
TCP Congestion Control over 3G Communication

Systems: an Experimental Evaluation of New

Reno, BIC and Westwood+?

Luca De Cicco and Saverio Mascolo
{ldecicco,mascolo}@poliba.it

Dipartimento di Elettrotecnica ed Elettronica, Politenico di Bari, Via Re David 200,
Italy

Abstract. One of TCP's key tasks is to react and avoid network conges-
tion episodes which normally arise in packet switched networks. A wide
literature is available concerning the behaviour of congestion control al-
gorithms in many di�erent scenarios and several congestion control algo-
rithms have been proposed in order to improve performances in speci�c
scenarios. In this paper we focus on the UMTS wireless scenario and we
report a campaign of measurements that involved around 3000 �ows and
more than 40 hours of measurements using three di�erent TCP stacks:
TCP NewReno, which is the congestion control algorithm standardized
by IETF, TCP BIC which is the default congestion control algorithm
adopted by the Linux operating system, and TCPWestwood+ also avail-
able in the Linux kernel. The experimental evaluation has been carried
out by accessing the public Internet using an UMTS card. Measurements
of goodputs, RTTs over time, packet loss ratios, number of timeouts and
Jain Fairness Indices are reported through cumulative distribution func-
tions. Moreover, the e�ciency of each TCP version in transferring �les
has been evaluated by varying the �le size in the range from 50KB up
to 500KB. The cumulative distribution functions reported in the paper
show interesting results: 1) a single downlink �ow is far from saturating
the channel bandwidth; 2) considered TCP stacks provide similar results;
3) 90th (50th) percentile of the goodput of a single downlink �ow is less
or equal then 230 kbps (120 kbps) compared to a nominal 384 kbps UMTS
downlink channel.

TCP, congestion control, 3G, UMTS

1 Introduction

Since 2001, the year that the �rst commercial Universal Mobile Telecommu-
nications System (UMTS) network was deployed by NTT DoCoMo in Japan,

? We would like to thank Fabio Ricciato for allowing us to use a server at FTW. This
work has been partially supported by the MIUR-PRIN project no. 2005093971 "FA-
MOUS Fluid Analytical Models Of aUtonomic Systems" and by Financial Tradeware
S.r.l..



many telecom operators have launched UMTS access to subscribers. As many
3G networks are emerging, it is important to evaluate how di�erent Transmission
Control Protocol (TCP) congestion control mechanisms behave in such networks.
The UMTS network provides wide area Internet wireless access with downlink
speeds up to 384 kbps and round trip times in the order of 300 ms thus providing
a viable solution for multimedia and for Voice over IP (VoIP) applications.

It is known that e�ciency of TCP as a transport protocol degrades when lossy
links are present in the routing path [6][4], such as in the case of wireless links.
For this reason, the UMTS link layer implements the Radio Link Control (RLC)
protocol that masks the lossy channel to upper layers through retransmissions. In
this way, in-order packet delivery and loss probability less than 1% are provided
[1]. The reliability of the link layer comes at the cost of an highly variable
segments delay as seen at the transport layer when frames are retransmitted
at the link layer, thus possibly leading to spurious timeouts [10]. The impact
of spurious timeouts has been studied extensively so far and it has been often
considered as one of the major causes of TCP throughput degradation. However,
against this common belief authors in [5] have found that, in the case of a well-
designed UMTS network and in the static scenario, the number of spurious
timeouts is very low, thus having negligible impact on TCP throughput.

Another issue raised by the UMTS link layer is the variability of the available
bandwidth that is caused by the channel state scheduling. In [1] authors address
both rate and delay variabilities, showing the negative e�ects of delay variability
on throughput achieved by TCP.

In this paper we present the results obtained through an extensive campaign
of measurements obtained over a live UMTS network. Both downlink and uplink
measurements of goodputs, round trip times (RTT), queuing times, packet loss
ratios, number of timeouts and Jain Fairness Indices (JFI) have been collected.
We have considered three di�erent TCP stacks that are available in the Linux
kernel: TCP NewReno [12], which is the congestion control algorithm standard-
ized by the Internet Engineering Task Force (IETF), TCP BIC [16], which is the
default congestion control algorithm adopted by the Linux operating system,
and TCP Westwood+, which has been proposed in [13,11] and is also available
in the Linux kernel.

