tasks.
Reinforcement Learning (RL) is an unsupervised machine
learning approach that seeks to produce an optimal policy,
with respect to the goal it has to accomplish, by training an
agent over the collected experience, typically obtained in a
trial and error process.

In the literature, the RL algorithms commonly employed
in control applications with continuous controlled variables
are the Proximal Policy Optimization (PPO) [1] and the Deep
Deterministic Policy Gradient (DDPG) [2]. Another promising
technique recently proposed is the Self Supervised Reinforce-
ment Learning (SSRL) [3], which leverages an imitation
learning approach with a self-supervised replay buffer.

The size of the collected experience required for con-
vergence to an optimal policy is related to as the sample
efficiency of a RL algorithm. In industrial scenarios, collecting
experience, i.e., interacting with the environment, might be

This work has been partially supported through the AGREED project
(ARS01 00254) funded by MIUR. Walter Brescia holds a PhD grant funded
by FSE REACT-EU.

costly, especially in the initial phases of the training where the
safety of the surroundings and equipment involved might not
be granted. Hence, designing a sample-efficient RL algorithm
is a key issue to decrease both costs and chances of damage.

An interesting approach recently proposed in the literature
to tackle such an issue is Curriculum Learning (CL) [4]. In a
nutshell, the main finding of [4] is that the key to improve RL
agents’ sample efficiency and generalization capabilities is the
fashion through which examples (or task goals) are proposed
to the agent. We also take inspiration from [5] and [6], in
which a different take on the same idea is proposed.

In this paper, we embrace the idea of CL and propose a
methodology for efficiently training a RL agent to equip with
pose regulation functionalities a four steerable and driving
wheels mobile robot. Notice that the trained policy needs
to drive concurrently a total of 8 motors. In the literature,
classical control techniques have been proposed to control this
type of platforms. Some approaches impose added constraints
on the wheels [7], [8], others leverage a different type of
steering, thus simplifying the kinematics of the robot and
limiting its maneuverability [9]. Instead, in this work we
are interested in training an RL agent without imposing any
constraints on the actions, thus allowing the agent to freely
impose independent actions on the 8 motors. To the best of our
knowledge, this is the first attempt of controlling such a mobile
robot with a RL agent with an end-to-end approach, without
introducing constraints or limitations in the action space.

To this end, we propose two tools to control such a mobile
robot, namely (i) a Difficulty Manager (DM) and (ii) an
Episodic Noise, specifically designed to improve the sample
efficiency, exploration effectiveness, and robustness of a RL
algorithm.

Rather than partitioning the space into zones to present goals
with increased difficulty as proposed in [10], the proposed
DM samples goals from a negatively skewed distribution
whose average is shifted further only when an improvement
in the agent’s performance is measured. The resulting agent
efficiently learns a subset of effective actions already in the
first few epochs, exhibiting improved exploration, and next
improves performance by refining the learned actions. The
trained agent can fully exploit the capabilities of the mobile
robot, without introducing limitations and/or constraints on the
actions as typically performed in the literature.

2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)

978-1-6654-5248-9/22/$31.00 ©2022 IEEE 42

20
22

 1
1t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
on

tro
l,

A
ut

om
at

io
n

an
d

In
fo

rm
at

io
n

Sc
ie

nc
es

 (I
C

C
A

IS
) |

 9
78

-1
-6

65
4-

52
48

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
A

IS
56

08
2.

20
22

.9
99

04
80

Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:32:56 UTC from IEEE Xplore. Restrictions apply.

(a) Notation (b) Chassis

Fig. 1: The considered robot

II. PROBLEM STATEMENT

A. The mobile robot

The Wheeled Mobile Robot (WMR) chosen as the subject of
this work is equipped with four steerable and driving standard
wheels, all independent of each other in both direction and
speed, also known as 4 Wheel Steering 4 Wheel Driving
(4WS4WD). Such a robot is over-actuated, yet it is subject
to non-holonomic constraints due to the use of standard
wheels. For this reason, it is also referred to as non-holonomic
omnidirectional [11] or pseudo-omnidirectional [12] robot.

