
Tuning PIν Fractional Order Controllers for
Position Control of DC-Servomotors

Paolo Lino
Dipartimento di Elettrotecnica ed Elettronica

Politecnico di Bari

via Re David 200, 70125, Bari, Italy

email: lino@deemail.poliba.it

Guido Maione
Dipartimento di Ingegneria dell’Ambiente

e per lo Sviluppo Sostenibile

Politecnico di Bari

Viale del Turismo 8, 74100, Taranto, Italy

email: gmaione@poliba.it

Abstract—This paper introduces a loop shaping approach for
easily tuning PIν fractional order controllers of position DC-
servomotor drives. The design requirements are stated in terms
of band-width and stability robustness. The synthesis procedure
consists in shaping the open loop frequency response so as to
achieve the flatness of its Bode’s phase plot ensuring a good
phase margin, which remains constant in a wide range around
the crossover frequency. In this way, high stability robustness
to gain variations in the loop is achieved. The fractional order
integration also leads to limited overshoot and short settling time.
Simulation results are confirmed by laboratory experiments.

I. INTRODUCTION

According to recent surveys, PID (Proportional Integral

Derivative) are the most used controllers in industrial ap-

plications, because of their tuning simplicity. They are em-

ployed, indeed, by more than 90% of feedback loops [1],

[7]. On the other hand, in recent years, Fractional Order

Controllers (FOC), based on calculus of non-integer order

derivatives/integrals [17], have attracted much attention from

the research community. The definition of the building block

of FOC, however, dates back to the pioneering work of H. W.

Bode in feedback amplifier design, which introduced the ideal

transfer function (s/ωgc)
ν
, where ωgc is the gain crossover

frequency and ν is the non-integer order [4]. Moreover,

half a century ago, Tustin employed a FOC for controlling

the position of massive objects [20] and, some years later,

the papers [2], [14], [19] and the CRONE (i.e. Command
Robust d’Ordre Non Entier) control [18] gave new impulse

to the subject. From then on, FOC controllers have been

used successfully in the industry of antenna, spacecraft and

fire control systems. However, many design details have not

been published because they were company property [15]. At

present time, many researches focuses on tuning methods [3],

[12], [13], [16] for taking full advantage of the flexibility

characteristics of FOC. Namely, easily tuning approaches for

FOC are still at their infancy.
This paper deals with tuning PIν for DC-servomotor drives,

which are very important in many applications of mechat-

ronics, robotics and motion control. More precisely, a new

tuning approach is introduced for servomotors controlled by a

PIν . The approach is based on the shaping of the open loop

transfer function (TF), G(jω), so that a nearly constant gain

slope over a wide range frequencies around the 0-dB point

is obtained. Hence, in accordance with the Bode phase-gain

relation, the phase margin is maintained nearly constant in the

same frequency interval and an excellent robustness to gain

variations is obtained. The specifications on the open-loop TF

are directly verified by simulation, to show how the changes

of control parameters and, in particular, of the fractional order

ν affect the performances and viceversa. Finally, laboratory

experiments are compared with simulation results. The paper

is organized as follows. Section II reviews some fractional

calculus ideas. Section III introduces the proposed tuning

approach. Section IV compares simulation and experimental

results. Finally, Section V concludes the paper.

II. OVERVIEW OF FRACTIONAL SYSTEMS

Historically, factional calculus originated from Riemann-

Liouville definition of the fractional integral operator.

Nowadays, the mathematical literature offers many different

definitions of fractional derivatives and integrals. We refer to

the Caputo’s definition [5] of the fractional derivative of order

ν of a function f(t):

0D
ν
t f(t) =

1
Γ(n − ν)

∫ t

0

(t − τ)n−ν−1f(τ)dτ (1)

where n − 1 < ν < n, n is an integer and Γ(·) is the gamma

function. Namely, the Caputo’s definition is preferred here

because its Laplace transform is given by:

L {0D
ν
t f(t)} = sνf(s) − Σn−1

k=0fk(0)sν−k−1, (2)

where the commonly used initial conditions appear. On the

contrary, the Riemann-Liouville definition leads to initial

conditions that do not have obvious physical interpretation.

In (2), for f (k)(0) = 0, k = 0, 1, . . . , (n − 1), it holds:

L {0D
ν
t f(t)} = sνf(s). Even if (2) makes evident the

meaning and potentialities of fractional order operators in

applications, some difficulties arise because sν is irrational.