The rest of the paper is organized as follows: in Section 2 we summarize the
prior work on live UMTS measurements and we brie�y describe the considered
congestion control algorithms; in Section 3 we describe the considered experi-
mental testbed; Section 4 reports experimental results whereas a discussion of
the results is reported in Section 5. Finally, Section 6, draws the conclusions.

2 Related Work

2.1 Live UMTS network performance evaluation

The academic literature contains a plethora of simulation studies about TCP
performances over UMTS and GPRS, but very few papers have addressed the
performance evaluation of a live UMTS network.



In [9] authors report results obtained by an experimental investigation carried
out in an early deployment of two 3G networks in near-ideal conditions, i.e. no
other user was accessing the network. In the paper it is noticed that the UMTS
link is a�ected by very few spurious timeouts and that the employment of the
Eifel algorithm did not provide any throughput improvement.

In [7] authors report goodput measurements obtained by accessing the public
3G/UMTS network to transfer �les with di�erent size; the paper focuses only
on the downlink and does not report any data regarding RTT variability, typical
number of timeouts and fairness indices.

Authors of [8] provide an IP and TCP level measurement of the UMTS down-
link and uplink in both static and mobile scenario. The paper focuses on �nding
the optimal settings for the MSS and the initial receiver window; throughput
measurements are given for a limited number of considered scenarios.

2.2 TCP Congestion control algorithms

One of the most important tasks that the TCP addresses is regulating the send-
ing rate in order to avoid the network congestion. In [14] Van Jacobson has pro-
posed a solution to the network congestion control problem that mainly consists
of two distinct phases: a probing phase and a decreasing phase (the well-known
Additive Increase Multiplicative Decrease - AIMD - paradigm [2]). During the
probing phase the link capacity is probed using an exponential growth law which
is called slow start, or a linear growth law that is called congestion avoidance.
The congestion control algorithm switches from the probing phase to the de-
crease phase when a three duplicate acknowledgment (3DUPACK) or a timeout
is experienced indicating that a congestion event has taken place. During the
decreasing phase the congestion window cwnd is multiplicatively decreased in
reply to the congestion episode.

During the congestion avoidance phase of TCP NewReno the congestion
window is increased by one packet for each RTT , whereas in the slow start
phase the cwnd is doubled each RTT . The congestion window is halved after a
congestion episode, whereas when a timeout is experienced the cwnd is set to 1
segment and the slow start phase takes place.

TCP Binary Increase Congestion Control (BIC) [16] is made of two parts:
the binary search increase phase and the additive increase phase. In the binary
search phase the congestion window setting is performed as a binary search
problem. After a packet loss, the congestion window is reduced by a constant
factor b, cwndmax is set to the window size before the lost and cwndmin is set
to the value of congestion window after the loss (cwndmin = b · cwndmax). If the
di�erence between the congestion window middle point (cwndmax +cwndmin)/2
and the minimum congestion window is lower than a threshold Smax the protocol
starts a binary search algorithm increasing the congestion window to the middle
point, otherwise the protocol enters the �linear increase� phase and increments
the congestion window by one for each received ACK. If BIC does not get a
loss indication at this window size, then the actual window size becomes the
new minimum window; otherwise, if it gets a packet loss, the actual window size



becomes the new maximum. The process goes on until the window increment
becomes lower than the Smin threshold and the congestion window is set to
cwndmax. If the window grows more than cwndmax, the protocol enters into a
new phase (max probing) that is specular to the previous phase; that is, it uses
the inverse of the binary search phase �rst and then the additive increase.