Fig. 1a shows the coordinate system used in the notation,
whereas Fig. 1b highlights the relevant notation in terms of
actuation variables and geometric parameters referred to the
i-th wheel (i = 1, . . . , 4). The pose of the robot is identified by
the triple (x, y, θ), i.e. the coordinates of the Center of Mass
(CoM) of the robot and its orientation with respect to the world
reference frame. The dynamics of the robot are influenced by
the following parameters: (i) M , the mass of the robot; (ii)
r, the radius of the wheels; (iii) bi, the length of the segment
connecting the CoM and the i-th wheel’s steering axis; (iv)
αi, the angle between the xr-axis and the segment connecting
the CoM and the i-th wheel’s steering axis; (v) βi, the wheel’s
steering angle (a control input); (vi) φ̇i, the wheel’s angular
velocity (a control input).

The high number of controllable wheels and their indepen-
dence from each other make this robot tailored for a wide
variety of tasks, starting from autonomous driving up to fault
tolerant control. In fact, the particular locomotion system of
this robot allows to obtain the same motion vector through a
wide range of actuation solutions, which makes the task of
controlling this robot non-trivial.

The goal of this work is to design a robust RL agent able
to regulate the pose of the robot in a plane free of obstacles.
Hence, the agent must learn how to drive the 8 motors that
govern the motion of the robot to move it towards the desired
pose.

B. Notation

We consider a RL framework in which an agent interacts
with a fully observed environment E in discrete timesteps.
At each timestep t, the agent observes a state st ∈ S,
with S being the Observation Space, produces an action at
according to its policy π : S → P (A), with P (A) being
the probability distribution over the Action Space A, and

receives a reward rt = R(st, at). The task is modeled as
a Markov Decision Problem (MDP), which is composed of:
(i) a transition function T (st, at, st+1), that represents the
probability p(st+1|st, at) of visiting the state st+1, given the
state-action pair (st, at); (ii) continuous observation and action
spaces (consistent with classical control problems) s ∈ S with
S ⊆ RN , a ∈ A withA ⊆ RM ; (iii) an initial state distribution
p(s1), and (iv) a reward function R(st, at). The return from a
state st is defined as the sum of discounted future rewards
Rt =

∑T
i=0 riγ

i with γ ∈ [0, 1) being a discount factor
that prioritises short-term (or long-term) rewards and T the
total number of steps. The main goal is to learn an optimal
policy that maximizes the expected return. Hence, a parametric
form of the policy πθ is leveraged, in order to update the
parameters θ towards the optimal solution. The experience
collection is organized in episodes, in which the agent explores
the environment and stores the collected experience into a
Replay Buffer.

C. Definition of goal g

For each episode a new goal g = (xg, yg, θg) ∈ G ⊂
R2 × SO(2) is generated, where xg and yg are the Cartesian
coordinates with respect to the global reference frame, and θg
is the desired heading angle (see Fig. 1a).

Following the notation introduced in [13], we employ a
reward function r(st, g) parametrized on g. Each goal g is
a state belonging to Sg ⊂ S, where Sg is defined as the set of
states satisfying the goal g. Equipped with this notation, the
agent is said to reach the goal whenever the current state st
gets in Sg . In the following, we formally define Sg .

Let dlin(st, g) =
√
(xt − xg)2 + (yt − yg)2 be the linear

Euclidean distance between the current state st and the goal
g; similarly, dang(st, g) = |θt − θg| is the absolute value of
the heading error. A graphical representation of the introduced
notation is provided in Fig. 1a. We define Sg to be the set of
states satisfying both the conditions: (i) dlin(st, g) < ϵlin, (ii)
dang(st, g) < ϵang , with ϵlin and ϵang being respectively the
linear and angular thresholds accepted (tolerances).

To have a compact definition, we can write equivalently
Sg = {st ∈ S : ∥f(d(st, g))∥∞ < ϵ} with d(·) being
a function returning a vector of two components collecting
the linear and angular distances, f(·) being a function that
normalizes the linear and angular distances with respect to
their tolerances and ϵ being a threshold on the distance
defined over the triple (xt, yt, θt) with respect to g. Under this
notation, in simple terms, the agent reaches the goal g if the
state st enters the set Sg , i.e. the robot tracks the desired pose
with a given tolerance on the Euclidean and angular errors.