However, there are many rational approximations to sν at

disposal, see for example references in [11]. This paper refers

to the following approximation given by one of the authors

[10]:

sν ∼= αN (ν, s)
βN (ν, s)

(3)



where the denominator and numerator polynomials are both

N -degree polynomials, with N ≥ 1, whose coefficients

depend on ν. More precisely:

αN (ν, s) = αN0(ν)sN + αN1(ν)sN−1 + . . . αNN (ν) (4)

βN (ν, s) = βN0(ν)sN + βN1(ν)sN−1 + . . . βNN (ν) (5)

Moreover, the coefficients of αN (ν, s) are given by:

αNj(ν) = (−1)jB(N, j)(ν + j + 1)(N−j)(ν − N)(j) (6)

where B(N, j) is the binomial coefficient and where:

(ν + j + 1)(N−j) = (ν + j + 1)(ν + j + 2) · · · (ν + N) (7)

(ν − N)(j) = (ν − N)(ν − N + 1) · · · (ν − N + j − 1) (8)

define the Pochammer functions, with (ν +N +1)(0) = 1 and

(ν − N)(0) =1. In addition, it holds: αNj(ν) = βN,N−j(ν).

III. THE LOOP SHAPING METHOD FOR TUNING PIν

With reference to a classical unitary feedback loop let:

GC(s) = KP +
KI

sν
=

KI(1 + TCsν)
sν

(9)

with TC = KP /KI and 0 < ν < 1, be the TF of the PIν

controller and:

GP (s) =
KE

s(1 + TEs)
(10)

be the DC-servomotor TF. If G(s) = GC(s)GP (s), then the

closed-loop TF, say F (s), is given by:

F (s) =
1

1 + G−1(s)
. (11)

Now, replace s with jω in (11). According to the seminal

paper by Kalman [6] << a feedback system is optimal if and
only if the absolute value of the return difference is at least
one at all frequencies >>. Obviously, in physical systems, the

magnitude of return difference |1 + G−1(jω)| cannot satisfy

this condition, which, indeed, states that the reference signal,

r(jω), must equal the output, y(jω), i.e. r(jω) ≡ y(jω), for

all frequencies. Of course, this condition cannot be exactly

verified and must be approximated in a desired frequency band

only. Therefore, to obtain a good tracking performance, it must

be |F (jω)| ∼= 1, which can be transformed in a corresponding

constraint on the open loop TF, i.e. |G−1(jω)|2 � 1. To this

aim, we employ (9) and (10) to give:

G−1(jω) =
ω1+ν{cos [ϑ(ν)] + j sin [ϑ(ν)]}(1 + jωTE)

KEKI{1 + ωνTC [cos (θ(ν)) + j sin (θ(ν))]}
(12)

where ϑ(ν) = 0.5(1 + ν)π and θ(ν) = 0.5νπ. Since

|G−1(jω)|2 = G−1(jω)G−1(−jω), it follows:

|G−1(jω)|2 =
ω2(1+ν)(1 + ω2T 2

E)
(KEKI)2{1 + ω2νT 2

C + 2ωνTCcos [θ(ν)]}
(13)

Now, introducing the non-dimensional frequency u = ωTE ,

(12) gives:

G(ju) =
KEKI

{
1 +

(
u

TE

)ν

TC [cos(θ(ν)) + j sin(θ(ν))]
}

( u
TE

)1+ν

{
cos [ϑ(ν)] + j sin [ϑ(ν)]

}
(1 + ju)

(14)

Therefore, it holds:

� G(ju) = tan−1

⎛
⎝

(
u

TE

)ν

TC sin(θ(ν))

1 +
(

u
TE

)ν

TC cos(θ(ν))

⎞
⎠ +

−ϑ(ν) − tan−1(u) = ϕ1(u) − ϕ2 − ϕ3(u).

(15)

Moreover, we may write:

|G−1(ju)|2 = A(u)B(u) (16)

where

A(u) =
1

(KEKI)2

(
u

TE

)2(1+ν)

(17)

B(u) =
1 + u2

1 +
(

u
TE

)2ν

T 2
C + 2

(
u

TE

)ν

TCcos(θ(ν))
(18)

Note also that A(u) and B(u) depend on the unknowns KI

and TC , respectively.

The design approach for choosing the controller parameters

is as follows. Firstly, to respect the constraint |F (ju)|2 ∼= 1,

the specifications are stated in what they demand of the open

loop transmission, G(ju). More precisely, TC , KI , and ν must

be selected so as to respect |G−1(ju)|2 � 1 in a significant

frequency range. This constraint is important to design po-

sitional servomechanism, where the instantaneous following

or tracking error is an important specification. Secondly, as

a guarantee of stable performance despite drive parameters

changes, stability margins must be ensured by appropriately

shaping of G(ju) in the crossover region. To this aim, the

proposed shaping approach takes advantage of features of the

Bode plots of the fractional integrator, which shows a ”flat”

phase curve in a wide frequency interval and a magnitude plot

with fractional slopes of −20νdB/decade.