TCP Westwood+ [11,13] is a sender side modi�cation of TCP NewReno in
which the multiplicative decreasing phase is replaced with an adaptive decreas-
ing phase. In particular, after a congestion episode cwnd is set such that the
bandwidth which is available at the time of congestion is exactly matched. The
available bandwidth is estimated by counting and averaging the stream of ACK
packets. In particular, when three DUPACKs are received, the congestion win-
dow cwnd is set equal to the estimated bandwidth (BWE) times the minimum
measured round trip time (RTTmin). After a timeout the slow start threshold is
set equal to BWE ·RTTmin and the cwnd is set to one.

3 Experimental Testbed

In order to carry out our experiments we have set up a machine at the FTW
research center in Vienna, installing a Linux Kernel with Web100 support. The
TCP �ows have been generated and received using a modi�ed version of iperf
[15] which uses the libnetmeas [3] library that we have developed in order to
automatically get instantaneous values of internal kernel variables such as cwnd,
RTT, ssthresh, timeouts.

We have found out that the telecom operator uses a transparent proxy that
probably implement some sort of Split Stream solution, so that when the user
downloads the �le for the �rst time, the �le is cached on a proxy that is located
in the telecom operator network. This way the second download provides better
results, since the path results shorter than that of the �rst download. For this
reason we have not used an HTTP server as the sender and an HTTP client
(such as wget) for the receiver.

The scenarios and the testbed that we have used in this investigation are
aimed at characterizing both the uplink and downlink UMTS channels in the
most common user scenarios. The user equipment (UE) is a Nokia 6630 mobile
phone connected to a laptop via USB 2.0 that was located at the C3Lab, Po-
litecnico di Bari (Italy) accessing the public UMTS network using a commercial
card provided by a local mobile operator (Figure 1).

Fig. 1. Experimental Testbed

The UE was static and was accessing the UMTS network in an indoor en-
vironment so that handovers could not occur during measurements. The nom-



inal value declared by the telecom operator for the downlink (uplink) channel
is 384 kbps (64 kbps). Based on the results obtained in [8] we have �xed the
maximum segment size to 1500 bytes. Moreover we have set the initial receiver
advertisement window to the default value of 64 Kb which is well above the
bandwidth delay product so that we are sure that the bottleneck is located in
the UMTS network.

For each connection we have collected a very rich set of measurement includ-
ing goodputs, RTTs, queuing times, number of timeouts, retransmission ratios.
We have evaluated the Jain Fairness Index as follows [2]:

JFI =

(∑N
i=1 xi

)2

N
∑N

i=1 x2
i

where xi is the mean goodput obtained by the i-th �ow accessing the downlink
or the uplink.

We have evaluated TCP congestion control algorithms in the following sce-
narios: i) one �ow over the UMTS downlink or uplink; ii) two or four homo-
geneous �ows sharing the UMTS downlink or uplink; iii) short �le transfers of
50KB, 100KB, 200KB, 500KB, �les on both UMTS downlink and uplink.

For each scenario we have run experiments using the Linux Kernel imple-
mentation of TCP Bic, TCP NewReno and TCP Westwood+[11,13]. All tests,
except those for the short �le transfer scenario, lasted approximately 100 seconds
each, thus counting for more than 40 hours of active measurements of downlink
and uplink UMTS channel. In order to perform a fair comparison, we have run
tests by rotating TCP congestion control algorithms and scenarios and repeating
tests in di�erent days and in di�erent hours of the day.

4 Experimental Results

We have performed an extensive experimental evaluation of the three congestion
control algorithms by collecting measurements of around three thousand �ows
for more than 40 hours of active measurements. In this section we report the
results collected for both downlink and uplink.

4.1 Goodput, link utilization and fairness

The case of downlink �ows

Figures 2 (a), (b) and (c) report the cumulative distribution functions for the
results obtained for the cases of one, two and four �ows respectively, sharing the
UMTS downlink, whereas mean goodputs and standard deviations are summa-
rized in Table 1.