D. Observation and action spaces

The observation space has been designed to be composed
of: the linear (el) and angular (ea) errors with respect to the
goal coordinates, normalized to their respective initial errors;
the ideal velocities in x (V CoM

x) and y (V CoM
y) axes of the

CoM of the robot, coherent with the maximal velocity each
wheel can impose; each wheel’s velocity error with respect to

2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)

43
Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:32:56 UTC from IEEE Xplore. Restrictions apply.

V CoM
x and V CoM

y , defined as eV CoM
x

and eV CoM
y

respectively;
the ideal angular velocity (ω̇i

t) and the actual velocity (ω̇t).
Thus, the dimension of the observation space is 14.

The action space is composed of the linear velocities and
the steering angles of each wheel. The steering angle is
represented through its sine and cosine components, following
[14]: the representation of a connected set of rotations in a cir-
cumference through its angles in the range [−π, π) introduces
a discontinuity. In fact, [14] argues that such discontinuities
are typically harder to learn for a neural network. We found
this issue to hold by testing both configurations. Indeed,
representing the rotations directly in radians resulted in an
agent incapable of controlling the robot. Also, a representation
of an angle through its cosine and sine components allows one
to formulate an error on the said angle in the form of a norm.

E. Reward

An extensive phase of reward shaping has been conducted
and converged to define the reward rt as the sum of the
following components: (i) the linear distance from the goal
coordinates dlin(st, g); (ii) the angular distance from the goal
coordinate dang(st, g); (iii) the sum of the quadratic errors of
the wheels’ velocities in the x and y directions eVxy

t ; (iv) the
error of the angular velocity applied with respect to the ideal
one eω̇

i

t . Hence, the reward function rt becomes parametric
with respect to the current state st, the epoch’s goal g and the
action at:

rt(st, g, at) = −dlin(st, g)− dang(st, g)− eVxy
t − eω̇

i

t (1)

We consider ideal the configuration of a unicycle robot.
Introducing such an indication of how to move helps to
increase the efficiency of exploration, especially in the initial
phases.

III. METHODOLOGY

In this work, we propose two tools that aim at improving
the exploration, sample efficiency, robustness, and the overall
performance of the RL agent. We introduce the Difficulty
Manager (DM), as a tool to feed the agent with goals always
proportioned to its current performance, and the Episodic
Noise, as a tool to increase the efficiency of the exploration
of the action space.

A. Difficulty Manager (DM)

The key idea for the DM (Fig. 2) is to create a progression
in the difficulty of the goals presented to the agent. The goals
g are sampled from a distribution with an average that is
increased accordingly to the skills of the current agent. The
tail of said distribution will also include all the simpler goals,
with the intent of preventing the agent from over-fitting on the
current distribution.

Hence, in the early phases of training, when the agent is
hardly able of moving at all, goals will be generated near
the initial pose and, as the agent learns to move efficiently,
goals placed further away will be presented to allow the agent
improve its performance.

Fig. 2: Difficulty Manager (DM)

The proposed system is based on three main components as
shown in Fig. 2.

Each training episode i produces a couple goal-terminal
state, i.e. (gi, s

i
T). The Episode Classifier reads this couple

and produces a label yi associated with the current episode to
classify its performance. The label yi is sent to the Evaluator,
which temporarily stores the label in a queue to observe the
evolution of training, and potentially triggers an evaluation
phase to quantify, by considering the success rate over a set
of uniformly sampled goals, the robustness and reliability
of the agent; if the model satisfies a certain condition (see
below), the current level l is increased and sent to the Goal
Generator. This component holds the goal distribution Dl

related to the current difficulty level l ∈ {1, . . . , L}, with
L being the maximum difficulty level; for each new training
episode it samples a new goal gi which is sent in input to the
new episode.
Episode Classifier. This block maps each episode i to a label
yi that classifies the agent’s performance. In particular, the
episode can be classified as a success (yi = S, the agent has
reduced the distances under the threshold), a failure (yi = F,
distances have been reduced but not under the threshold), or
a serious failure (yi = SF, the final distances are greater than
the initial ones). The classification is performed according to
the following conditions on the terminal state siT associated
with the i-th goal gi:

yi =

S ∥f(d(sit, gi))∥∞ ≤ ϵ

F ϵ < ∥f(d(sit, gi))∥∞ < (1− ϵ)