To satisfy the first constraint, we choose the frequency band

uB so that A(uB)B(uB) = ε, where ε > 0 is a conveniently

small number. Accordingly, we begin to set TC = T̃C so that

B(uB , T̃C) < 1, where B(uB , T̃C) is the value of B(u) given

by (18), assumed for u = uB and TC = T̃C . This condition

is certainly satisfied for T̃C , such that:

T̃C = a(uB)(1−ν)T ν
E = aTc0 (19)

where the constant a > 1 is to be chosen. Appropriate values

for a, i.e. for T̃C and ν, are selected for obtaining a desired

phase margin Mφ, which is held constant in wide interval

around the 0−dB crossover frequency uC . On the other hand,

uC is usually very close to the closed loop bandwidth uB and

can be estimated by uC ≈ uB/1.3÷uB/1.7 [8], [9] and hence

we assume uC = uB/1.7 in the following. Thus, substituting



u = uC in (15) easily gives: Mφ = ϕ1(uC) + 0.5(1− ν)π −
ϕ3(uC). Since, if ϕ1(uC) = ϕ3(uC), it holds:

Mφ = 0.5(1 − ν)π, (20)

this suggests us to choose a = ã so that (20) is satisfied. Some

easy calculations yield:

ã =
1

1.71−ν{sin [θ(ν)] − uC cos [θ(ν)]} (21)

Note that ã can ever be fixed so that ã > 1. It can be also

observed that the values of ã and hence of T̃C do not change

significantly in the range around uC . In practice, as it is shown

in the nest section, Mφ does not change significantly respect

to the value given by (20).

At this point, we can determine the second parameter KI

by putting:

KI =
1

KE

(
uB

TE

)(1+ν)
√

B(uB , T̃C)
ε

(22)

which completes the tuning method.

IV. SIMULATION AND EXPERIMENTAL RESULTS

To validate the tuning approach, we have performed some

simulation and laboratory experiments. The experimental set

up consists of a nonlinear 370W DC servomotor (AMIRA

DR300), a power amplifier driving the plant, and a PC

equipped with a floating point 250Mhz Motorola PPC dSPACE

board (DS1104), which provides the position reference and

runs the controllers. All routines run in discrete time with a l

ms sampling period. The DC motor transfer function has been

obtained through a frequency domain identification process,

yielding KE = 0.9779 and TE = 0.0798s as gain and time

constant of the servomotor. A 1024 pulses incremental encoder

gives the rotor position measurement. We implemented the

control algorithms in the MATLAB/Simulink environment.

The dSPACE code generator compiles the Simulink program

and then the real-time executable code is downloaded to the

board memory. During motor operation, the board processor

receives the feedback from the encoder and applies the ap-

propriate control action to the power unit. The signals are

processed using 16 bit A/D-D/A converters that are integrated

in the dSPACE board.

We tuned the FOC controller with formulae (19) and

(22), considering the following values: uB = 0.07 (then

ωB = 0.877rad/s), ε = 0.01, and a varies with ν according to

(21). Moreover, to analyze performances the irrational operator

sν is approximated with a rational integer order TF given

by 3 taking the fifth order N = 5. Using this approximation,

Figures 1 and 2 depicts the Bode plots of G(ju) and F (ju),
respectively, for ν = 0.2, 0.3, 0.4, 0.5, 0.6. In particular, given

uC = uB/1.7 = 0.041, Fig. 1 shows phase margins for

different orders ν. Moreover, due to the ”flatness” of the phase

Bode-plots, Mφ remains nearly unchanged if the gain varies

around its nominal value.

Fig. 3 compares the step responses obtained by simulation

(dashed line) and by measured data (continuous line), for ν =
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Fig. 1. Open-loop frequency responses for uB = 0.07rad/s and different
values of parameter ν.
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Fig. 2. Closed-loop frequency responses for uB = 0.07rad/s and different
values of parameter ν.

0.2 to ν = 0.6. The responses show a good agreement between

simulations and laboratory experiments, with slight differences

due to motor static nonlinearities mainly affecting the settling

time. Experiments confirm that increasing ν results in a higher

percentage overshoot, a lower rising time and a longer settling

time.

Finally, experimental results in Figures 4, 5 and 6 point out

how performance indexes are affected by the choice of uB

and ν. In particular, increasing uB makes the system faster,

reducing the rising time and the settling time, and increasing

the percentage overshoot. Also, Fig. 4 shows that a proper

choice of ν can lead to a low percentage overshoot combined
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Fig. 3. Closed-loop step response of controlled system for uB = 0.07rad/s
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Fig. 4. Experimental percentage overshoot for different values of parameter
ν.

with an excellent Phase Margin.

V. CONCLUSION

A new approach is proposed for tuning PIν position

controllers of DC-servomotors. Given the desired bandwidth

uB , which is the main factor in determining the rise time, the

proposed approach leads to the free parameters of the FOC

controller (i.e. ν, TC and KI ) making uB compatible with a

required phase-margin. In addition, despite gain variations, the

phase margin remains unchanged in a wide frequency interval,

because the phase Bode-plot of G(jω) is nearly flat around the

crossover frequency. Simulations and experiments are in good
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Fig. 5. Experimental rising time for different values of parameter ν.
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Fig. 6. Experimental settling time for different values of parameter ν.

agreement and show that appropriate selection of fractional

order, ν, leads to good values for overshoot and settling times.
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