It is noteworthy that the three congestion control protocols provide similar
results in all the cases, the only remarkable di�erence being the case of the
single �ow (Figure 2 (a)) where TCP NewReno obtain 12% and 8% goodput
less than TCP Westwood+ and TCP Bic. The median values in the case of



one, two and four �ows are in the ranges [101, 121], [76, 87] and [71, 78] kbps
respectively, whereas the upper 10th percentile experiences bandwidth in the
ranges [220, 249], [128, 146] and [121, 139]kbps, respectively.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goodput CDF − 1 flow downlink

goodput (kbps)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(a)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goodput CDF − 2 flows downlink

goodput (kbps)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(b)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Goodput CDF − 4 flows downlink

goodput (kbps)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(c)

1 2 4

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

Li
nk

 u
til

iz
at

io
n

downlink utilization

TCP Westwood+
TCP Bic
TCP NewReno

(d)

Fig. 2. Cumulative distribution function of the goodput measured in the case of 1 �ow
(a), 2 �ows (b), 4 �ows (c) sharing the UMTS downlink; bandwidth utilization (d)

New Reno BIC Westwood+

#Flows E[x] σ(x) Ch. Utiliz. E[x] σ(x) Ch. Utiliz. E[x] σ(x) Ch. Utiliz.

1 122.03 65.38 31.8% 133.98 69.41 34.9% 138.58 77.10 36.1%
2 86.08 36.20 44.8% 85.82 40.51 44.7% 90.41 46.12 47.1%
4 80.13 38.53 83.5% 83.83 30.68 87.3% 82.46 40.60 85.9%

Table 1. Average and standard deviation values (in kbps) of goodput for the UMTS
downlink channel

Figure 2 (d) shows the downlink utilization that is computed by averaging
goodputs of all the experiments performed for each considered protocol when
the number of �ows sharing the link are one, two or four. It is worth noting
that all the three tested TCP variants provide less than 40% of bandwidth



utilization in the single �ow case. By increasing the number of �ows sharing
the bottleneck the utilization reaches about 90% in the four �ows case. We will
return later on this topic in Section 5 where we will discuss possible reasons of
the very low link utilization in the one �ow case. Finally, it is worth to notice
that goodputs reported by Catalan et al. [8] in the single �ow case averaged over
three experiments are similar to our results.

Moreover, concerning the fairness indices we have found that the considered
TCP variants provide similar average values of the JFI both in the two and
four �ows cases. We have obtained values around 0.94 for the two �ows case and
around 0.86 for the four �ows case.

The case of uplink �ows

The evaluation of the UMTS uplink channel have led to the results depicted in
Figure 3 (a). Also in the uplink scenarios the goodputs obtained by the consid-
ered TCP congestion control algorithms are very similar, TCP Bic performing
slightly better in the single �ow case.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1
Goodput CDF − uplink

goodput (kbps)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(a)

1 2 4
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Number of Flows

Li
nk

 u
til

iz
at

io
n

uplink utilization

TCP Westwood+
TCP Bic
TCP NewReno

(b)

Fig. 3. Goodput cumulative distribution function for the uplink scenario (a): 1 �ow in
solid lines , 2 �ows dashed lines and 4 �ows in dot-dashed lines. Link utilization (b)

In the case of uplink �ows Table 2 enlights that the values of the standard
deviation of goodput are very low for all the considered TCP stacks and in all
cases. The median values in the case of one, two and four �ows are respectively
in the ranges [53, 55], [24, 26] and [14, 15] kbps, whereas the upper 10th percentile
experiences bandwidths that are respectively in the ranges [57, 59], [31, 33] and
[17, 20]kbps.

Di�erently from the case of downlink �ows, the protocols that we have tested
have provided nearly full uplink utilization even in the single �ow case as it is
shown in Figure 3 (d). In the uplink scenario Jain Fairness Index is very high for
the considered TCP stacks, being around 0.99 for the two �ows case and around
0.95 for the four �ows case.



New Reno BIC Westwood+

#Flows E[x] σ(x) Ch. Utiliz. E[x] σ(x) Ch. Utiliz. E[x] σ(x) Ch. Utiliz.