SF ∥f(d(sit, gi))∥∞ ≥ (1− ϵ)

(2)

Goal Generator. This component implements a negatively
skewed distribution Dl, with an average Dl, associated with
the current level l. For each episode, it samples a new goal
from the current distribution and sends it in input to the new
episode.
Evaluator. This block holds a window of W episodes’ labels
that allows to observe the leaning evolution. To the purpose,
the labels of the latest epochs are stored in a FIFO queue W .
We define WSF = {y ∈ W : y = SF} and WF = {y ∈ W :
y = F} the set containing only the labels of episodes in W
classified as serious failures or failures respectively.

Then, the agent accesses an evaluation phase if and only if
the following evaluation criteria are met: (i) no serious failures
have been observed in the current window (i.e., |WSF| = 0)

2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)

44
Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:32:56 UTC from IEEE Xplore. Restrictions apply.

and (ii) the ratio of episodes rated as failed (yi = F) is lower
than a given threshold η: |WF|/|W| < η.

During the evaluation, the model is tested on a set of differ-
ent goals generated uniformly in the range of distances reached
so far. The objective is to save a robust model (πl

θ, π
l
Q),

associated with the current level l, that will be carefully
evaluated later. The robustness is evaluated considering the
following conditions: (i) the successful tests must exceed a
given threshold T (i.e., the number of failures must be below
the complementary threshold 1 − T); (ii) no serious failures
must be registered. When an evaluation phase concludes
positively, the model is saved, the level is increased by one
(l← l + 1) and the window is emptied.

Clearly, the first models to be saved only saw the initial
distributions and, as a consequence, will hardly be capable of
generalising to goals placed at higher distances, however, it is
interesting to analyze the different behaviors that each saved
model exhibits. More insights are presented in Section IV.

B. Episodic Noise

The second tool we provide concerns the noise applied over
the actions. In this work, an “episodic noise” has been used
to improve the exploration of the action space, in contrast
to the typical noise identified by a zero mean Gaussian (or
uniform) distribution. One of the main reasons behind this
choice is that completely random actions (especially in the
initial phases) may cause the agent to barely move from the
initial position, due to the peculiar dynamics of the robot.
Instead, for each episode, we sample a value ρ from a Gaussian
distribution, clipped in the range (−1, 1). Such value is then
used at each step of the current episode as the mean of a
new distribution with standard deviation σ (a hyperparameter),
from which the actual noise is sampled. This generates a
noise that, inside the episode, keeps around the set average
(most likely different from 0), allowing the appearance of
more useful and continuous behaviors than the ones obtained
from noise with zero mean. As the agent learns, this signal is
reduced in order to make more space for exploitation.

IV. RESULTS

In this section, we compare three state-of-the-art RL algo-
rithms (PPO, SSRL, and TD3), and then focus on an ablation
study of the proposed tools on the best-performing algorithm.
The results shown in the following have been obtained by
implementing the robot and environment described in Sec-
tion II in “Gym Ignition” [15]. Such a simulation environment
has a light physics engine and benefits from the interfaces of
“OpenAI Gym” [16]. This simplifies the process of creating
new environments and tasks.

Fig. 3 shows the results of the three agents with (Fig. 3b)
and without (Fig. 3a) our proposed tools1.

Even though the proposed tools allow all the considered
algorithms to improve performance in the first stages, neither

1Note: these results are obtained on several hyperparameter configurations.
For brevity and due to lack of space here we report the results from one
configuration only.

0 100 200 300 400
Epoch

-15K

-10K

-5K

0K

R
ew
ar
d

TD3 SSRL PPO

(a) Baseline Agents

0 100 200 300 400
Epoch

-15K

-10K

-5K

0K

R
ew
ar
d

TD3 SSRL PPO

(b) Agents with Ep.N and DM

Fig. 3: RL Algorithms Comparison

PPO nor SSRL manage to solve the task over 600k interaction
timesteps. We attribute these negative results to two factors.
Being PPO an on-policy RL algorithm, during training it can-
not make use of meaningful episodes (the ones during which
the robot moves properly, which are rarer when the agent is
still learning) as much as off-policy algorithms do, since the
latter are equipped with a replay buffer. Regarding SSRL, we
argue that the main limitations might be ascribed to the update
technique and the buffer employed: in the initial phases the
agent will most likely experience trajectories associated with
poor performance and on this experience it employs imitation
learning that leads toward suboptimal updates, falling in a
vicious cycle that impairs significant improvements. Note that,
in Fig. 3 both PPO and SSRL equipped with the proposed tools
show some improvements (several peaks can be observed) but
they fall on the same pattern soon after epoch ∼ 100. Even
if our tools slightly improve (at least in the beginning) the
performance of all the considered agents, they are not meant
to solve issues related to the algorithms themselves, but rather
to improve their sample efficiency.

From Fig. 3a, we observed that TD3 baseline is able
to improve performance but its performance is not robust.
However, by leveraging the proposed tools, TD3 reaches
good performance in less than 100 episodes (less than 150k
interaction timesteps) and stabilises over time, even on more
complex goals (Fig. 3b).

For this reason, in the remaining part of this paper, we focus
our study on the TD3. In particular, we consider four agents
trained with the TD3 algorithm: (i) Baseline (BL), which is the
vanilla TD3; (ii) Baseline with DM (BL+DM): which is the
vanilla version equipped only with the DM tool; (iii) Baseline
with Episodic Noise (BL+Ep.N), which is the vanilla version

2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)

45
Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:32:56 UTC from IEEE Xplore. Restrictions apply.

Hyperparameters Value

Agent LR Actor 0.0001
LR Critic 0.0001

γ 0.95
τ 0.1
σ 0.3

Noise Decay 0.99
Actor Update Rate 125

Batch Size 32

Memory Type PER
Mem. Capacity 50000

α 0.5
β 0.4

DM W 10
η 0.1

Init. Dist. (m) 0.6
Step Dist. (m) 0.4

Init. Ang. Dist. (rad) 0.75
Step Ang. Dist. (rad) 0.6
Max Goal Dist. (m) 4.0

T 0.85

TABLE I: Hyperparameters

equipped only with the Episodic Noise tool; (iv) Baseline
with DM and Episodic Noise (BL+DM+Ep.N, also referred to
as “Ours” for brevity purposes), which is the vanilla version
equipped with both the tools2.

Table I reports the key hyperparameters of the algorithm and
the proposed tools. It is worth mentioning that both the actor
and critic approximators are composed of two hidden layers,
512 and 256 respectively. All tests consist of reaching the same
200 goal coordinates for each agent, generated uniformly in
a range of 6 meters for the Cartesian coordinates and in the
whole range of [−π, π) for the angular goal. During training,
which lasts at most 2000 epochs, all agents will experience
goals distant at most 4 meters away, hence, we not only
evaluate the performance of the model on known distances,
but also on greater ones. This lets one assess the generalization
capabilities of the model considered.

Note that, in all tests conducted, the BL agent has never
met our evaluation criteria. However, for a comprehensive
comparison of all the agents, the BL agent’s models presented
have been saved every 500 epochs.

A. Overall Performance

In order to assess the impact of each component, we
evaluate the performance of each agent during training. Fig. 4a
reports every access to the evaluation phase and the corre-
sponding episode at which such evaluation occurred. Each
evaluation’s result is reported and represented by a ◦, dif-
ferentiating between successful evaluations (green ◦), failing
evaluations (orange ◦) and evaluations interrupted by a serious
fail (red ◦). Notice that evaluations are grouped by agent (the
y-axis of Fig. 4a). As an overview of the performance of each
considered agent, Fig. 4b shows the success rates obtained
during testing (expressed in percentage) for each model that
succeeded an evaluation in the sense defined in Section III-A.