1 56.44 2.09 88.2% 57.51 2.11 89.9% 55.62 1.74 86.9%
2 29.40 3.95 91.9% 29.44 2.31 92.0% 29.32 2.19 91.6%
4 14.78 4.08 92.4% 14.82 2.81 92.6% 14.72 2.51 92.02%

Table 2. Average and standard deviation values (in kbps) of goodput for the UMTS
uplink channel

4.2 RTT and queuing time

The case of downlink �ows.

Figures 4 (a), (b) and (c) show the cumulative distribution functions of the
round trip times (RTT) and the queuing times, hereinafter named tq

1, in the
case of the downlink channel, while Table 3 collects mean values, RTT standard
deviations and average queuing times for the considered scenarios.

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RTT and Queuing CDF − 1 flow downlink

(ms)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(a)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RTT and Queuing CDF − 2 flows downlink

(ms)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(b)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RTT and Queuing CDF − 4 flows downlink

(ms)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(c)

Fig. 4. RTT (solid lines) and queuing time (dashed lines) cumulative distribution func-
tion in the case of 1 �ow (a), 2 �ows (b) and 4 �ows (c) sharing the UMTS downlink.

New Reno BIC Westwood+

#Flows E[RTT ] σ(RTT ) E[tq] E[RTT ] σ(RTT ) E[tq] E[RTT ] σ(RTT ) E[tq]

1 1550 1096 1248 1457 897 1137 1469 1110 1125
2 1297 624 953 1369 691 1024 1219 508 873
4 1338 488 995 1159 230 825 1102 221 765

Table 3. Average and standard deviation values (in ms) of RTT for the UMTS down-
link channel. Average values (in ms) of queuing.

Even though the minimum RTT experienced in our evaluation is around
300 ms, the measured queuing times are very high and they do not depend
on the number of �ows, thus suggesting that in the single �ow case we have

1 The round trip time is de�ned as sum of a propagation time, which can be evaluated
as the minimum RTT, and the queuing time tq.



an excessive queuing. TCP NewReno exhibits a slightly in�ated value of RTT
quanti�ed in 100 ms in the one �ow case, due to larger queuing time. In all
evaluated scenarios, TCP Westwood+ provides less queuing time with respect
to the other two algorithms. This result is coherent with the Westwood+ unique
feature of clearing all queuing after a congestion.

The case of uplink �ows

Figures 5 (a), (b) and (c) show the round trip time and the queuing time
cumulative distribution functions in the case of uplink �ows while Table 4 collects
the values of mean RTT, RTT standard deviation and average queuing time.
Similarly to the downlink scenario, TCP Westwood+ exhibits less queuing time
except the case of four �ows where TCP NewReno provides slightly less queuing
time. Di�erently from the case of downlink �ows, the RTT and queuing time
tends to increase with the number of concurrent �ows.

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RTT and Queuing CDF − 1 flow uplink

(ms)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(a)

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RTT and Queuing CDF − 2 flows uplink

(ms)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(b)

500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RTT and Queuing CDF − 4 flows uplink

(ms)

C
D

F

TCP Westwood+
TCP Bic
TCP NewReno

(c)

Fig. 5. RTT (solid lines) and queuing time (dashed lines) cumulative distribution func-
tion in the case of 1 �ow (a), 2 �ows (b) and 4 �ows (c) sharing the UMTS uplink.

New Reno BIC Westwood+

#Flows E[RTT ] σ(RTT ) E[tq] E[RTT ] σ(RTT ) E[tq] E[RTT ] σ(RTT ) E[tq]

1 1471 113.2 927 1452 113.2 904 1368 87.1 828
2 1887 80.2 1416 1998 104.3 1521 1869 79.5 1364
4 2222 72.7 1556 2276 70.7 1621 2301 78.7 1587

Table 4. Average and standard deviation values (in ms) of RTT for the UMTS uplink
channel. Average values (in ms) of queuing.