2https://c3lab.poliba.it/SERL provides videos showing the behavior of the
trained agents as they progress through their training phases

0 500 1000 1500 2000
Episode

BL

BL+Ep.N

BL+DM

Ours

Ag
en

t

Serious Fail Fail Success

(a) Evaluations per Agent

500 1000 1500 2000
Episode

40

60

80

100

Su
cc

es
s %

BL BL+Ep.N BL+DM Ours

(b) Tests’ Success Rate

Fig. 4: Overall Performance

As one can observe from both Fig. 4a and Fig. 4b, the
baseline (BL) does not really show a progression: the success
rates of the sampled models are modest and quite variable,
indicating poor robustness of the trained policy. Moreover, BL
shows no progression as training is carried out. The BL+Ep.N
obtains good performance (85-90% success rate) only after
∼1750 episodes of training, producing two “good models”,
i.e. models that pass the evaluation phase. The BL+DM
passes only two “levels”, experiencing goals at a maximum
average of ∼1.5 meters. The first model (obtained quicker than
BL and BL+Ep.N) shows good generalisation capabilities,
especially considering the (simpler) goals experienced. The
second model shows slightly increased performance. Finally,
our agent (“Ours”) shows a particularly interesting trend: the
first good model to pass the evaluation is obtained very quickly
(epoch 135) and is followed by a condensed sequence of
evaluations (successful in many cases), highlighting how the
tools help the algorithm steadily improve performance towards
convergence. The peak in performance is registered at epoch
605 with a success rate of 100%. In summary, the proposed
agent (“Ours”) improves the sample efficiency compared to
the other agents that lack the two tools.

We argue that providing goals far from the origin during
the early training stages impairs the efficiency of the training
process. This is due to a vicious circle triggered by three
main factors: (i) in the early stages the agent cannot produce
significant movements; (ii) hence, the observations in the
replay buffer will not be characterized by a wide diversity
(since the agent keeps close to the origin), thus possibly
producing updates that lead to local sub-optimal policies and
(iii) as a further consequence, the rewards associated to these

2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)

46
Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:32:56 UTC from IEEE Xplore. Restrictions apply.

0.025 0.050 0.075 0.100
0.0
0.2
0.4
0.6
0.8
1.0

C
C
D
F

Threshold

(a) CCDF by Normalized Distance

0.15 0.45 0.75 1.05
0.0
0.2
0.4
0.6
0.8
1.0

C
C
D
F

Threshold

BL
BL+Ep.N
BL+DM
Ours

(b) CCDF by Heading Error [rad]

Fig. 5: CCDFs on linear and angular distance

state-action pairs will be quite similar to each other, creating
a valley in the cost function. In order to escape this local
minimum, the agent should pseudo-randomly produce at least
a barely good trajectory (a situation that is more likely to
occur when the sampled goal is close enough to the origin).
Providing closer goals increases diversity in the buffer, due
to a reduced magnitude of the errors, allowing the agent to
repel ineffective actions and select much more frequently those
actions associated with higher rewards.

B. Linear and Angular Distances Coverage

Next, we investigate the robustness of the best models
obtained for each agent. Fig. 5a and Fig. 5b represent the
complementary cumulative distribution functions (CCDFs) of,
respectively, normalized linear distance and normalized angu-
lar distance. Both figures show a dashed vertical line which
represents the thresholds for linear and angular distances. Only
those models whose CCDFs are below both the thresholds
are considered to have reached good performance, see Sec-
tion II-C.

Observing Fig. 5a, it may seem that the BL+DM agent (in
green) achieves the best performance; however, a closer look
reveals that it does not grant the satisfaction of the success
condition, since the curve slips beyond the threshold. On the
contrary, the agent equipped with both the proposed tools (in
red) grants complete coverage, never trespassing the threshold.