4.3 Timeouts and packet retransmission percentage

Table 5 summarizes the average number of timeouts obtained on the UMTS
downlink and uplink in the considered scenarios. The results obtained in the
downlink and uplink scenarios are very di�erent and can be the source of the very
di�erent link utilization that we have reported in Section 4.1. In the downlink



case the �ows su�er around �ve timeouts throughout the 100 s duration of the
connection regardless of the number of �ows and the congestion control algorithm
used. On the other hand, in the uplink �ows case, the number of timeouts is
negligible.

New Reno BIC Westwood+

#Flows Downlink Uplink Downlink Uplink Downlink Uplink

1 5.84 0.15 4.82 0.13 5.27 0.15
2 6.44 0.04 5.43 0.03 6.20 0.06
4 5.35 0.45 5.24 0.35 5.80 0.43

Table 5. Average number of timeouts for downlink and uplink (the duration of the
connection is 100 s)

Due to space limitation we can't show the cumulative distribution function
of packet loss ratios, but we report the average value and the standard deviation
in the Table 6. By considering the values reported in the table we can observe
that there is no remarkable di�erence in the considered TCP congestion control
algorithms. In the case of downlink �ows, the retransmission percentage increases
with the number of �ows and it is below 11%, whereas in the case of uplink �ows
the fraction of retransmitted packets is less than 1%.

New Reno BIC Westwood+

Downlink Uplink Downlink Uplink Downlink Uplink

#Flows E[p] σ(p) E[p] σ(p) E[p] σ(p) E[p] σ(p) E[p] σ(p) E[p] σ(p)

1 7.13 4.89 0.04 0.12 6.75 2.97 0.03 0.10 7.79 6.05 0.03 0.10
2 7.96 5.28 0.02 0.12 7.97 4.41 0.02 0.12 10.12 6.86 0.02 0.10
4 10.95 5.85 0.40 0.98 10.05 3.77 0.23 0.52 11.69 4.57 0.27 0.55

Table 6. Average retransmission percentage (%) and standard deviation in the case of
uplink and downlink.

4.4 Goodput versus �le size

In this section we investigate the impact of the �le size on the goodput of TCP.
We have collected goodput measurements for �le size in the range from 50 KB
to 500 KB, in order to �nd out if the slow start phase degrades goodput in the
case of small size �le transfers. Figures 6 (a) and (b) show results respectively
for the downlink and uplink cases. In the case of downlink �ows, all considered
TCP variants provide similar results and the goodput is essentially constant
when the �le size increases, showing a maximum at 100 KB in the case of TCP
NewReno and TCP Westwood+. Also in the case of uplink �ows the goodput
is constant, slightly increasing of 10 kbps when the �le size grows from 50 KB



to 500 KB. Thus, we can conclude that the slow start phase does not cause
remarkable e�ects on the goodput in both the downlink and uplink channels.

50 100 150 200 250 300 350 400 450 500
0

32

64

96

128

160

192

224

256

288

320

352

384
Short file transfer − downlink

File size (Kbyte)

G
oo

dp
ut

 (
kb

ps
)

TCP Westwood+
TCP Bic
TCP NewReno

(a)

50 100 150 200 250 300 350 400 450 500
0

8

16

24

32

40

48

56

64
Short file transfer − uplink

File size (Kbyte)

G
oo

dp
ut

 (
kb

ps
)

TCP Westwood+
TCP Bic
TCP NewReno

(b)

Fig. 6. Goodput vs �le size for (a) downlink and (b) uplink channel

5 Discussion of results

In the previous sections we have reported the results of our extensive UMTS
evaluation and we have found that the performance of the considered TCP con-
gestion control algorithms are comparable in all the scenarios we have evaluated.

Furthermore, we have found that in the case of uplink �ows there are no
remarkable issues, since all TCPs provide satisfactory channel utilization and
exhibit very low number of timeouts. On the contrary, Section 4.1 has shown that
in the case of the downlink scenario, all TCPs provided a very low utilization of
UMTS links in the single �ow case. To gain an insight into the reason of the poor
link utilization let's consider the number of timeouts in the case of the downlink
�ows as summarized in Table 5. It can be seen that the number of timeouts is
roughly constant and does not depend on the number of �ows. This observation
suggests that timeouts are not due to congestion, otherwise we should expect to
measure more timeouts in the case of multiple �ows over the downlink. Thus, we
argue that the reason of the poor downlink utilization in the case of single �ow
is mostly due to the high number of timeouts that impose an upper bound to
the achievable goodput. In fact, the in�ated RTT values due to large bu�ering,
which has been already discussed in Section 4.2, make the retransmission timeout
longer, thus implying a very long time spent in recovering timeout events [10].
Using trivial arguments, the average time tout spent resolving timeouts is the
product of the average number of timeouts Ntout that a�ect the connection and
the average retransmission timeout value T0:

E[ttout] = E[Ntout] · E[T0] ∼= 35 s

which in our case, by considering that the connections last 100 s, results in 35%
of the connection time. It is worth to notice that this value matches the link
utilization shown in Section 4.1 (see Figure 2 (d)).



6 Conclusions

In this paper an extensive TCP performance evaluation over a live UMTS net-
work by measuring both downlink and uplink performance indices for three
di�erent TCP congestion control algorithms is reported. The main �ndings can
be summarized as follows: (i) the considered TCP congestion control algorithms
performed similarly both in downlink and uplink scenarios; (ii) the UMTS uplink
channel did not exhibit any remarkable issues, providing good channel utiliza-
tion and very low number of timeouts and packet retransmissions; (iii) a very
high number of timeouts has been observed in our measurements in the case of
downlink channel that does not seem to be caused by congestion; (iv) the UMTS
downlink channel utilization is poor in the single �ow case because of the joint
e�ect of the very high number of timeouts and the in�ated RTT due to queuing.

References

1. M.C. Chan and R. Ramjee. TCP/IP Performance over 3G Wireless Links with
Rate and Delay Variation. Wireless Networks, 11(1):81�97, 2005.

2. D.M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for con-
gestion avoidance in computer networks. Computer Networks and ISDN Systems,
17(1):1�14, 1989.

3. L. De Cicco. Libnetmeas, 2006.
4. D.A. Eckhardt and P. Steenkiste. Improving wireless lan performance via adaptive

local error control. In ICNP, pages 327�338, 1998.
5. F. Vacirca et al. An algorithm to detect TCP spurious timeouts and its application

to operational UMTS/GPRS networks. Computer Networks, 50(16):2981�3001,
2006.

6. H. Balakrishnan et al. A comparison of mechanisms for improving TCP perfor-
mance overwireless links. Networking, IEEE/ACM Trans. on, 5(6):756�769, 1997.

7. K. Pentikousis et al. Active goodput measurements from a public 3G/UMTS
network. Communications Letters, IEEE, 9(9):802�804, 2005.

8. M. Catalan et al. TCP/IP analysis and optimization over a precommercial live
UMTS network. Proc. IEEE WCNC'05, 3, 2005.

9. M. Kohlwes et al. Measurements of TCP performance over UMTS networks in
near-ideal conditions. Proc. VTC 2005-Spring, 2005.

10. R. Ludwig et al. Multi-layer tracing of TCP over a reliable wireless link. Proc.
ACM SIGMETRICS 1999, pages 144�154, 1999.

11. S. Mascolo et al. TCP westwood: Bandwidth estimation for enhanced transport
over wireless links. Proc. ACM MOBICOM, pages 287�297, 2001.

12. S. Floyd and T. Henderson. RFC2582: The NewReno Modi�cation to TCP's Fast
Recovery Algorithm. Internet RFCs, 1999.

13. L.A. Grieco and S. Mascolo. Performance evaluation and comparison of West-
wood+, New Reno, and Vegas TCP congestion control. ACM SIGCOMM Com-
puter Communication Review, 34(2):25�38, 2004.

14. V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM '88, pages
314�329, Stanford, CA, August 1988.

15. A. Tirumala and J. Ferguson. Iperf, 2001.
16. L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control (BIC) for fast

long-distance networks. In Proc. INFOCOM 2004, pages 2514�2524, 2004.