Fig. 5b clearly shows that only the agent equipped with both
the tools (in red) is capable of respecting the thresholds in all
the cases. The second best performing agent is the baseline
equipped with the episodic noise, which grants on ∼90% the
complete coverage of the angular distance.

C. Maneuverability Exploitation

Another interesting result regards the ability of the agent
of fully exploiting the robot’s maneuverability: we found that
agents equipped with the Episodic Noise learn to balance the
minimization of linear and angular distances throughout the
epoch, while agents without such tool learn to minimize either
linear or angular distance first and only later they minimize
(or try to) the other metric. Due to the lack of space, we
cannot include figures showing the trajectories followed by
each agent during the tests and point the interested reader to
videos reported at https://c3lab.poliba.it/SERL.

V. CONCLUSIONS

In this work, we studied the control of an over-actuated
mobile platform for a pose regulation task. Unlike the clas-
sical approach, which usually limits the maneuverability of
the mobile platform, we followed a learning-based, model-
free approach, leveraging a RL algorithm. We studied the
performance of some of the most popular RL algorithms
and a more recent one and then focused on the TD3, which
showed the most promising initial results even though it
never met our requirements. Hence, we introduced two new
tools: the Episodic Noise and the Difficulty Manager (DM).
The combination of these two tools allows improving the
performance of the baseline algorithm, outperforming it and
reaching 100% of success rate during tests, including goals
never experienced.

REFERENCES

[1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” in Proc. of ICLR, 2015.

[3] D. Zha, K.-H. Lai, K. Zhou, and X. Hu, “Simplifying deep reinforcement
learning via self-supervision,” arXiv preprint arXiv:2106.05526, 2021.

[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41–48.

[5] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Proc. of
NIPS, 2015.

[6] S. Sharma and B. Ravindran, “Online multi-task learning using active
sampling,” in Proc. of ICRL, 2017.

[7] H. Yang, V. Cocquempot, and B. Jiang, “Optimal fault-tolerant path-
tracking control for 4WS4WD electric vehicles,” IEEE Transactions on
intelligent transportation systems, vol. 11, no. 1, pp. 237–243, 2009.

[8] X. Zhang, Y. Xie, L. Jiang, G. Li, J. Meng, and Y. Huang, “Fault-
tolerant dynamic control of a four-wheel redundantly-actuated mobile
robot,” IEEE Access, vol. 7, pp. 157 909–157 921, 2019.

[9] J. Liao, Z. Chen, and B. Yao, “Performance-oriented coordinated adap-
tive robust control for four-wheel independently driven skid steer mobile
robot,” IEEE Access, vol. 5, pp. 19 048–19 057, 2017.

[10] S. Krishnan, B. Boroujerdian, W. Fu, A. Faust, and V. J. Reddi, “Air
learning: a deep reinforcement learning gym for autonomous aerial robot
visual navigation,” Machine Learning, vol. 110, no. 9, pp. 2501–2540,
2021.

[11] J.-B. Song and K.-S. Byun, “Steering control algorithm for efficient drive
of a mobile robot with steerable omni-directional wheels,” Journal of
mechanical science and technology, vol. 23, no. 10, p. 2747, 2009.

[12] C. P. Connette, C. Parlitz, M. Hagele, and A. Verl, “Singularity avoid-
ance for over-actuated, pseudo-omnidirectional, wheeled mobile robots,”
in Proc. of IEEE ICRA. IEEE, 2009, pp. 4124–4130.

[13] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal gen-
eration for reinforcement learning agents,” in Proc. of ICML. PMLR,
2018, pp. 1515–1528.

[14] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
5745–5753.

[15] D. Ferigo, S. Traversaro, G. Metta, and D. Pucci, “Gym-ignition:
Reproducible robotic simulations for reinforcement learning,” in 2020
IEEE/SICE International Symposium on System Integration (SII),
2020, pp. 885–890. [Online]. Available: https://github.com/robotology/
gym-ignition

[16] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)

47
Authorized licensed use limited to: Politecnico di Bari. Downloaded on December 13,2023 at 10:32:56 UTC from IEEE Xplore. Restrictions apply.

